CHARACTERIZATIONS OF REAL HYPERSURFACES OF COMPLEX SPACE FORMS IN TERMS OF RICCI OPERATORS

WOON HA SOHN

ABSTRACT. We prove that a real hypersurface M in a complex space form $M_\mathbb{C}(c)$, $c \neq 0$, whose Ricci operator and structure tensor commute each other on the holomorphic distribution and the Ricci operator is η-parallel, is a Hopf hypersurface. We also give a characterization of this hypersurface.

0. Introduction

A complex n-dimensional Kaehlerian manifold of constant holomorphic sectional curvature c is called a complex space form, which is denoted by $M_\mathbb{C}(c)$. A complete and simply connected complex space form consists of a complex projective space $P_n(\mathbb{C})$, a complex Euclidean space \mathbb{C}^n or a complex hyperbolic space $H_n(\mathbb{C})$, according to $c > 0$, $c = 0$ or $c < 0$.

R. Takagi ([9]) classified all homogeneous real hypersurfaces in $P_n(\mathbb{C})$ into six model spaces A_1, A_2, B, C, D and E (see also [10]). J. Berndt ([2]) has completed the classification of homogeneous real hypersurfaces with principal structure vector fields in $H_n(\mathbb{C})$, which are divided into the model spaces A_0, A_1, A_2 and B. A real hypersurface of type A_1 or A_2 in $P_n(\mathbb{C})$ or that of A_0, A_1 or A_2 in $H_n(\mathbb{C})$ is said to be of type A for simplicity.

We shall denote the induced almost contact metric structure of the real hypersurface M in $M_\mathbb{C}(c)$ by $(\phi, \langle,\rangle, \xi, \eta)$. The Ricci operator of M will be denoted by S, and the shape operator or the second fundamental tensor field of M by A. If the structure vector field ξ is principal, then M is called a Hopf hypersurface. The holomorphic distribution T_0 of a real hypersurface M in $M_\mathbb{C}(c)$ is defined by

$$T_0(p) = \{ X \in T_p(M) \mid \langle X, \xi \rangle_p = 0 \}.$$
where $T_p(M)$ is the tangent space of M at $p \in M$. The Ricci operator S is said to be η-parallel if
\begin{equation}
<(\nabla_X S)Y, Z> = 0
\end{equation}
for any vector fields X, Y and Z in T_0.

Many authors have occupied themselves with the study of geometrical properties of real hypersurfaces with η-parallel Ricci operators (see [1], [3], [4], [5], [6], [7], [8] and [9]). Recently, I.-B. Kim, K. H. Kim and the present author studied real hypersurfaces in $M_n(c)$ with certain conditions related to the Ricci operator and the structure tensor field ϕ in [3]. In [4], I.-B. Kim, H. J. Park and the present author gave a characterization of the real hypersurface with a special η-parallel Ricci operators. For the conditions on the η-parallel Ricci operator, Kimura and Maeda ([5]) and Suh ([8]) proved the following.

Theorem A. Theorem A ([5], [8]) Let M be a real hypersurface in a complex space form $M_n(c)$, $c \neq 0$. Then the Ricci operator of M is η-parallel and the structure vector field ξ is principal if and only if M is locally congruent to one of the model spaces of type A or type B.

The purpose of this paper is to improve the results in the previous paper [4] and characterize the real hypersurfaces with η-parallel Ricci operator. Namely, we shall prove the followings.

Theorem 1. Let M be a real hypersurface with η-parallel Ricci operator in a complex space form $M_n(c)$, $c \neq 0$, $n \geq 3$. If M satisfies
\begin{equation}
<(S\phi - \phi S)X, Y> = 0,
\end{equation}
for any X and Y in T_0, then M is a Hopf hypersurface.

Theorem 2. Let M be a real hypersurface with η-parallel Ricci operator in a complex space form $M_n(c)$, $c \neq 0$, $n \geq 3$. If M satisfies (0.2), then M is locally congruent to one of the model spaces of type A or type B.

1. Preliminaries

Let M be a real hypersurface immersed in a complex space form $(M_n(c), <, >, J)$ of constant holomorphic sectional curvature c, and let N be a unit normal vector field on an open neighborhood in M. For a local tangent vector field X on the neighborhood, the images of X and N under the almost complex structure J of $M_n(c)$ can be expressed by
\[JX = \phi X + \eta(X)N, \quad JN = -\xi, \]
where ϕ defines a linear transformation on the tangent space $T_p(M)$ of M at any point $p \in M$, and η and ξ denote a 1-form and a unit tangent vector field on the neighborhood respectively. Then, denoting the Riemannian metric on M induced from the metric on $M_n(c)$ by the same symbol $<, >$, it is easy to see that
\[<\phi X, Y> + <\phi Y, X> = 0, \quad <\xi, X> = \eta(X) \]
for any tangent vector fields X and Y on M. The collection $(\phi, <, >, \xi, \eta)$ is
called an almost contact metric structure on M, and satisfies

$$
\begin{align*}
\phi^2 X &= -X + \eta(X)\xi, & \phi\xi &= 0, & \eta(\phi X) &= 0, & \eta(\xi) &= 1, \\
<\phi X, \phi Y >= &<X, Y> - \eta(X)\eta(Y).
\end{align*}
$$

(1.1)

Let ∇ be the Riemannian connection with respect to the metric $<, >$ on M, and A be the shape operator in the direction of N on M. Then we have

$$
\nabla_X \xi = \phi AX, & (\nabla_X \phi)Y = \eta(Y)AX - <AX, Y> \xi.
$$

(1.2)

Since the ambient space is of constant holomorphic sectional curvature c, the equations of Gauss and Codazzi are given by

$$
R(X, Y)Z = \frac{c}{4} \{<Y, Z > X - <X, Z > Y + <\phi Y, Z > \phi X - <\phi X, Z > \phi Y \\
- 2 <\phi X, Y > \phi Z\} + <AY, Z > AX - <AX, Z > AY,
$$

(1.3)

$$
(\nabla_X A)Y - (\nabla_Y A)X = \frac{c}{4} \{\eta(X)\phi Y - \eta(Y)\phi X - 2 <\phi X, Y > \xi\}
$$

(1.4)

for any tangent vector fields X, Y and Z on M, where R is the Riemannian curvature tensor field of M. Then it is easily seen from (1.3) that the Ricci operator S of M is expressed by

$$
SX = \frac{c}{4} \{(2n + 1)X - 3\eta(X)\xi\} + mAX - A^2 X,
$$

(1.5)

where $m = \text{trace} A$ is the mean curvature of M, and the covariant derivative of

(1.5) is given by

$$
(\nabla_X S)Y = - \frac{3c}{4} \{<\phi AX, Y > \xi + \eta(Y)\phi AX\} + (Xm)AY \\
+ m(\nabla_X A)Y - (\nabla_Y A)AY - A(\nabla_X A)Y,
$$

(1.6)

If the vector field $\phi\nabla_\xi$ does not vanish, that is, the length β of $\phi\nabla_\xi$ is not
equal to zero, then it is easily seen from (1.1) and (1.2) that

$$
A\xi = \alpha\xi + \beta U,
$$

(1.7)

where $\alpha = <A\xi, \xi>$ and $U = -\frac{1}{\beta} \phi\nabla_\xi$. Therefore U is a unit tangent vector
field on M and $U \in T_0$. If the vector field U can not be defined, then we may
consider $\beta = 0$ identically. Therefore $A\xi$ is always expressed as in (1.7).

2. η-parallel Ricci operators

In this section we assume that the open subset

$$
U = \{p \in M \mid \beta(p) \neq 0\}
$$

is not empty. Then, in the previous paper [4], we have proved the followings.
Lemma 2.1. ([4]) Let M be a real hypersurface with the η-parallel Ricci operator S in a complex space form $M_n(c)$, $c \neq 0$, $n \geq 3$. If it satisfies (0.2), then we have
\begin{equation}
(2.1) \quad m = \text{trace} A = \alpha + \gamma,
\end{equation}
\begin{equation}
(2.2) \quad AU = \beta \xi + \gamma U,
\end{equation}
on \mathcal{U}, where we have put $\gamma = \langle AU, U \rangle$.

It follows from (1.1), (1.5), (1.7) and (2.2) that
\begin{equation}
(2.3) \quad S \xi = \left(\frac{n-1}{2}c + \alpha \gamma - \beta^2\right) \xi,
\end{equation}
\begin{equation}
SU = \left(\frac{2n+1}{4}c + \alpha \gamma - \beta^2\right) U,
\end{equation}
\begin{equation}
S\phi U = \left(\frac{2n+1}{4}c + \alpha \gamma - \beta^2\right) \phi U.
\end{equation}
Differentiating the second equation of (2.3) covariantly along any vector field X in T_0, we obtain
\begin{equation}
(2.4) \quad (\nabla_X S)U = \left(\frac{2n+1}{4}c + \alpha \gamma - \beta^2\right) I - S \nabla_X U + X(\alpha \gamma - \beta^2) U.
\end{equation}
If we take inner product of (2.4) with U and make use of (0.1) and (2.3), we get
\begin{equation}
(2.5) \quad X(\alpha \gamma - \beta^2) = 0 \quad \text{for} \quad X \in T_0.
\end{equation}

We put
\begin{equation}
Q = (\alpha + \gamma) A - A^2 = S - \frac{c}{4} (2n+1) I - 3\eta \otimes \xi.
\end{equation}
Then Q is a symmetric endomorphism on the tangent space of M. Since we see from (0.2) and (2.3,1) that $S\phi = \phi S$ on M, we have $Q\phi = \phi Q$ on M. Moreover (2.3) is equivalent to
\begin{equation}
(2.6) \quad Q \xi = (\alpha \gamma - \beta^2) \xi, \quad QU = (\alpha \gamma - \beta^2) U, \quad Q \phi U = (\alpha \gamma - \beta^2) \phi U.
\end{equation}
Let k_r be an eigenvalue of Q, and $Q(k_r)$ be the eigenspace of Q associated with k_r, where $1 \leq r \leq 2n - 1$. If λ is a principal curvature of M, then there is an eigenvalue k_r of Q such that $k_r = (\alpha + \gamma) \lambda - \lambda^2$. From this quadratic, we see that there are at most two distinct principal curvatures λ_1 and λ_2 of M for a given eigenvalue k_r. Therefore we have
\begin{equation}
(2.7) \quad Q(k_r) = \left\{ A(\lambda_1) \right\} \otimes \left\{ A(\lambda_1) \oplus A(\lambda_2) \right\} \quad (\lambda_1 \neq \lambda_2),
\end{equation}
where $A(\lambda_j)$ is the eigenspace of A associated with the principal curvature $\lambda_j (j = 1, 2)$ of M, and \oplus indicates the direct sum of vector spaces. For a tangent vector field $X \in T_0$ such that $QX = k_r X$, we have $Q\phi X = k_r \phi X$ because of $Q\phi = \phi Q$.

Let \(k_1, \ldots, k_s \) be the distinct eigenvalues of \(Q \), and let \(k_1 = \alpha \gamma - \beta^2 \). Then, by (2.6) and the above results, it is easily seen that the dimension of \(Q(k_1) \), denoted it by \(\dim Q(k_1) \), is odd and that of \(Q(k_r) \) is even for \(2 \leq r \leq s \). Moreover we see from (1.7) that there are two distinct principal curvatures, say \(\lambda \) and \(\mu \), of \(M \) such that \(\xi \in A(\lambda) \oplus A(\mu) \), and hence \(Q(k_1) \) is given by \(Q(k_1) = A(\alpha) \oplus A(\mu) \).

Since \(\lambda \) and \(\mu \) are distinct solutions of \(x^2 - (\alpha + \gamma)x - k_1 = 0 \), we have

\[
(2.8) \quad \lambda + \mu = \alpha + \gamma, \quad \lambda \mu = k_1 = \alpha \gamma - \beta^2.
\]

Now we shall prove

Lemma 2.2. Under the same assumptions of Lemma 2.1, there exist unit vector fields \(X \in A(\lambda) \) and \(Y \in A(\mu) \) such that

\[
(2.9) \quad \xi = fX + gY, \quad U = gX - fY,
\]

where \(f \) and \(g \) are smooth functions on \(U \), and satisfy \(f^2 + g^2 = 1 \) and \(fg \neq 0 \).

Proof. If \(A(\lambda) \) is spanned by \(\{X_1, \ldots, X_n\} \) and \(A(\mu) \) by \(\{Y_1, \ldots, Y_n\} \), then \(\xi \) is expressed by

\[
\xi = \sum_{i=1}^n a_iX_i + \sum_{j=1}^n b_jY_j.
\]

We can choose \(X \) and \(Y \) such as \(\sum a_iX_i = \| \sum a_iX_i \| X \) and \(\sum b_jY_j = \| \sum b_jY_j \| Y \). By putting \(f^2 = \| \sum a_iX_i \|^2 \) and \(g^2 = \| \sum b_jY_j \|^2 \), we have \(\xi = fX + gY \), \(f^2 + g^2 = 1 \) and \(fg \neq 0 \).

Since we have already seen that \(\xi = fX + gY \) and \(\beta U = -\phi \nabla \xi \xi \) on \(U \), it is easy to verify that

\[
\beta U = fg(\lambda - \mu)(gX - fY)
\]

by use of (1.2) and (1.7). Therefore we can choose \(f \) and \(g \) such that \(U = gX - fY \). \(\square \)

Lemma 2.3. Under the same assumptions of Lemma 2.1, the dimension of \(Q(k_1) \) is equal to 3 on \(U \).

Proof. We have already seen that \(\dim Q(k_1) \) is odd, and from (2.6) that \(\dim Q(k_1) \) is not less than 3.

Assume that \(\dim Q(k_1) \geq 5 \). Then, since \(Q(k_1) = A(\lambda) \oplus A(\mu) \), we may consider that \(\dim A(\lambda) > \dim A(\mu) \) and \(\dim A(\lambda) = 2\ell + 1(\ell \geq 1) \). For the vector fields \(X \in A(\lambda) \) and \(Y \in A(\mu) \) given in Lemma 2.2, we define the subspaces \(\Sigma, \Omega, \phi \Sigma \) and \(\phi \Omega \) of \(Q(k_1) \) by

\[
\Sigma = \{X_\lambda \in A(\lambda) \mid \langle X_\lambda, X_\lambda \rangle = 0\}, \quad \phi \Sigma = \{\phi X_\lambda \mid X_\lambda \in \Sigma\},
\]

\[
\Omega = \{Y_\mu \in A(\mu) \mid \langle Y_\mu, Y_\mu \rangle = 0\}, \quad \phi \Omega = \{\phi Y_\mu \mid Y_\mu \in \Omega\}.
\]

Then we see that \(Q(k_1) = \Sigma \oplus \Omega \oplus \text{span}\{X, Y\} \) and \(\dim \Sigma > \dim \Omega \).

Now we shall show that \(\phi \Sigma \subset \Omega. \) For any two orthogonal vector fields \(X_\lambda \) and \(Y_\lambda \) in \(\Sigma \), we see from Lemma 2.2 that both \(X_\lambda \) and \(Y_\lambda \) are orthogonal to
ξ. If we differentiate $AX_\lambda = \lambda X_\lambda$ covariantly along Y_λ and make use of the equation of Coddazzi (1.4), then we obtain $X_\lambda \lambda = Y_\lambda \lambda = 0$ and

$$\left(A - \lambda I \right)[X_\lambda, Y_\lambda] = \frac{c}{2} < \phi X_\lambda, Y_\lambda > \xi.$$

Taking inner product of (2.10) with X and using (2.9), we get $< \phi X_\lambda, Y_\lambda > = 0$. This means that $\phi \Sigma \cap \Sigma = \{0\}$ and hence $\phi \Sigma \subset \Omega \oplus \text{span}\{X, Y\}$ because $\phi X_\lambda \in Q(k_1)$. Similarly, differentiating $AX_\lambda = \lambda X_\lambda$ covariantly along X and taking account of (1.4), we also have $X_\lambda = 0$ and

$$\left(A - \lambda I \right)[X_\lambda, X] = \frac{c}{4} \{ \eta(X) \phi X_\lambda + 2 < \phi X_\lambda, X > \xi \}.$$

Taking the inner product of the above equation with X and using (2.9) yields

$$< \phi X_\lambda, X > = 0.$$

Since we get $< \phi X_\lambda, \xi > = f < \phi X_\lambda, X > + g < \phi X_\lambda, Y > = 0$ by (2.9), it follows from (2.11) that

$$< \phi X_\lambda, Y > = 0.$$

Therefore it is easily seen from (2.11) and (2.12) that $\phi \Sigma \cap \text{span}\{X, Y\} = \{0\}$ and hence $\phi \Sigma \subset \Omega$. This shows that $\dim \phi \Sigma \leq \dim \Omega$, and give rise to a contradiction because $\dim \Sigma = \dim \phi \Sigma$. Thus we have $\dim Q(k_1) = 3$. \hfill \square

By Lemma 2.2, it is easy to see that ϕU is orthogonal to both X and Y. Since we have $\phi U \in Q(k_1) = A(\lambda) \oplus A(\mu)$ by (2.6) and $\dim Q(k_1) = 3$ by Lemma 2.3, we may consider that $\phi U \in A(\mu)$, that is,

$$A \phi U = \mu \phi U.$$

Lemma 2.4. Under the same assumptions of Lemma 2.1, we have

$$< \nu + \kappa, \phi X_\nu, X_\kappa > = 0$$

on U, where the non-zero vector fields X_ν and X_κ are orthogonal to ξ, U and ϕU, and satisfy $AX_\nu = \nu X_\nu$ and $AX_\kappa = \kappa X_\kappa$.

Proof. By Lemmas 2.2 and 2.3, we see that the principal curvatures ν and κ of M never equal to λ and μ. Let $X_\nu \in Q(k_\nu)$, that is, $k_\nu = (\alpha + \gamma) \nu - \nu^2$. Then we see from Lemma 2.3 that $k_\gamma \neq k_\nu = \alpha \gamma - \beta^2$. Therefore, if we multiply (2.4) by X_ν and take account of (0.1), (1.5) and (2.5), then we obtain

$$< \nabla X U, X_\nu > = 0 \quad \text{for} \quad X \in T_0.$$

This means that the vector field $\nabla X U$ is expressed by a linear combination of ξ, U and ϕU only. Since we have $< \nabla X U, \xi > = \mu < X, \phi U >$ by taking account of (1.2) and (2.13), we see that

$$\nabla X U = \mu < X, \phi U > \xi + < \nabla X U, \phi U > \phi U$$

on U. Now differentiating (2.2) covariantly along X_ν and using (2.15), we obtain

$$(\nabla X_\nu A) U = (X_\nu \beta) \xi + (X_\nu \gamma) U + (\gamma - \mu) < \nabla X_\nu U, \phi U > \phi U + \beta \nu \phi X_\nu,$$
from which
\[\langle (\nabla_{X_\nu} A) X_\kappa, U \rangle = \beta \nu < \phi X_\nu, X_\kappa > . \]

As a similar argument as the above, we also have
\[\langle (\nabla_{X_\kappa} A) X_\nu, U \rangle = \beta \kappa < \phi X_\kappa, X_\nu > . \]

Therefore, from the last two equations and the equation of Codazzi (1.4), we can verify (2.14). \hfill \box

3. Proof of Theorems

In this section, we shall prove Theorems 1 and 2.

Proof of Theorem 1. We can choose a local orthonormal frame field

\[\{X_1, X_2, \ldots, X_{2n-1}\} \]

on \(\mathcal{U} \) such that \(X_1 = X \) and \(X_2 = Y \) are given in Lemma 2.2, \(X_3 = \phi U \) and \(AX_i = \lambda_i X_i \) for \(4 \leq i \leq 2n - 1 \). For any \(X_i(i \geq 4) \) in (3.1), there exists an eigenvalue \(k_r(2 \leq r \leq s) \) of \(Q \) such that \(X_i \in Q(k_r) \). Since \(\phi = \phi Q \), we see that \(\phi X_i \in Q(k_r) \). As we have already seen in (2.7) and (2.8), we see that either \(Q(k_r) = A(\lambda_i) \) or \(Q(k_r) = A(\lambda_i) \oplus A(\alpha + \gamma - \lambda_i) \).

Let \(Q(k_r) = A(\lambda_i) \oplus A(\alpha + \gamma - \lambda_i) \). Since \(\phi X_i \in Q(k_r) \), there are two non-zero vector fields \(X_{\lambda_i} \in A(\lambda_i) \) and \(X_{\alpha + \gamma - \lambda_i} \in A(\alpha + \gamma - \lambda_i) \) such that

\[\phi X_i = a X_{\lambda_i} + b X_{\alpha + \gamma - \lambda_i} , \]

where \(a \) and \(b \) are smooth functions on \(\mathcal{U} \).

If \(ab \neq 0 \), then we have \(\lambda_i = 0 \) by putting \(X_\nu = X_i \) and \(X_\kappa = X_{\lambda_i} \) into (2.14) of Lemma 2.4, and \(\alpha + \gamma = 0 \) by putting \(X_\nu = X_i \) and \(X_\kappa = X_{\alpha + \gamma - \lambda_i} \) into (2.14). This means that \(\lambda_i = \alpha + \gamma - \lambda_i = 0 \), that is, \(Q(k_r) = A(0) \) and a contradiction. Therefore we have either \(\phi X_i \in A(\lambda_i) \) or \(\phi X_i \in A(\alpha + \gamma - \lambda_i) \).

If \(\phi X_i \in A(\lambda_i) \), then we obtain \(\lambda_i = 0 \) by putting \(X_\nu = X_i \) and \(X_\kappa = \phi X_i \) into (2.14), and \(Q(k_r) = A(0) \oplus A(\alpha + \gamma) \). For a non-zero vector field \(X_{\alpha + \gamma} \in A(\alpha + \gamma) \), we have either \(\phi X_{\alpha + \gamma} \in A(0) \) or \(\phi X_{\alpha + \gamma} \in A(\alpha + \gamma) \). In each case, using (2.14), it is easily seen that \(\alpha + \gamma = 0 \), and a contradiction.

Thus we see that \(\phi X_i \in A(\alpha + \gamma - \lambda_i) \). Putting \(X_\nu = X_i \) and \(X_\kappa = \phi X_i \) into (2.14), we get \(\alpha + \gamma = 0 \). Hence we have \(Q(k_r) = A(\lambda_i) \oplus A(-\lambda_i) \). Moreover we see that the multiplicity of \(\lambda_i \) is equal to that of \(-\lambda_i \).

If \(Q(k_r) = A(\lambda_i) \), then we have \(\phi X_i \in A(\lambda_i) \), and hence \(\lambda_i = 0 \) from (2.14).

Summing up the above results, for the vector fields \(X_i(4 \leq i \leq 2n - 1) \) given in (3.1), there are two cases where all the principal curvatures \(\lambda_i \) associated with \(X_i \) are equal to zero on \(\mathcal{U} \), and where the multiplicity of a non-zero principal curvature \(\lambda_i \) associated with \(X_i \) is equal to that of \(-\lambda_i \) (associated with \(\phi X_i \)), and trace \(A = \alpha + \gamma = 0 \).

The former implies that trace \(A = \alpha + \gamma = \lambda + 2\mu \), and we see from (2.8) that \(\mu = 0 \) identically on \(\mathcal{U} \). Thus the type number at any point of \(\mathcal{U} \) is not greater than 1, and this does not occur (for instance, see [7]). The latter shows that trace \(A = \alpha + \gamma = \lambda + 2\mu = 0 \), and from (2.8) that \(\mu = 0 \) and \(k_1 = \alpha \gamma - \beta^2 = 0 \).
on \(\mathcal{U} \). Therefore we have \(\alpha^2 + \beta^2 = 0 \) and a contradiction. Thus the subset \(\mathcal{U} \) must be empty.

Proof of Theorem 2. Theorem 2 follows from Theorem A and Theorem 1. □

References

Department of Mathematics
Hankuk University of Foreign Studies
Seoul 130-791, Korea
E-mail address: mathsohn@hufs.ac.kr