ON PRIME AND SEMIPRIME RINGS WITH PERMUTING 3-DERIVATIONS

Yong-Soo Jung and Kyoo-Hong Park

ABSTRACT. Let R be a 3-torsion free semiprime ring and let I be a nonzero two-sided ideal of R. Suppose that there exists a permuting 3-derivation $\Delta : R \times R \times R \to R$ such that the trace is centralizing on I. Then the trace of Δ is commuting on I. In particular, if R is a 3-torsion free prime ring and Δ is nonzero under the same condition, then R is commutative.

1. Introduction and preliminaries

Throughout this paper, R will represent an associative ring, and Z will be its center. Let $x, y \in R$. The commutator $yx - xy$ will be denoted by $[y, x]$. We will also use the identities $[xy, z] = [x, z]y + x[y, z]$ and $[x, yz] = [x, y]z + y[x, z]$. Let S be a nonempty subset of R. Then a map $f : R \to R$ is said to be commuting (resp. centralizing) on S if $[f(x), x] = 0$ (resp. $[f(x), x] \in Z$) for all $x \in S$. Recall that R is semiprime if $Rx = \{0\}$ implies $x = 0$ and R is prime if $xRx = \{0\}$ implies $x = 0$ or $y = 0$.

An additive map $d : R \to R$ is called a derivation if the Leibniz rule $d(xy) = d(x)y + xd(y)$ holds for all $x, y \in R$.

By a bi-derivation we mean a bi-additive map $D : R \times R \to R$ (i.e., D is additive in both arguments) which satisfies the relations

$$D(xy, z) = D(x, z)y + xD(y, z),$$

$$D(x, yz) = D(x, y)z + yD(x, z)$$

for all $x, y \in R$. Let D be symmetric, that is, $D(x, y) = D(y, x)$ for all $x, y \in R$. The map $\tau : R \to R$ defined by $\tau(x) = D(x, x)$ for all $x \in R$ is called the trace of D. If R is a noncommutative 2-torsion free prime ring and $D : R \times R \to R$ is a symmetric bi-derivation, then it follows from [1, Theorem 3.5] that $D = 0$.

A map $\Delta : R \times R \times R \to R$ will be said to be permuting if the equation $\Delta(x_1, x_2, x_3) = \Delta(x_{\pi(1)}, x_{\pi(2)}, x_{\pi(3)})$ holds for all $x_1, x_2, x_3 \in R$ and for every permutation $\{\pi(1), \pi(2), \pi(3)\}$.

A map $\delta : R \to R$ defined by $\delta(x) = \Delta(x, x, x)$

Received March 11, 2007.
2000 Mathematics Subject Classification. 16W20, 16W25.
Key words and phrases. prime ring, semiprime ring, commuting map, centralizing map, derivation, bi-derivation, 3-derivation.

©2007 The Korean Mathematical Society
for all \(x \in R \), where \(\Delta : R \times R \times R \to R \) is a permuting map, is called the \textit{trace} of \(\Delta \). It is obvious that, in case when \(\Delta : R \times R \times R \to R \) is a permuting map which is also 3-additive (i.e., additive in each argument), the trace \(\delta \) of \(\Delta \) satisfies the relation
\[
\delta(x + y) = \delta(x) + \delta(y) + 3\Delta(x, x, y) + 3\Delta(x, y, y)
\]
for all \(x, y \in R \).

Since we have
\[
\Delta(0, y, z) = \Delta(0 + 0, y, z) = \Delta(0, y, z) + \Delta(0, y, z)
\]
for all \(y, z \in R \), we obtain \(\Delta(0, y, z) = 0 \) for all \(y, z \in R \). Hence we get
\[
0 = \Delta(0, y, z) = \Delta(x - x, y, z) = \Delta(x, y, z) + \Delta(-x, y, z)
\]
and so we see that \(\Delta(-x, y, z) = -\Delta(x, y, z) \) for all \(x, y, z \in R \). This tells us that \(\delta \) is an odd function.

Here we introduce the following map:

A 3-additive map \(\Delta : R \times R \times R \to R \) will be called a 3-\textit{derivation} if the relations
\[
\Delta(x_1 x_2, y, z) = \Delta(x_1, y, z)x_2 + x_1 \Delta(x_2, y, z),
\]
\[
\Delta(x, y_1 y_2, z) = \Delta(x, y_1, z)y_2 + y_1 \Delta(x, y_2, z)
\]
and
\[
\Delta(x, y, z_1 z_2) = \Delta(x, y, z_1)z_2 + z_1 \Delta(x, y, z_2)
\]
are fulfilled for all \(x, y, z, x_i, y_i, z_i \in R, \) \(i = 1, 2 \). If \(\Delta \) is permuting, then the above three relations are equivalent to each other.

For example, let \(R \) be commutative. A map \(\Delta : R \times R \times R \to R \) defined by \((x, y, z) \mapsto d(x)d(y)d(z) \) for all \(x, y, z \in R \) is a permuting 3-derivation, where \(d \) is a derivation on \(R \).

On the other hand, let
\[
R = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \mid a, b \in \mathbb{C} \right\},
\]
where \(\mathbb{C} \) is a complex field. It is clear that \(R \) is a noncommutative ring under matrix addition and matrix multiplication. We define a map \(\Delta : R \times R \times R \to R \) by
\[
\begin{pmatrix} a_1 & b_1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} a_2 & b_2 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} a_3 & b_3 \\ 0 & 0 \end{pmatrix} \mapsto \begin{pmatrix} 0 & a_1a_2a_3 \\ 0 & 0 \end{pmatrix}.
\]
Then it is easy to see that \(\Delta \) is a permuting 3-derivation.

A study concerning the theory of centralizing (commuting) maps on prime rings was initiated by the classical result of E. C. Posner [3] which states that the existence of a nonzero centralizing derivation on a prime ring \(R \) implies that \(R \) is commutative. Since then, a great deal of work in this context has been done by a number of authors (see, e.g., [1] and references therein). For
instance, as a study concerning centralizing (commuting) maps, J. Vukman [4, 5] investigated symmetric bi-derivations on prime and semiprime rings.

In this paper, we apply the results due to E. C. Posner [3] and J. Vukman [4] to permuting 3-derivations, respectively.

2. The main results

We first need the following well-known lemma [2].

Lemma 2.1. Let \(R \) be a prime ring. Let \(d : R \to R \) be a derivation and \(a \in R \). If \(ad(x) = 0 \) holds for all \(x \in R \), then we have either \(a = 0 \) or \(d = 0 \).

We begin our investigation of permuting 3-derivations with the next result.

Lemma 2.2. Let \(R \) be a noncommutative 3-torsion free prime ring and let \(I \) be a nonzero two-sided ideal of \(R \). Suppose that there exists a permuting 3-derivation \(\Delta : R \times R \times R \to R \) such that \(\delta \) is commuting on \(I \), where \(\delta \) is the trace of \(\Delta \). Then we have \(\Delta = 0 \).

Proof. Suppose that

\[
\delta(x), x] = 0 \quad \text{for all} \quad x \in I.
\]

The substitution \(x = x + y \) to linearize (2.1) leads to

\[
0 = [\delta(x), y] + [\delta(y), x] + 3[\Delta(x, x, y), x] + 3[\Delta(x, y, y), x]
+ 3[\Delta(x, x, y), y] + 3[\Delta(x, y, y), y] \quad \text{for all} \quad x, y \in I.
\]

Putting \(-x\) instead of \(x \) in (2.2) and comparing (2.2) with the result, we arrive at

\[
[\Delta(x, y, y), x] + [\Delta(x, x, y), y] = 0 \quad \text{for all} \quad x, y \in I
\]

since \(\delta \) is odd. We set \(x = x + y \) in (2.3) and then use (2.1) and (2.3) to obtain

\[
[\delta(y), x] + 3[\Delta(x, y, y), y] = 0 \quad \text{for all} \quad x, y \in I.
\]

Let us write in (2.4) \(yx \) instead of \(x \). Then we get

\[
0 = [\delta(y), yx] + 3[\Delta(yx, y, y), y]
= y[\delta(y), x] + 3\delta(y)[x, y] + 3y[\Delta(x, y, y), y]
= y\{[\delta(y), x] + 3[\Delta(x, y, y), y]\} + 3\delta(y)[x, y]
\]

which implies that

\[
\delta(y)[x, y] = 0 \quad \text{for all} \quad x, y \in I
\]

on account of (2.4). Since \(I \) is a nonzero noncommutative prime ring, it follows from (2.5) and Lemma 2.1 that, for all \(y \in I \) with \(y \notin Z \), we have \(\delta(y) = 0 \) since for every fixed \(y \in I \), a map \(x \mapsto [x, y] \) is a derivation on \(I \).

Now, let \(x \in I \) with \(x \in Z \) and \(y \in I \) with \(y \notin Z \). Then \(x + y \notin Z \) and \(-y \notin Z \). Thus we have

\[
0 = \delta(x + y) = \delta(x) + 3\Delta(x, x, y) + 3\Delta(x, y, y)
\]
and

$$0 = \delta(x - y) = \delta(x) - 3\Delta(x, x, y) + 3\Delta(x, y, y)$$

which shows that

$$(2.6) \quad \delta(x) + 3\Delta(x, y, y) = 0.$$

Replacing $y \in I$ ($y \notin Z$) by $2y$ in (2.6) and using (2.6), we obtain that

$$\Delta(x, y, y) = 0$$

and so the relation (2.6) gives $\delta(x) = 0$ for all $x \in I$ with $x \notin Z$. Therefore we conclude that $\delta(x) = 0$ for all $x \in I$.

On the other hand, since the relation $\delta(x + y) = \delta(x) + \delta(y) + 3\Delta(x, x, y) + 3\Delta(x, y, y)$ is fulfilled for all $x, y \in I$, it follows that

$$(2.7) \quad \Delta(x, x, y) + \Delta(x, y, y) = 0 \quad \text{for all} \quad x, y \in I$$

and substituting $y + z$ for y in (2.7) and employing (2.7), we obtain that

$$2\Delta(x, y, z) = 0 = \Delta(x, y, z) \quad \text{for all} \quad x, y, z \in I.$$

Let us substitute $rz (r \in R)$ for x in the above relation $\Delta(x, y, z) = 0$ for all $x, y, z \in I$. Then we have $\Delta(r, y, z)x = 0$, that is, $\Delta(r, y, z)I = \{0\}$. Since R is prime, we get $\Delta(r, y, z) = 0$ for all $y, z \in I$ and $r \in R$. Also, substituting $ys (s \in R)$ for y in this relation, we have $y\Delta(r, s, z) = 0$ and so $I\Delta(r, s, z) = \{0\}$. Again, by primeness of R, we obtain that $\Delta(r, s, z) = 0$ for all $z \in I$ and $r, s \in R$. Furthermore, replacing z by $tz (t \in R)$ in the relation $\Delta(r, s, z) = 0$, we get $\Delta(r, s, t)z = 0$, i.e., $\Delta(r, y, t)I = \{0\}$. The primness of R implies that $\Delta(r, s, t) = 0$ for all $r, s, t \in R$ which completes the proof of the theorem.

We continue with the following result for permuting 3-derivations on semiprime rings.

Theorem 2.3. Let R be a noncommutative 3-torsion free semiprime ring and let I be a nonzero two-sided ideal of R. Suppose that there exists a permuting 3-derivation $\Delta : R \times R \times R \rightarrow R$ such that δ is centralizing on I, where δ is the trace of Δ. Then δ is commuting on I.

Proof. Assume that

$$(2.8) \quad [\delta(x), x] \in Z \quad \text{for all} \quad x \in I.$$

By linearizing (2.8) and again using (2.8), we obtain

$$(2.9) \quad Z \ni [\delta(x), y] + [\delta(y), x] + 3[\Delta(x, x, y), x] + 3[\Delta(x, y, y), x]$$

$$+ 3[\Delta(x, x, y), y] + 3[\Delta(x, y, y), y] \quad \text{for all} \quad x, y \in I.$$

We substitute $-x$ for x in (2.9) and compare (2.9) with the result to get

$$(2.10) \quad [\Delta(x, y, y), x] + [\Delta(x, x, y), y] \in Z \quad \text{for all} \quad x, y \in I$$

since R is 3-torsion free.

Replacing x by $x + y$ in (2.10) and using (2.10), we have

$$(2.11) \quad [\delta(y), x] + 3[\Delta(x, y, y), y] \in Z \quad \text{for all} \quad x, y \in I.$$
Taking \(x = y^2 \) in (2.11) and invoking (2.8) show that
\[
Z \ni [\delta(y), y^2] + 3[\Delta(y^2, y, y), y] = 8[\delta(y), y]y \quad \text{for all } y \in I
\]
and commuting with \(\delta(y) \) in (2.12) gives
\[
8[\delta(y), y]^2 = 0 \quad \text{for all } y \in I.
\]

On the other hand, substituting \(x \) by \(yx \) in (2.11), we obtain
\[
Z \ni [\delta(y), yx] + 3[\Delta(yx, y, y), y] \\
= y\{[\delta(y), x] + 3[\Delta(x, y, y), y]\} \\
+ 3\delta(y)[x, y] + 4[\delta(y), y]x \quad \text{for all } x, y \in I.
\]

Hence we have, for all \(x, y \in I \),
\[
[y\{[\delta(y), x] + 3[\Delta(x, y, y), y]\}, y] + [3\delta(y)[x, y] + 4[\delta(y), y]x, y] = 0
\]
and so we get
\[
3\delta(y)[x, y], y] + 7[\delta(y), y][x, y] = 0 \quad \text{for all } x, y \in I
\]
according to (2.11).

Substituting \(\delta(y)x \) for \(x \) in (2.14), it follows that
\[
0 = \delta(y)\{3\delta(y)[x, y], y] + 7[\delta(y), y][x, y]\} \\
+ 6\delta(y)[\delta(y), y][x, y] + 7[\delta(y), y]^2x \quad \text{for all } x, y \in I
\]
which, by (2.14), implies that
\[
6\delta(y)[\delta(y), y][x, y] + 7[\delta(y), y]^2x = 0 \quad \text{for all } x, y \in I.
\]
Letting \(x = [\delta(y), y] \) in (2.15), we arrive at \(7[\delta(y), y]^3 = 0 \) and so we get
\[
7[\delta(y), y]^2R[\delta(y), y]^2 = 0.
\]
Since \(R \) is semiprime, we deduce that
\[
7[\delta(y), y]^2 = 0 \quad \text{for all } y \in I.
\]
Hence, the relations (2.13) and (2.16) yield \([\delta(y), y]^2 = 0 \) for all \(y \in I \). Since the center of a semiprime ring contains no nonzero nilpotent elements, we conclude that \([\delta(y), y] = 0 \) for all \(y \in I \). This completes the proof of the theorem. \(\square \)

The following result is an analogue of Posner’s theorem [3, Theorem 2].

Theorem 2.4. Let \(R \) be a 3!-torsion free prime ring and let \(I \) be a nonzero two-sided ideal of \(R \). Suppose that there exists a nonzero permuting 3-derivation \(\Delta : R \times R \times R \to R \) such that \(\delta \) is centralizing on \(I \), where \(\delta \) be the trace of \(\Delta \). Then \(R \) is commutative.

Proof. Suppose that \(R \) is noncommutative. Then it follows from Theorem 2.3 that \(\delta \) is commuting on \(I \). Hence Lemma 2.2 gives \(\Delta = 0 \) which guarantees the conclusion of the theorem. \(\square \)
References

YONG-SOO JUNG
DEPARTMENT OF MATHEMATICS
SUN MOON UNIVERSITY
CHUNGNA M 336-708, KOREA
E-mail address: ysjung@sunmoon.ac.kr

KYOO-HONG PARK
DEPARTMENT OF MATHEMATICS EDUCATION
SEO WON UNIVERSITY
CHUNGBUK 361-742, KOREA
E-mail address: parkkh@seowon.ac.kr