A KUROSH-AMITSUR LEFT JACOBSON RADICAL FOR RIGHT NEAR-RINGS

RAVI SRINIVASA RAO AND K. SIVA PRASAD

ABSTRACT. Let R be a right near-ring. An R-group of type-5/2 which is a natural generalization of an irreducible (ring) module is introduced in near-rings. An R-group of type-5/2 is an R-group of type-2 and an R-group of type-3 is an R-group of type-5/2. Using it $J_{5/2}$, the Jacobson radical of type-5/2, is introduced in near-rings and it is observed that $J_2(R) \subseteq J_{5/2}(R) \subseteq J_3(R)$. It is shown that $J_{5/2}$ is an ideal-hereditary Kurosh-Amitsur radical (KA-radical) in the class of all zero-symmetric near-rings. But $J_{5/2}$ is not a KA-radical in the class of all near-rings. By introducing an R-group of type-(5/2)(0) it is shown that $J_{(5/2)(0)}$, the corresponding Jacobson radical of type-(5/2)(0), is a KA-radical in the class of all near-rings which extends the radical $J_{5/2}$ of zero-symmetric near-rings to the class of all near-rings.

1. Introduction

Near-rings considered are right near-rings and R stands for a right near-ring. Many generalizations of the Jacobson radical of rings to near-rings were introduced and studied. Let $\nu \in \{0, 1, 2\}$. J_ν, the Jacobson radical of type-ν, was introduced and studied by Betsch [1] and J_3, the Jacobson radical of type-3, was introduced and studied by Holcombe [2]. In this paper an R-group of type-5/2 is introduced as a natural generalization of an irreducible (ring) module. The corresponding Jacobson radical $J_{5/2}$ is also introduced in near-rings. Moreover, $J_2(R) \subseteq J_{5/2}(R) \subseteq J_3(R)$. $J_{5/2}$ is an ideal-hereditary Kurosh-Amitsur radical (KA-radical) in the class of all zero-symmetric near-rings. But $J_{5/2}$ is not a KA-radical in the class of all near-rings. By introducing an R-group of type-(5/2)(0) it is proved that $J_{(5/2)(0)}$, the corresponding Jacobson radical of type-(5/2)(0), is a KA-radical in the class of all near-rings which extends the radical $J_{5/2}$ of zero-symmetric near-rings to the class of all near-rings.

We recall some of the definitions related to R-groups and Jacobson radicals of near-rings.

Let G be an R-group and R_0 be the zero-symmetric part of R. Then G is

Received April 27, 2007.
2000 Mathematics Subject Classification. 16Y30.
Key words and phrases. near-ring, R-groups of type-5/2 and (5/2)(0), Jacobson radicals of type-5/2 and (5/2)(0).
(i) monogenic if there is a $g \in G$ such that $Rg = G$.

(ii) strongly monogenic if G is monogenic and for each $g \in G$ either $Rg = 0$ or G.

(iii) an R-group of type-0 if $G \neq 0$ and is a monogenic simple R-group.

(iv) an R-group of type-1 if G is of type-0 and strongly monogenic.

(v) an R-group of type-2 if $G \neq 0$, monogenic and R_0-simple.

(vi) an R-group of type-3 if G is an R-group of type-2 and $x, y \in G$ and $rx = ry$ for all $r \in R$ implies $x = y$.

If I is an ideal of R, then it is denoted by $I \triangleleft R$.

Let Q be a mapping which assigns to each near-ring R an ideal $Q(R)$ of R. Such mappings are called ideal-mappings. We consider the following properties which Q may satisfy:

(H1) $h(Q(R)) \subseteq Q(h(R))$ for all homomorphisms h of R;

(H2) $Q(R/Q(R)) = \{0\}$ for all R;

- Q is r-hereditary if $I \cap Q(R) \subseteq Q(I)$ for all ideal I of R;
- Q is s-hereditary if $Q(I) \subseteq I \cap Q(R)$ for all ideals I of R;
- Q is ideal-hereditary if it is both r-hereditary and s-hereditary, that is, if $Q(I) = I \cap Q(R)$ for all ideals I of R;
- Q is idempotent if $Q(Q(R)) = Q(R)$ for all R;
- Q is complete if $Q(I) = I$ and I is an ideal of R implies $I \subseteq Q(R)$.

With Q we associate two classes of near-rings R_Q and S_Q defined by $R_Q := \{R \mid Q(R) = R\}$, $S_Q := \{R \mid Q(R) = 0\}$ and are called Q-radical class and

- Q-semisimple class respectively.

- An ideal-mapping Q is a Hoehnke radical (H-radical) if it satisfies conditions (H1) and (H2).

- An ideal-mapping Q is a Kurosh-Amitsur radical (KA-radical) if it is a complete idempotent H-radical.

Let \mathcal{M} be a class of near-ring. Classes of near-rings always assumed to be abstract, that is, they contains the one element near-ring and are closed under isomorphic copies. With every near-ring R, we associate two ideals of R, depending on \mathcal{M}. These ideals are defined by:

$\mathcal{M}(R) := \Sigma\{I \mid I$ is an ideal of R and $I \in \mathcal{M}\}$ and

$(R/\mathcal{M}) := \cap\{I \mid I$ is an ideal of R and $R/I \in \mathcal{M}\}$.

\mathcal{M} is called regular if $0 \neq I \triangleleft R \in \mathcal{M}$ implies that $0 \neq I/K \in \mathcal{M}$ for some $K \triangleleft I$; hereditary if $I \triangleleft R \in \mathcal{M}$ implies $I \in \mathcal{M}$ and; c-hereditary if I is a left invariant ideal of $R \in \mathcal{M}$, then $I \in \mathcal{M}$. (An ideal I of R is left invariant if $RI \subseteq I$.)

A class of near-rings \mathcal{M} is a Kurosh-Amitsur radical class (KA-radical class) if it satisfies the following:

(R1) \mathcal{M} is closed under homomorphic images;

(R2) $\mathcal{M}(R) \in \mathcal{M}$ for all near-rings R;

(R3) $\mathcal{M}(R/\mathcal{M}(R)) = \{0\}$ for all near-rings R.
With a KA-radical class \(\mathcal{R} \) we associate its semisimple class \(\mathcal{S} = \{ R \mid \mathcal{R}(R) = \{0\} \} \).

The following properties for a KA-radical class \(\mathcal{R} \) are well known.

(i) \(\mathcal{R} \) is hereditary if and only if \(\mathcal{R}(R) \cap I \subseteq \mathcal{R}(I) \) for all \(I \triangleleft R \).

(ii) \(\mathcal{S} \) is hereditary if and only if \(\mathcal{S}(I) \subseteq \mathcal{R}(R) \cap I \) for all \(I \triangleleft R \).

(iii) \(\mathcal{R} \) is c-hereditary if and only if \(\mathcal{R}(R) \cap I \subseteq \mathcal{R}(I) \) for all left invariant ideals \(I \) of \(R \).

We say that a class \(M \) of near-rings satisfy condition \((F_1)\) if \(K \triangleleft I \) and \(I \) is a left invariant ideal of \(R \) with \(I/K \in \mathcal{M} \), then \(K \triangleleft R \).

Theorem 1.1 (Corollary 2.3 of [5]). Let \(\mathcal{M} \) be a class of zero-symmetric near-rings and \(\mathcal{L} \) be defined by \(\mathcal{L}(R) := (R)\mathcal{M} \) and \(\mathcal{L}_o \) be the restriction of \(\mathcal{L} \) to the class of all zero-symmetric near-rings. Then the following are equivalent.

1. \(\mathcal{L} \) is a KA-radical in the class of all near-rings with \(\mathcal{L}(I) \subseteq \mathcal{L} \cap I \) for all \(I \triangleleft R \) and equality holds if \(I \) is left invariant.

2. \(\mathcal{L}_o \) is an ideal-hereditary KA-radical in the class of all zero-symmetric near-rings and \(\mathcal{M} \) satisfies condition \((*)\):

\((*)\) If \(K \triangleleft I \triangleleft R \) with \(I \) a left invariant ideal of \(R \) and \(I/K \in \mathcal{M} \), then \(R/I \subseteq K \), where \(R/I \) is the ideal of \(R \) generated by the subnear-ring \(R/I \).

Theorem 1.2 (Theorem 4.2.3 of [5]). The class of all zero-symmetric 2-primitive near-rings satisfy condition \((F_1)\).

2. **\(R \)-groups of type-5/2**

Throughout this section \(R \) stands for a right near-ring.

Definition 2.1. Let \(G \) be an \(R \)-group. Then \(G \) is called an \(R \)-group of type-5/2 if \(G \) is an \(R \)-group of type-2 and \(Rg = G \) for all \(0 \neq g \in G \).

Remark 2.2. From the definition we have that an \(R \)-group of type-5/2 is an \(R \)-group of type-2.

Proposition 2.3. An \(R \)-group of type-3 is an \(R \)-group of type-5/2.

Proof. Let \(G \) be an \(R \)-group of type-3. So, \(G \) is an \(R \)-group of type-2. Let \(0 \neq g \in G \). Since \(G \) is an \(R \)-group of type-2, it is an \(R \)-group of type-1. So, either \(Rg = G \) or \(Rg = \{0\} \). Suppose that \(Rg = 0 \). Now \(R0 = Rg0 = Rg \subseteq Rg = 0 \) and hence \(R0 = \{0\} \). So, \(rg = r0 \) for all \(r \in R \). Since \(G \) is an \(R \)-group of type-3, \(g = 0 \). This is a contradiction to the fact that \(g \neq 0 \). Therefore, \(Rg = G \). \(\square \)

Proposition 2.4. Let \(R \) be a zero-symmetric near-ring and \(\{0\} \neq G \) be an \(R \)-group. Then \(G \) is an \(R \)-group of type-5/2 if and only if \(Rg = G \) for all \(0 \neq g \in G \).
Proof. If G is an R-group of type-5/2, then obviously $Rg = G$ for all $0 \neq g \in G$. Suppose that $Rg = G$ for all $0 \neq g \in G$. Let $\{0\} \neq H$ be an R-subgroup of G. Let $0 \neq h \in H$. Now $G = Rh \subseteq H$ and hence $H = G$. Therefore, G is an R-group of type-2 and hence it is an R-group of type-5/2. \qed

We present an example of an R-group of type-5/2 which is not an R-group of type-3.

Example 2.5. Let $(R, +)$ be a group of order ≥ 3. Let $a, b \in R$. Define $ab = a$ if $b \neq 0$ and $ab = 0$ if $b = 0$. Now R is a zero-symmetric near-ring. Moreover, $Ra = R$ for all $0 \neq a \in R$. Therefore, by Proposition 2.4, R is an R-group of type-5/2. Let $0 \neq b, 0 \neq c \in R$ and $b \neq c$. Now $ab = a = ac$ for all $a \in R$. So, R is not an R-group of type-3.

Now we give an example of an R-group of type-2 which is not an R-group of type-5/2.

Example 2.6. Let $(R, +)$ be a group of order ≥ 3. Let S be a non-empty subset of $R \setminus \{0\}$ such that $R \setminus S$ contains no non-zero subgroup of $(R, +)$. Let $a, b \in R$. Define $ab = a$ if $b \in S$ and $ab = 0$ if $b \notin S$. Now R is a zero-symmetric near-ring. We have that $Rb = \{0\}$ if $b \notin S$ and $Rb = R$ if $b \in S$. Now it is clear that R is an R-group of type-2. But, by Proposition 2.4, R is not an R-group of type-5/2.

Definition 2.7. A modular left ideal L of R is said to be a $5/2$-modular left ideal of R if R/L is an R-group of type-5/2.

Proposition 2.8. Let G be an R-group of type-5/2 and $0 \neq g \in G$. Then $(0: g)$ is a $5/2$-modular left ideal of R and $R/(0: g)$ and G are isomorphic R-groups.

Proof. The mapping $h : R \to G$ defined by $h(r) = rg$ is an R-homomorphism of R onto G with $\text{Ker } h = (0: g)$ which is a modular left ideal of R. Now $R/(0: g)$ is isomorphic to G as R-groups. So, $(0: g)$ is a $5/2$-modular left ideal of R. \qed

Definition 2.9. R is called a $5/2$-primitive near-ring if R has a faithful R-group of type-5/2.

Definition 2.10. An ideal I of R is called a $5/2$-primitive ideal of R if R/I is a $5/2$-primitive near-ring.

One can easily verify the following.

Proposition 2.11. Let I be an ideal of R. Then
(1) If G is an R-group of type $5/2$ and $I \subseteq (0 : G)$, then G is also an R/I-group of type $5/2$, where $(r + I)g := rg, r + I \in R/I$ and $g \in G$. If in addition $I = (0 : G)$, then G is a faithful R/I-group.

(2) If G is an R/I group of type $5/2$, then G is also an R-group of type $5/2$, where $rg := (r + I)g, r \in R$ and $g \in G$. If in addition G is a faithful R/I-group, then $I = (0 : G)_R$.

An immediate consequence of Propositions 2.8 and 2.11 is the following.

Proposition 2.12. Let I be an ideal of R. Then the following are equivalent.
(i) I is a $5/2$-primitive ideal of R.
(ii) $I = (0 : G)$ for some R-group G of type $5/2$.
(iii) $I = (L : R)$ for some $5/2$-modular left ideal L of R.

Corollary 2.13. The following are equivalent
(i) $\{0\}$ is a $5/2$-primitive ideal of R.
(ii) R is $5/2$-primitive.
(iii) R has a $5/2$-modular left ideal L such that $(L : R) = \{0\}$.

We know that an ideal P of R is a 3-prime ideal of R if $a, b \in R$ and $aRb \subseteq P$ implies $a \in P$ or $b \in P$.

Proposition 2.14. Let P be a $5/2$-primitive ideal of R. Then P is a 3-prime ideal of R.

Proof. Let P be a $5/2$-primitive ideal of R. We get an R-group G such that $P = (0 : G)$. Let $a, b \in R$ and $aRb \subseteq P = (0 : G)$. Suppose that $b \notin P$. Now $bg \neq 0$ for some $g \in G$. So $R(bg) = G$ as G is an R-group of type $5/2$. Therefore, $aG = aR(bg) = (aRb)g = \{0\}$. So $a \in (0 : G) = P$. Hence P is 3-prime. □

We know that a 3-primitive ideal of a zero-symmetric near-ring is equiprime and 3-prime. So with the introduction of $5/2$-primitive ideals, we have primitive ideals which are 3-prime but not equiprime.

3. The Jacobson radical of type $5/2$

Definition 3.1. The Jacobson radical of R of type $5/2$, denoted by $J_{5/2}(R)$, is defined as the intersection of all 5/2-primitive ideals of R and if R has no such ideals, then $J_{5/2}(R)$ is defined as R.

Remark 3.2. By Proposition 2.12, $J_{5/2}(R) = \cap \{(0 : G) \mid G$ is an R-group of type $5/2\} = \cap \{(L : R) \mid L$ is a $5/2$-modular left ideal of $R\}$.

The following proposition is immediate.

Proposition 3.3. $J_{5/2}(R) = \cap \{P \mid R/P$ is a $5/2$-primitive near-ring$\}$.

Proposition 3.4. $J_{5/2}(R) = \cap \{L \mid L$ is a $5/2$-modular left ideal of $R\}$.

Proof. If R has no $5/2$-primitive ideals, then by Proposition 2.12, R has no $5/2$-modular left ideals. So, if $J_{5/2}(R) = R$, then the result follows. Now suppose that R has a $5/2$-primitive ideal. So there is an R-group of type-$5/2$. We have $J_{5/2}(R) = \cap \{(0 : G) \mid G$ is an R-group of type-$5/2\}$. Let G be an R-group of type-$5/2$. Let $0 \neq g \in G$. Since $Rg = G$, we get that $r \rightarrow rg$ is an R-homomorphism of R onto G with Kernel $(0 : g)$. So $R/(0 : g)$ and G are isomorphic R-groups and hence $(0 : g)$ is a $5/2$-modular left ideal of R. Therefore $(0 : G)$ is an intersection of $5/2$-modular left ideals of R. This shows that $J_{5/2}(R)$ is an intersection of $5/2$-modular left ideals of R. Let T be a $5/2$-modular left ideal of R. Now R/T is an R-group of type-$5/2$. Since T is modular, by Corollary 3.24 of [3], we get that $(T : R) \subseteq T$. So $J_{5/2}(R) \subseteq (T : R) \subseteq T$. Hence $J_{5/2}(R)$ is the intersection of all $5/2$-modular left ideals of R.

\[\square\]

Lemma 3.5. Let R be a zero-symmetric near-ring and S be an invariant subnearring of R. If L is a $5/2$-modular left ideal of S, then L is an ideal of the R-group S and S/L is an R-group of type-$5/2$.

Proof. Let L be a $5/2$-modular left ideal of S. Since an R-group of type-$5/2$ is an R-group of type-2, L is a 2-modular left ideal of S. Therefore, by Theorem 3.34 of [3], L is an ideal of the R-group S and S/L is an R-group of type-2. Let $0 \neq s + L \in S/L$. Since S/L is an S-group of type-$5/2$, $S(s + L) = S/L$. Therefore $S/L = S(s + L) \subseteq R(s + L) \subseteq S/L$. So $R(s + L) = S/L$ and hence S/L is an R-group of type-$5/2$.

\[\square\]

Theorem 3.6. Let S be an invariant subnear-ring of a zero-symmetric near-ring R. Then $J_{5/2}(S) \subseteq J_{5/2}(R) \cap S$.

Proof. If S has no $5/2$-primitive ideals then $J_{5/2}(S) = S \subseteq J_{5/2}(R) \cap S$. So, suppose that S has $5/2$-primitive ideals. Let P be a $5/2$-primitive ideal of S. We get an S-group G of type-$5/2$ such that $P = (0 : G)_S$. Let $0 \neq g \in G$. Now $S/(0 : g)_S$ and G are isomorphic as S-groups and that $L := (0 : g)_S$ is a $5/2$-modular left ideal of S and $P = (0 : G)_S = (0 : S/L)_S = (L : S)_S$. By Lemma 3.5, S/L is an R-group of type-$5/2$. So $Q := (0 : S/L)_R = (L : S)_R$ is a $5/2$-primitive ideal of R. Therefore $P = (L : S)_S = (L : S)_R \cap S = Q \cap S$. Hence $J_{5/2}(S) \subseteq J_{5/2}(R) \cap S$.

\[\square\]

Lemma 3.7. Let S be an invariant subnear-ring of a zero-symmetric near-ring R. Let L be a $5/2$-modular left ideal of R and $S \not\subseteq L$. Then $L \cap S$ is a $5/2$-modular left ideal of S.

Proof. We have that L is a $5/2$-modular left ideal of R and $S \not\subseteq L$. Now $R = S + L$. So $R/L = (S + L)/L \cong S/(S \cap L)$ and that $S/(S \cap L)$ is an R-group of type-$5/2$. Let L be modular by e. Now $r - re \in L$ for all $r \in R$. Let $s \in S - (S \cap L)$. Since $0 \neq s + L \in R/L$, $R(s + L) = R/L$ and that $Rs + L = R$.

\[\square\]
Now \(e = rs + l, r \in R, l \in L \). \(S \cap L \) is a left ideal of \(S \) modular by \(rs \). Let \(t \in S \). Now \(te - t \in L \). So \(te - t = t(rs + l) - t(= (t(rs + l) - t(rs)) + t(rs) - t) \in L \) and that \(t(rs) - t \in L \cap S \). Therefore \(t + (L \cap S) = (t(rs) + (L \cap S) \in (S + L) \cap S) \) and that \(S/(L \cap S) = (S + L) \cap S) = S/(L \cap S) \) is an \(S \)-group of type 5/2. Since \(L \cap S \) is a modular left ideal of \(S \), \(L \cap S \) is a 5/2-modular left ideal of \(S \).

Theorem 3.8. Let \(R \) be a zero-symmetric near-ring and \(S \) be an invariant subnearring of \(R \). Then \(J_{5/2}(S) \subseteq J_{5/2}(R) \cap S \).

Proof. If \(J_{5/2}(R) = R \), then \(J_{5/2}(S) \subseteq R \cap S = J_{5/2}(R) \cap S \). Suppose that \(J_{5/2}(R) \neq R \). So \(R \) has 5/2-modular left ideals. Let \(L \) be a 5/2-modular left ideal of \(R \). If \(S \subseteq L \), then \(J_{5/2}(S) \subseteq S \cap L \). Now suppose that \(S \nsubseteq L \). By Lemma 3.7, \(S \cap L \) is a 5/2-modular left ideal of \(S \). So \(J_{5/2}(S) \subseteq S \cap L \). Therefore, by Proposition 3.4, \(J_{5/2}(S) \subseteq J_{5/2}(R) \cap S \).

Theorem 3.9. Let \(R \) be a zero-symmetric near-ring and \(S \) be an invariant subnearring of \(R \). Then \(J_{5/2}(S) = J_{5/2}(R) \cap S \).

Theorem 3.10. \(J_{5/2} \) is an ideal-hereditary Kurosh-Amitsur radical in the class of all zero-symmetric near-rings.

We show now that \(J_{5/2} \) is not a KA-radical in the class of all near-rings.

Consider the dihedral group \(D_8 = \{0, a, 2a, 3a, b, a + b, 2a + b, 3a + b\} \). Let \(T \) be the near-ring given in Example 11 of [3], (p.418) whose additive group is \(D_8 \). As mentioned in [4], \(\{0\} \), \(J = \{0, a, 2a, 3a\} \) and \(T \) are the ideals of \(T \). Moreover, these are the only left ideals of \(T \). Now \(T/J \) is the constant near-ring on \(Z_2 \). Since \(T/J \) is a \(T \)-group of type 5/2, \(J \) is a 5/2-primitive ideal and is the only 5/2-primitive ideal of \(T \). So \(J_{5/2}(T) = J \).

We need the following result.

Proposition 3.11 (Proposition 3.3 of [4]). Let \(Q \) be an ideal-mapping which satisfies (H1) and for which \(Q(T) = J \) and \(F \in S_Q \), where \(F \) is the field of order 2. Then \(Q \) is not idempotent and hence not a KA-radical mapping.

Theorem 3.12. \(J_{5/2} \) is not a KA-radical in the class of all near-rings.

Proof. By Proposition 3.3, we have that \(J_{5/2} \) is the H-radical corresponding to the class of all 5/2-primitive near-rings. As seen above \(J_{5/2}(T) = J \). Moreover, the two element field is in \(S_{5/2} \). So, by Proposition 3.11, \(J_{5/2} \) is not a KA-radical in the class of all near-rings.

4. The Jacobson radical of type -(5/2)(0)

It is known that Jacobson radicals of type 2 and 3 are ideal-hereditary KA-radicals in the class of all zero-symmetric near-rings and the Jacobson radical of type 2 is not even a KA-radical in the class of all near-rings. S. Veldsman [5] introduced \(R \)-groups of type-(2)(0) and (3)(0) and the corresponding Jacobson
radicals of type-2(0) and 3(0) which are extensions of the Jacobson radicals of
type-2 and 3 respectively of zero-symmetric near-rings to the class of all near-
rings and has shown that these two new radicals are KA-radicals in the class
of all near-rings.

In this section we introduce R-groups of type-(5/2)(0) and the corresponding
Jacobson radical of type-(5/2)(0). We show that it is a KA-radical in the class
of all near-rings.

Definition 4.1. Let G be an R-group of type-5/2. G is called an R-group of
type-(5/2)(0) if R0 = {0}, where 0 is the additive identity in G.

Proposition 4.2. Let G be an R-group of type-5/2. Then G is an R-group
of type-(5/2)(0) if and only if R_c ⊆ (0 : G), where R_c is the constant part of
R.

Proof. Let G be an R-group of type-(5/2)(0). R_cg = (R0)g = R(og) = R0 =
{0} for all g ∈ R. So, R_c ⊆ (0 : G). Suppose now that R_c ⊆ (0 : G). Now R_c,0
= {0}, where 0 is the additive identity in G. So R0 = {0} and hence G is an
R-group of type-(5/2)(0).

Corollary 4.3. Let R is a zero-symmetric near-ring and G be an R-group.
Then G is type-(5/2)(0) if and only if it is of type-5/2.

Definition 4.4. A near-ring R is said to be (5/2)(0)-primitive if it has a
faithful R-group of type-(5/2)(0). An ideal I of R is called (5/2)(0)-primitive
if R/I is a (5/2)(0)-primitive near-ring.

Proposition 4.5. Let I be an ideal of R. Then the following are equivalent.
(i) I is (5/2)(0)-primitive ideal of R.
(ii) I = (0 : G) for some R-group G of type-(5/2)(0).

Proof. Suppose that I is a (5/2)(0)-primitive ideal of R. R/I is a (5/2)(0)-
primitive on some R/I-group G of type-(5/2)(0). Since G is a faithful R/I-
group of type-(5/2)(0), G is an R-group of type-5/2 and I = (0 : G). Also,
since R/I is zero-symmetric, R_c ⊆ I = (0 : G) and hence G is an R-group
of type-(5/2)(0). Conversely, suppose that I = (0 : G) for an R-group G of
type-(5/2)(0). Since G is an R-group of type-(5/2)(0) and I = (0 : G), G is
a faithful R/I-group of type-5/2. Also since R_c ⊆ (0 : G) = I, R/I is a zero-
symmetric near-ring and hence G is a faithful R/I-group of type-(5/2)(0). So
R/I is a (5/2)(0)-primitive near-ring and hence I is a (5/2)(0)-primitive ideal
of R.

Corollary 4.6. The following are equivalent
(i) {0} is a (5/2)(0)-primitive ideal of R.
(ii) R is (5/2)(0)-primitive.

Corollary 4.7. R is (5/2)(0)-primitive if and only if R is a zero-symmetric
and (5/2)-primitive.
Remark 4.8. It is clear that a $(5/2)(0)$-primitive ideal of R contains R_c, the constat part of R.

Definition 4.9. Let R be a near-ring. $J_{(5/2)(0)}(R)$ is defined as the intersection of all $(5/2)(0)$-primitive ideal of R and $J_{(5/2)(0)}(R) = R$ if R has no $(5/2)(0)$-primitive ideals. $J_{(5/2)(0)}$ is called the Jacobson radical of type $(5/2)(0)$.

Remark 4.10. If R is a ring, then $J_{(5/2)(0)}(R)$ is the Jacobson radical of R.

We show now that $J_{(5/2)(0)}$ is a KA-radical in the class of all near-rings, its semisimple class is hereditary and radical class is c-hereditary.

Theorem 4.11. The class of all zero-symmetric $5/2$-primitive near-rings satisfy condition (F_i).

Proof. Since a zero-symmetric $5/2$-primitive near-ring is a 2-primitive near-ring, by Theorem 1.2, we get that the class of all zero-symmetric $5/2$-primitive near-rings also satisfy condition (F_i). \qed

Theorem 4.12. Let R be a near-ring. $J_{(5/2)(0)}$ is a KA-radical in the class of all near-rings, $J_{(5/2)(0)}(I) \subseteq J_{(5/2)(0)}(R) \cap I$ for all $I \lhd R$ and the equality holds if I is a left invariant ideal.

Proof. Let \mathcal{M} be the class of all zero-symmetric $5/2$-primitive near-rings. Now by Corollary 4.7, $J_{(5/2)(0)}(R) = (R)\mathcal{M}$ for all near-rings R. By Theorem 3.10, $J_{5/2}$ is an ideal-hereditary KA-radical in the class of all zero-symmetric near-rings. In view of Theorem 1.1, it is enough to show that \mathcal{M} satisfies condition (\ast) of Theorem 1.1. Let $K \lhd I \lhd R$ and I be a left invariant ideal of R with $I/K \in \mathcal{M}$. By Theorem 4.11, \mathcal{M} satisfies condition (F_i). So $K \lhd R$. Since I is a left invariant ideal of R, $R_c \subseteq I$. Also since I/K is a zero-symmetric near-ring, $R_c = I_c \subseteq K$. Since $R_c \subseteq K$ and $K \lhd R$, we get that $\overline{R_c} \subseteq K$. This completes the proof. \qed

References

