RICCI CURVATURE OF INTEGRAL SUBMANIFOLDS OF AN S-SPACE FORM

JEONG-SIK KIM, MOHIT KUMAR DWIVEDI, AND MUKUT MANI TRIPATHI

ABSTRACT. Involving the Ricci curvature and the squared mean curvature, we obtain a basic inequality for an integral submanifold of an S-space form. By polarization, we get a basic inequality for Ricci tensor also. Equality cases are also discussed. By giving a very simple proof we show that if an integral submanifold of maximum dimension of an S-space form satisfies the equality case, then it must be minimal. These results are applied to get corresponding results for C-totally real submanifolds of a Sasakian space form and for totally real submanifolds of a complex space form.

1. Introduction

One of the most fundamental problems in submanifold theory is the following: Establish simple relationships between the main extrinsic invariants and the main intrinsic invariants of a submanifold. In [7], B.-Y. Chen established a sharp relationship between the Ricci curvature and the squared mean curvature for a submanifold in a Riemannian space form with arbitrary codimension. In [8], he gave the corresponding version of this inequality for totally real submanifolds in a complex space form. We find corresponding results for C-totally real submanifolds of a Sasakian space form in [10], [11] and [12].

The concept of framed metric structure unifies the concepts of almost Hermitian and almost contact metric structures. In particular, an S-structure generalizes Kaehler and Sasakian structure. In [1], D. Blair discusses principal toroidal bundles and generalizes the Hopf fibration to give a canonical example of an S-manifold playing the role of complex projective space in Kaehler geometry and the odd-dimensional sphere in Sasakian geometry. An S-manifold

Received July 30, 2005.

2000 Mathematics Subject Classification. Primary 53C40, 53C15, 53C25.

Key words and phrases. S-space form, integral submanifold, C-totally real submanifold, totally real submanifold, Lagrangian submanifold, Ricci curvature, k-Ricci curvature, scalar curvature.

Jeong-Sik Kim would like to acknowledge financial support from Korea Science and Engineering Foundation Grant(R05-2004-000-11588). Mohit Kumar Dwivedi is grateful to University Grants Commission, New Delhi for financial support in the form of Junior Research Fellowship.

©2007 The Korean Mathematical Society

395
of constant f-sectional curvature c is called an S-space form $\tilde{M}(c)$ [5], which generalizes the complex space form and Sasakian space form.

Motivated by the result of Chen in [7], recently in [9], a general basic inequality involving the Ricci curvature and the squared mean curvature of a submanifold in any Riemannian manifold is established and its several applications are presented. Using this inequality, in the present paper, we find a basic inequality for integral submanifolds of an S-space form $\tilde{M}(c)$ and apply this to recover the already known inequalities for totally real submanifolds in complex space forms and C-totally real submanifolds in Sasakian space forms. The paper is organized as follows. In section 2, we recall a brief account of Ricci curvature, k-Ricci curvature, scalar curvature in a Riemannian manifold and basic formulas and definitions for a submanifold. Then, we recall the result of [9] giving a general basic inequality involving the Ricci curvature and the squared mean curvature of a submanifold in any Riemannian manifold. Section 3 presents a brief account of framed metric manifold leading to S-space forms. In section 4, we give a very simple way to present a basic inequality for integral submanifolds of an S-space form $\tilde{M}(c)$. Then, the already known inequalities for totally real submanifolds in complex space forms and C-totally real submanifolds in Sasakian space forms become direct consequences. In section 5, we mainly prove that an integral submanifold of maximum dimension of an S-space form $\tilde{M}(c)$ satisfying the equality case becomes minimal. Then, we derive the same conclusion for Lagrangian submanifold of a complex space form and C-totally real submanifold of maximum dimension of a Sasakian space form.

2. Ricci curvature of submanifolds

Let M be an n-dimensional Riemannian manifold. Let $\{e_1, \ldots, e_k\}$, $2 \leq k \leq n$, be an orthonormal basis of a k-plane section Π_k of T_pM. If $k = n$ then $\Pi_n = T_pM$; and if $k = 2$ then Π_2 is a plane section of T_pM. For a fixed $i \in \{1, \ldots, k\}$, a k-Ricci curvature of Π_k at e_i, denoted $\text{Ric}_{\Pi_k}(e_i)$, is defined by [7]

$$
\text{Ric}_{\Pi_k}(e_i) = \sum_{j \neq i}^k K_{ij},
$$

where K_{ij} is the sectional curvature of the plane section spanned by e_i and e_j. An n-Ricci curvature $\text{Ric}_{T_pM}(e_i)$ is the usual Ricci curvature of e_i, denoted $\text{Ric}(e_i)$. Thus for any orthonormal basis $\{e_1, \ldots, e_n\}$ for T_pM and for a fixed $i \in \{1, \ldots, n\}$, we have

$$
\text{Ric}_{T_pM}(e_i) \equiv \text{Ric}(e_i) = \sum_{j \neq i}^n K_{ij}.
$$
The scalar curvature $\tau(\Pi_k)$ of the k-plane section Π_k is given by

$$
\tau(\Pi_k) = \sum_{1 \leq i < j \leq k} K_{ij}.
$$

Geometrically, $\tau(\Pi_k)$ is the scalar curvature of the image $\exp_p(\Pi_k)$ of Π_k at p under the exponential map at p. The scalar curvature $\tau(p)$ of M at p is identical with the scalar curvature of the tangent space T_pM of M at p, that is, $\tau(p) = \tau(T_pM)$.

Let M be an n-dimensional submanifold of an m-dimensional Riemannian manifold \tilde{M} equipped with a Riemannian metric \tilde{g}. We use the inner product notation \langle , \rangle for both the metrics \tilde{g} of \tilde{M} and the induced metric g on the submanifold M. The Gauss and Weingarten formulas are given respectively by

$$
\tilde{\nabla}_X Y = \nabla_X Y + \sigma(X,Y) \quad \text{and} \quad \tilde{\nabla}_X N = -A_N X + \nabla^\perp_X N
$$

for all $X,Y \in TM$ and $N \in T^\perp M$, where $\tilde{\nabla}$, ∇ and ∇^\perp are respectively the Riemannian, induced Riemannian and induced normal connections in \tilde{M}, M and the normal bundle $T^\perp M$ of M respectively, and σ is the second fundamental form related to the shape operator A by $\langle \sigma(X,Y), N \rangle = \langle A_N X, Y \rangle$. The equation of Gauss is given by

$$
R(X,Y,Z,W) = \tilde{R}(X,Y,Z,W) + \langle \sigma(X,W), \sigma(Y,Z) \rangle - \langle \sigma(X,Z), \sigma(Y,W) \rangle
$$

for all $X,Y,Z,W \in TM$, where \tilde{R} and R are the Riemann curvature tensors of \tilde{M} and M respectively. The curvature tensor R^\perp of the normal bundle of M is defined by

$$
R^\perp(X,Y)N = \nabla^\perp_X \nabla^\perp_Y N - \nabla^\perp_Y \nabla^\perp_X N - \nabla^\perp_{[X,Y]} N
$$

for all $X,Y \in TM$ and $N \in T^\perp M$. If $R^\perp = 0$, then the normal connection ∇^\perp of M is said to be flat.

The mean curvature vector H is given by $H = \frac{1}{n} \text{trace}(\sigma)$. The submanifold M is totally geodesic in \tilde{M} if $\sigma = 0$, and minimal if $H = 0$. If $\sigma(X,Y) = g(X,Y)H$ for all $X,Y \in TM$, then M is totally umbilical.

The relative null space of M at p is defined by [7]

$$
N_p = \{ X \in T_pM \mid \sigma(X,Y) = 0 \text{ for all } Y \in T_pM \}
$$

which is also known as the kernel of the second fundamental form at p [8].

Now, let $\{e_1, \ldots, e_n\}$ be an orthonormal basis of the tangent space T_pM and e_r belongs to an orthonormal basis $\{e_{n+1}, \ldots, e_m\}$ of the normal space $T^\perp pM$. We put

$$
\sigma^r_{ij} = \langle \sigma(e_i,e_j), e_r \rangle \quad \text{and} \quad \|\sigma\|^2 = \sum_{i,j=1}^n \langle \sigma(e_i,e_j), \sigma(e_i,e_j) \rangle.
$$
Let K_{ij} and \tilde{K}_{ij} denote the sectional curvature of the plane section spanned by e_i and e_j at p in the submanifold M and in the ambient manifold \tilde{M} respectively. Thus, we can say that K_{ij} and \tilde{K}_{ij} are the "intrinsic" and "extrinsic" sectional curvature of the $\text{Span}\{e_i, e_j\}$ at p. In view of (3), we get
\begin{equation}
K_{ij} = \tilde{K}_{ij} + \sum_{\tau=n+1}^{m} (\sigma_{ii}^\tau \sigma_{jj}^\tau - (\sigma_{ij}^\tau)^2).
\end{equation}

From (4) it follows that
\begin{equation}
2\tau(p) = 2\tau(T_pM) + n^2 \|H\|^2 - \|\sigma\|^2,
\end{equation}
where $\tau(T_pM)$ denotes the scalar curvature of the n-plane section T_pM in the ambient manifold \tilde{M}. Thus, we can say that $\tau(p)$ and $\tau(T_pM)$ are the "intrinsic" and "extrinsic" scalar curvature of the submanifold at p respectively.

We denote the set of unit vectors in T_pM by T_p^1M; thus
\[T_p^1M = \{X \in T_pM \mid \langle X, X \rangle = 1\}. \]

Now, we recall the following result from [9].

Theorem 2.1. Let M be an n-dimensional submanifold of a Riemannian manifold \tilde{M}. Then the following statements are true.

(a) For $X \in T_p^1M$ we have
\begin{equation}
\text{Ric}(X) \leq \frac{n^2}{4} \|H\|^2 + \overline{\text{Ric}}(T_pM)(X),
\end{equation}
where $\overline{\text{Ric}}(T_pM)(X)$ is the n-Ricci curvature of T_pM at $X \in T_p^1M$ with respect to the ambient manifold \tilde{M}.

(b) The equality case of (6) is satisfied by $X \in T_p^1M$ if and only if
\begin{equation}
\sigma(X, X) = \frac{n}{2} H(p) \quad \text{and} \quad \sigma(X, Y) = 0
\end{equation}
for all $Y \in T_pM$ such that $\langle X, Y \rangle = 0$.

(c) The equality case of (6) holds for all $X \in T_p^1M$ if and only if either (1) p is a totally geodesic point or (2) $n = 2$ and p is a totally umbilical point.

From Theorem 2.1, we immediately have the following

Corollary 2.2. Let M be an n-dimensional submanifold of a Riemannian manifold. For $X \in T_p^1M$ any two of the following three statements imply the remaining one.

(a) The mean curvature vector $H(p)$ vanishes.
(b) The unit vector X belongs to the relative null space N_p.
(c) The unit vector X satisfies the equality case of (6), namely
\begin{equation}
\text{Ric}(X) = \frac{1}{4} n^2 \|H\|^2 + \overline{\text{Ric}}(T_pM)(X).
\end{equation}
3. S-space forms

Let \tilde{M} be a $(2m+s)$-dimensional framed metric manifold [17] (also known as framed f-manifold [13] or almost r-contact metric manifold [15]) with a framed metric structure $(f, \xi_\alpha, \eta^\alpha, \tilde{g})$, $\alpha \in \{1, \ldots, s\}$, that is, f is a $(1,1)$ tensor field defining an f-structure of rank $2m$; ξ_1, \ldots, ξ_s are vector fields; η^1, \ldots, η^s are 1-forms and \tilde{g} is a Riemannian metric on \tilde{M} such that for all $X, Y \in TM$ and $\alpha, \beta \in \{1, \ldots, s\}$

\begin{equation}
 f^2 = -I + \eta^\alpha \otimes \xi_\alpha, \quad \eta^\alpha (\xi_\beta) = \delta^\alpha_\beta, \quad f (\xi_\alpha) = 0, \quad \eta^\alpha \circ f = 0,
\end{equation}

\begin{equation}
 \langle fX, fY \rangle = \langle X, Y \rangle - \sum_\alpha \eta^\alpha (X) \eta^\alpha (Y),
\end{equation}

\begin{equation}
 \Omega (X, Y) \equiv \langle X, fY \rangle = -\Omega (Y, X), \quad \langle X, \xi_\alpha \rangle = \eta^\alpha (X),
\end{equation}

where \langle , \rangle denotes the inner product of the metric \tilde{g}. A framed metric structure is an S-structure [1] if the Nijenhuis tensor of f equals $-2d\eta^\alpha \otimes \xi_\alpha$ and $\Omega = d\eta^\alpha$ for all $\alpha \in \{1, \ldots, s\}$.

When $s = 1$, a framed metric structure is an almost contact metric structure, while an S-structure is a Sasakian structure. When $s = 0$, a framed metric structure is an almost Hermitian structure, while an S-structure is a Kaehler structure. If a framed metric structure on \tilde{M} is an S-structure then it is known [1] that

\begin{equation}
 (\tilde{\nabla}_X f)Y = \sum_\alpha \left(\langle fX, fY \rangle \xi_\alpha + \eta^\alpha (Y) f^2 X \right),
\end{equation}

\begin{equation}
 \tilde{\nabla} \xi_\alpha = -f, \quad \alpha \in \{1, \ldots, s\}.
\end{equation}

The converse may also be proved. In case of Sasakian structure (that is, $s = 1$), (12) implies (13). In Kaehler case (that is, $s = 0$), we get $\tilde{\nabla} f = 0$. For $s > 1$, examples of S-structures are given in [1], [2] and [4]. Thus, the bundle space of a principal toroidal bundles over a Kaehler manifold with certain conditions is an S-manifold. Thus, a generalization of the Hopf fibration $\pi : S^{2m+1} \to PC^m$ is a canonical example of an S-manifold playing the role of complex projective space in Kaehler geometry and the odd-dimensional sphere in Sasakian geometry.

A plane section in $T_p\tilde{M}$ is a f-section if there exists a vector $X \in T_p\tilde{M}$ orthogonal to ξ_1, \ldots, ξ_s such that $\{X, fX\}$ span the section. The sectional curvature of a f-section is called a f-sectional curvature. It is known that [5]
in an S-manifold of constant f-sectional curvature c

\begin{equation}
\tilde{R}(X,Y)Z = \sum_{\alpha, \beta} (\eta^\alpha(X)\eta^\beta(Z) f^2 Y - \eta^\alpha(Y)\eta^\beta(Z) f^2 X
- \langle fX, fZ \rangle \eta^\alpha(Y)\xi_\beta + \langle fY, fZ \rangle \eta^\alpha(X)\xi_\beta)
+ \frac{c + 3s}{4} \{ - \langle fY, fZ \rangle f^2 X + \langle fX, fZ \rangle f^2 Y
+ \frac{c - s}{4} \langle \langle fX, fZ \rangle fY - \langle fY, fZ \rangle fX + 2 \langle fX, fY \rangle fZ \} \}
\end{equation}

for all $X, Y, Z \in T\tilde{M}$, where \tilde{R} is the curvature tensor of \tilde{M}. An S-manifold of constant f-sectional curvature c is called an S-space form $\tilde{M}(c)$.

When $s = 1$, an S-space form $\tilde{M}(c)$ reduces to a Sasakian space form $\tilde{M}(c)$ [3] and (14) reduces to

\begin{equation}
\tilde{R}(X,Y)Z = \frac{c + 3}{4} \{ \langle Y, Z \rangle X - \langle X, Z \rangle Y \}
+ \frac{c - 1}{4} \{ \langle X, fZ \rangle fY - \langle Y, fZ \rangle fX + 2 \langle fX, fY \rangle fZ
+ \eta(X)\eta(Z)X - \eta(Y)\eta(Z)X
+ \langle X, Z \rangle \eta(Y)\xi - \langle Y, Z \rangle \eta(X)\xi \},
\end{equation}

where $\xi_1 \equiv \xi$ and $\eta^1 \equiv \eta$. When $s = 0$, an S-space form $\tilde{M}(c)$ becomes a complex space form and (14) moves to

\begin{equation}
4\tilde{R}(X,Y)Z = c \{ \langle Y, Z \rangle X - \langle X, Z \rangle Y
+ \langle X, fZ \rangle fY - \langle Y, fZ \rangle fX + 2 \langle fX, fY \rangle fZ \}.
\end{equation}

4. Ricci curvature of integral submanifolds

Let \tilde{M} be an S-manifold equipped with an S-structure $(f, \xi, \eta^\alpha, \tilde{g})$. A submanifold M of \tilde{M} is an integral submanifold if $\eta^\alpha(X) = 0, \alpha = 1, \ldots, s$, for every tangent vector X. A submanifold M of \tilde{M} is an anti-invariant submanifold if $f(TM) \subseteq T^\perp M$. An integral submanifold is identical with an anti-invariant submanifold normal to the structure vector fields ξ_1, \ldots, ξ_s. In particular case of $s = 1$, an integral submanifold M of a Sasakian manifold is a C-totally real submanifold [16]. It is known that [6] an n-dimensional integral submanifold M, of an S-manifold \tilde{M} of dimension $(2n + s)$, is of constant curvature s if and only if the normal connection is flat.

First, we give the following Lemma.

Lemma 4.1. Let M be an n-dimensional integral submanifold of an S-space form $\tilde{M}(c)$. Let $\{e_1, \ldots, e_n\}$ be an orthonormal basis of the tangent space T_pM.

Then

\begin{equation}
\bar{K}_{ij} = \frac{1}{4} (c + 3s),
\end{equation}

\begin{equation}
\text{Ric}_{(T_p M)}(e_i) = \frac{1}{4} (n - 1)(c + 3s),
\end{equation}

\begin{equation}
\bar{\tau}(T_p M) = \frac{1}{8} n(n - 1)(c + 3s).
\end{equation}

\textbf{Proof.} Equation (15) follows from (14). Using $\text{Ric}_{(T_p M)}(e_i) = \sum_{j \neq i} K_{ij}$ in (15), we get (16). Next, using $2\bar{\tau}(T_p M) = \sum_{i=1}^{n} \text{Ric}_{(T_p M)}(e_i)$, from (16) we get (17). \hfill \Box

Now, we have the following Theorem.

\textbf{Theorem 4.2.} If M is an n-dimensional integral submanifold of an S-space form $\bar{M}(c)$, then the following statements are true.

(a) For $X \in T_p^1 M$, it follows that

\begin{equation}
\text{Ric}(X) \leq \frac{1}{4} \left\{ n^2 \|H\|^2 + (n - 1)(c + 3s) \right\}.
\end{equation}

(b) The equality case of (18) is satisfied by $X \in T_p^1 M$ if and only if (7) is true. If $H(p) = 0$, $X \in T_p^1 M$ satisfies equality in (18) if and only if $X \in N_p$.

(c) The equality case of (18) holds for all $X \in T_p^1 M$ if and only if either p is a totally geodesic point or $n = 2$ and p is a totally umbilical point.

\textbf{Proof.} Using (16) in (6), we find the inequality (18). Rest of the proof is straightforward. \hfill \Box

By polarization, from Theorem 4.2, we derive

\textbf{Theorem 4.3.} Let M be an n-dimensional integral submanifold of an S-space form $\bar{M}(c)$. Then the Ricci tensor S satisfies

\begin{equation}
S \leq \frac{1}{4} \left\{ n^2 \|H\|^2 + (n - 1)(c + 3s) \right\} g,
\end{equation}

where g is the induced Riemannian metric on M. The equality case of (19) is true if and only if either M is a totally geodesic submanifold or M is a totally umbilical surface.

When $s = 0$, we have the following two results.

\textbf{Theorem 4.4.} If M is an n-dimensional totally real submanifold (or isotropic submanifold) of a complex space form $\bar{M}(c)$, then the following statements are true.
(a) It follows that

\[\text{Ric}(X) \leq \frac{1}{4} \left\{ n^2 \| H \|^2 + (n - 1)c \right\}, \quad X \in T_p^1 M. \]

(b) The equality case of (20) is satisfied by \(X \in T_p^1 M \) if and only if (7) is true. If \(H(p) = 0, \) \(X \in T_p^1 M \) satisfies equality in (20) if and only if \(X \in N_p. \)

(c) The equality case of (20) holds for all \(X \in T_p^1 M \) if and only if either \(p \) is a totally geodesic point or \(n = 2 \) and \(p \) is a totally umbilical point.

Theorem 4.5. If \(M \) is an \(n \)-dimensional totally real submanifold (or isotropic submanifold) of a complex space form \(\bar{M}(c), \) then the following statements are true.

(a) It follows that

\[S \leq \frac{1}{4} \left\{ n^2 \| H \|^2 + (n - 1)c \right\} g. \]

(b) The equality case of (21) holds identically if and only if either \(M \) is totally geodesic submanifold or \(M \) is a totally umbilical surface.

For \(s = 1, \) we again have the following two results.

Theorem 4.6. If \(M \) is an \(n \)-dimensional \(C \)-totally real submanifold of a Sasakian space form \(\bar{M}(c), \) then the following statements are true.

(a) It follows that

\[\text{Ric}(X) \leq \frac{1}{4} \left\{ n^2 \| H \|^2 + (n - 1)(c + 3) \right\}, \quad X \in T_p^1 M. \]

(b) The equality case of (22) is satisfied by \(X \in T_p^1 M \) if and only if (7) is true. If \(H(p) = 0, \) \(X \in T_p^1 M \) satisfies equality in (22) if and only if \(X \in N_p. \)

(c) The equality case of (22) holds for all \(X \in T_p^1 M \) if and only if either \(p \) is a totally geodesic point or \(n = 2 \) and \(p \) is a totally umbilical point.

(d) The equality case of (23) holds identically if and only if either \(M \) is totally geodesic submanifold or \(M \) is a totally umbilical surface.

Theorem 4.7. If \(M \) is an \(n \)-dimensional \(C \)-totally real submanifold of a Sasakian space form \(\bar{M}(c), \) then the following statements are true.

(a) It follows that

\[S \leq \frac{1}{4} \left\{ n^2 \| H \|^2 + (n - 1)(c + 3) \right\} g. \]

(b) The equality case of (23) holds identically if and only if either \(M \) is totally geodesic submanifold or \(M \) is a totally umbilical surface.
It is known that (Theorem 4, [14]) if M is an n-dimensional compact minimal C-totally real submanifold of a Sasakian space form $M^{2n+1}(c)$, $c > -3$, such that M has positive sectional curvature, then M is totally geodesic. Therefore, in view of Theorem 4.7, we have the following

Theorem 4.8. An n-dimensional compact minimal C-totally real submanifold of a Sasakian space form $M^{2n+1}(c)$, $c > -3$ with positive sectional curvature is an Einstein manifold and satisfies $4S = (n - 1)(c + 3)g$.

The inequality (22) is the inequality (2.1) in Theorem 2.1 of [12]. The inequality (23) is the inequality (9) in Theorem 3.1 of [10]. The inequality (21) is the inequality (2.1) in Theorem 1 of [8]. Here, we find the proofs very much simplified.

5. Minimality of integral submanifolds of maximum dimension

We already know the following result [6]. If M is an n-dimensional integral submanifold of any $(2n+s)$-dimensional S-space form $\tilde{M}(c)$, then the following four statements are equivalent: (i) M is totally geodesic. (ii) M is of constant curvature $\frac{1}{4}(c + 3s)$. (iii) The Ricci tensor is $\frac{1}{4} (n - 1)(c + 3s)g$. (iv) The scalar curvature is $\frac{1}{4} n(n - 1)(c + 3s)$. In Theorem 5.2, we find a condition for minimality.

Now, we begin with the following

Theorem 5.1. Let M be an n-dimensional integral submanifold of a $(2n+s)$-dimensional S-space form $\tilde{M}(c)$. If a unit vector of T_pM satisfies the equality case of (18), then $H(p) = 0$.

Proof. Choose an orthonormal basis $\{e_1, \ldots, e_n\}$ of T_pM such that e_1 satisfies the equality case of (18). Then, $\{e_{n+1}, \ldots, e_{2n}, e_{2n+1} = \xi_1, \ldots, e_{2n+s} = \xi_s\}$ is an orthonormal basis of $T_{e_1}M$ such that $e_{n+j} = f_{e_j}$, $j \in \{1, \ldots, n\}$. We then have $A_{\xi_\alpha} = 0$ for all $\alpha \in \{1, \ldots, s\}$ and $A_{f_XY} = A_{f_YX}$ for $X, Y \in TM$. Using these two facts along with (7), for any $Y = \sum_{j=1}^{n} a_j e_{n+j} + \sum_{\alpha=1}^{s} a_\alpha \xi_\alpha \in T_pM$, we have

$$
\langle \sigma(e_1, e_1), Y \rangle = a_1 \langle \sigma(e_1, e_1), fe_1 \rangle \\
+ \sum_{j=2}^{n} a_j \langle \sigma(e_j, e_1), fe_j \rangle + \sum_{\alpha=1}^{s} a_\alpha \langle \sigma(e_1, e_1), \xi_\alpha \rangle
$$

$$
= a_1 \left(\sum_{j=2}^{n} \sigma(e_j, e_1), fe_1\right) + \sum_{j=2}^{n} a_j \langle \sigma(e_1, e_1), fe_j \rangle + 0
$$

$$
= a_1 \sum_{j=2}^{n} \langle \sigma(e_1, e_j), fe_j \rangle + \sum_{j=2}^{n} a_j \langle \sigma(e_1, e_1), fe_j \rangle
$$

$$
= 0 + 0 = 0.
$$

Hence in view of (7), $H(p) = 0$. \qed
The maximum Ricci curvature function ([8]) on a Riemannian manifold M, denoted $\overline{\text{Ric}}$, is defined as

$$\overline{\text{Ric}}(p) = \max \{\text{Ric}(X) \mid X \in T^1_p M\}.$$

Now, in view of Theorem 5.1, we immediately have the following

Theorem 5.2. Let M be an n-dimensional integral submanifold of a $(2n + s)$-dimensional S-space form $\widetilde{M}(c)$. Then

$$\overline{\text{Ric}} \leq \frac{1}{4} \left\{ n^2 \|H\|^2 + (n - 1)(c + 3s) \right\}.$$

If M satisfies the equality case of (24) identically, then M is a minimal submanifold and

$$\overline{\text{Ric}} = \frac{1}{4} (n - 1)(c + 3s).$$

When $s = 0$, from Theorem 5.2 we have the following

Theorem 5.3. ([8], Theorem 2) Let M be a Lagrangian submanifold of a 2n-dimensional complex space form $\widetilde{M}(c)$. Then

$$\overline{\text{Ric}} \leq \frac{1}{4} \left\{ n^2 \|H\|^2 + (n - 1)c \right\}.$$

If M satisfies the equality case of (24) identically, then M is a minimal submanifold and

$$\overline{\text{Ric}} = \frac{1}{4} (n - 1)c.$$

When $s = 1$, from Theorem 5.2 we have the following (Theorem 4.1 of [10] or Theorem 3.1 of [11])

Theorem 5.4. ([10], Theorem 4.1 or Theorem 3.1 of [11]) Let M be an n-dimensional C-totally real submanifold of a $(2n + 1)$-dimensional Sasakian space form $\widetilde{M}(c)$. Then

$$\overline{\text{Ric}} \leq \frac{1}{4} \left\{ n^2 \|H\|^2 + (n - 1)(c + 3) \right\}.$$

If M satisfies the equality case of (24) identically, then M is a minimal submanifold and

$$\overline{\text{Ric}} = \frac{1}{4} (n - 1)(c + 3).$$

Following the arguments as in [8], we can prove

Theorem 5.5. Let M be an n-dimensional minimal integral submanifold of a $(2n + s)$-dimensional S-space form $\widetilde{M}(c)$. Then the following statements are true.

1. The submanifold M satisfies the equality case of (24) if and only if $\dim(\mathcal{N}_p) \geq 1$.

(2) If \(\dim(N_p) \) is a positive constant \(d \), then \(N_p \) is completely integral distribution and \(M \) is \(d \)-ruled, that is, for each \(p \in M \), \(M \) contains a \(d \)-dimensional totally geodesic submanifold \(M' \) of \(M(c) \) passing through \(p \).

(3) If the submanifold \(M \) is also ruled, then it satisfies the equality case of (24) identically if and only if, for each ruling \(M' \) in \(M \), the normal bundle \(T^\perp M \) restricted to \(M' \) is a parallel normal subbundle of the normal bundle \(T^\perp M' \) along \(M' \).

References

Jeong-Sik Kim
Department of Applied Mathematics
Chonnam National University
Yosu 550-749, Korea
E-mail address: sunchon@yosu.ac.kr

Mohit Kumar Dwivedi
Department of Mathematics and Astronomy
Lucknow University
Lucknow 226 007, India

Mukut Mani Tripathi
Department of Mathematics and Astronomy
Lucknow University
Lucknow 226 007, India
E-mail address: mmtripathi66@yahoo.com