HELICOIDAL SURFACES AND THEIR GAUSS MAP IN
MINKOWSKI 3-SPACE II

MIEKYUNG CHOI, YOUNG HO KIM*, AND GI_CHAN PARK

Abstract. We classify and characterize the rational helicoidal surfaces
in a three-dimensional Minkowski space satisfying pointwise 1-type like
problem on the Gauss map.

1. Introduction

Nash’s imbedding theorem enables us to view every Riemannian manifold
as a submanifold of a Euclidean space. In that sense, one way to study a
Riemannian manifold is to apply the theory of submanifolds in a Euclidean
space. Since B.-Y. Chen ([3]) introduced the notion of finite type immersion of
submanifolds in a Euclidean space late 1970’s, many works have been carried
out in this area. Further, the notion of finite type can be extended to any
smooth functions on a submanifold of a Euclidean space or a pseudo-Euclidean
space. In dealing with submanifolds of a Euclidean or a pseudo-Euclidean
space, the Gauss map is a useful tool to examine the character of submanifolds
in a Euclidean space. For the last few years, two of the present authors and
D. W. Yoon introduced and studied the notion of pointwise 1-type Gauss
map in a Euclidean or a pseudo-Euclidean space ([4], [5], [7], [8]), namely the Gauss
map G on a submanifold M of a Euclidean space or a pseudo-Euclidean space
is said to be of pointwise 1-type if
\begin{equation}
\Delta G = F(G + C)
\end{equation}
for a non-zero smooth function F on M and a constant vector C, where Δ
denotes the Laplace operator defined on M.

On the other hand, a helicoidal surface is well known as a kind of general-
ization of some ruled surfaces and surfaces of revolution in a Euclidean space
or a Minkowski space ([1], [2], [6]). Recently, two of the authors, H. Liu and
D. W. Yoon have classified the helicoidal surfaces with pointwise 1-type Gauss

* Supported by KOSEF R01-2007-000-20014-0 (2008).
map in a Minkowski 3-space \mathbb{L}^3 ([5]). Then, we may have a natural question as follows:

What helicoidal surfaces have the harmonic Gauss map, that is, $\Delta G = 0$? Or, what helicoidal surfaces satisfy equation (1.1) whether the function F is non-zero or zero?

In this paper, we mainly focus on the study of the helicoidal surfaces with harmonic Gauss map in a Minkowski 3-space and find the all solution spaces of the so-called rational helicoidal surfaces satisfying (1.1). As a consequence, we have the following characterizations:

Theorem A. Let M be a helicoidal surface with space-like or time-like axis in a Minkowski 3-space \mathbb{L}^3. Then, a plane is the only rational helicoidal surface with harmonic Gauss map.

Theorem B. There exists no rational helicoidal surface with harmonic Gauss map which has null axis in Minkowski 3-space \mathbb{L}^3.

Theorem C. Let M be a rational helicoidal surface with time-like axis in a Minkowski 3-space \mathbb{L}^3. Then, the Gauss map G of M satisfies the condition $\Delta G = F(G + C)$ for some smooth function F and constant vector C if and only if M is an open part of a plane, a circular cylinder, a right cone, a right helicoid of type II or a helicoidal surface of elliptic type in \mathbb{L}^3.

2. Preliminaries

Let \mathbb{L}^3 be a Minkowski 3-space with the Lorentz metric

$$\langle \cdot, \cdot \rangle = -dx_0^2 + dx_1^2 + dx_2^2,$$

where (x_0, x_1, x_2) is a system of the canonical coordinates in \mathbb{R}^3. Let M be a connected 2-dimensional surface in \mathbb{L}^3 and $x : M \to \mathbb{L}^3$ a smooth non-degenerate isometric immersion. A surface M is said to be space-like (resp. time-like) if the induced metric on M is positive definite (resp. indefinite). Assuming that M is orientable, we can always choose a unit normal vector field G globally defined on M. In such a case, the unit normal vector field G can be regarded as a map $G : M \to \mathbb{H}_\pm^2$ if M is space-like and as a map $G : M \to \mathbb{S}_\pm^2$ if M is time-like, where $\mathbb{H}_\pm^2 = \{ x \in \mathbb{L}^3 \mid \langle x, x \rangle = -1, x_2 > 0 \}$ is the hyperbolic space and $\mathbb{S}_\pm^2 = \{ x \in \mathbb{L}^3 \mid \langle x, x \rangle = 1 \}$ is the de Sitter space. The map G is also called the Gauss map of the surface M. For the matrix $\tilde{g} = (\tilde{g}_{ij})$ consisting of the components of the induced metric on M, we denote by $\tilde{g}^{-1} = (\tilde{g}^{ij})$ (resp. G) the inverse matrix (resp. the determinant) of the matrix (\tilde{g}_{ij}). The Laplacian Δ on M is, in turn, given by

$$\Delta = -\frac{1}{\sqrt{|G|}} \sum_{i,j} \frac{\partial}{\partial x^i} \left(\sqrt{|G|} \tilde{g}^{ij} \frac{\partial}{\partial x^j} \right).$$

Let e be a non-zero vector in \mathbb{L}^3 and $S(e)$ the set of screw motions fixing e in \mathbb{L}^3. In particular, if e is non-null, the screw motions fixing e belong to
O(e), the set of orthogonal transformations with positive determinant. Then, a helicoidal motion around the axis in the e-direction is defined by

\[g_t(x) = A(t)x^T + (ht)e, \quad x = (x_0, x_1, x_2) \in \mathbb{L}^3, \quad t \in \mathbb{R}, \quad A \in S(e), \]

where \(h \) is a constant and \(x^T \) is the transpose of the vector \(x \).

Let \(\gamma : I = (a, b) \subset \mathbb{R} \to \Pi \) be a plane curve in \(\mathbb{L}^3 \) and \(l \) a straight line in \(\Pi \) which does not intersect the curve \(\gamma \). A helicoidal surface \(M \) with the axis \(l \) and pitch \(h \) in \(\mathbb{L}^3 \) is a non-degenerate surface which is invariant under the action of the helicoidal motion \(g_t \). Depending on the axis being space-like, time-like or null, there are three types of screw motions. If the axis \(l \) is space-like (resp. time-like), then \(l \) is transformed to the \(x_1 \)-axis or \(x_2 \)-axis (resp. \(x_0 \)-axis) by the Lorentz transformation. Therefore, we may consider \(x_2 \)-axis (resp. \(x_0 \)-axis) as the axis if \(l \) is space-like (resp. time-like). If the axis \(l \) is null, then we may assume that the axis is the line spanned by the vector \((1, 1, 0)\).

We now consider the helicoidal surfaces in \(\mathbb{L}^3 \) with space-like, time-like or null axis respectively.

Case 1. The axis \(l \) is space-like.

Without loss of generality we may assume that the profile curve \(\gamma \) lies in the \(x_1 x_2 \)-plane or \(x_0 x_2 \)-plane. Hence, the curve \(\gamma \) can be represented by

\[\gamma(u) = (0, f(u), g(u)) \text{ or } \gamma(u) = (f(u), 0, g(u)) \]

for smooth functions \(f \) and \(g \) on an open interval \(I = (a, b) \). Therefore, the surface \(M \) may be parameterized by

\[x(u, v) = (f(u) \sinh v, f(u) \cosh v, g(u) + hv), \quad f(u) > 0, \quad h \in \mathbb{R} \]

or

\[x(u, v) = (f(u) \cosh v, f(u) \sinh v, g(u) + hv), \quad f(u) > 0, \quad h \in \mathbb{R}. \]

Case 2. The axis \(l \) is time-like.

In this case, we may assume that the profile curve \(\gamma \) lies in the \(x_0 x_1 \)-plane. So the curve \(\gamma \) is given by \(\gamma(u) = (g(u), f(u), 0) \) for a positive function \(f = f(u) \) on an open interval \(I = (a, b) \). Hence, the surface \(M \) can be expressed by

\[x(u, v) = (g(u) + hv, f(u) \cos v, f(u) \sin v), \quad f(u) > 0, \quad h \in \mathbb{R}. \]

Case 3. The axis \(l \) is null.

In this case, we may assume that the profile curve \(\gamma \) lies in the \(x_0 x_1 \)-plane of the form \(\gamma(u) = (f(u), g(u), 0) \), where \(f = f(u) \) is a positive function and \(g = g(u) \) is a function satisfying \(p(u) = f(u) - g(u) \neq 0 \) for all \(u \in I \). Under the cubic screw motion, its parametrization has the form

\[x(u, v) = \left(f(u) + \frac{v^2}{2} p(u) + hv, \quad g(u) + \frac{v^2}{2} p(u) + hv, \quad p(u)v \right), \quad h \in \mathbb{R}. \]
3. Helicoidal surfaces with time-like axis in Minkowski 3-space

In this section, we study the helicoidal surfaces with harmonic Gauss map which has time-like axis in Minkowski 3-space \(\mathbb{L}^3 \).

Suppose that \(M \) is a helicoidal surface in \(\mathbb{L}^3 \) with time-like axis parameterized by (2.3) for some smooth functions \(f \) and \(g \).

First, if \(f \) is constant, the parametrization of \(M \) can be written as
\[
x(u, v) = (g(u) + hv, a \cos v, a \sin v), \quad h \in \mathbb{R}
\]
for a non-zero constant \(a \). By a straightforward computation, we see that the Laplacian \(\Delta G \) of the Gauss map \(G \) satisfies \(\Delta G = \frac{1}{a} G \). Hence, \(M \) does not have the harmonic Gauss map. In fact, it has non-proper pointwise 1-type Gauss map of the first kind ([5]). Therefore, we may assume that \(f \) is not constant. Then, we may put \(f(u) = u \) and thus \(M \) is parameterized by
\[
x(u, v) = (g(u) + hv, \cos v, \sin v), \quad u > 0, \quad h \in \mathbb{R}.
\]

If \(M \) is space-like, that is, \(u^2 - u^2 g^2 - h^2 > 0 \), then the Gauss map \(G \) and its Laplacian \(\Delta G \) are obtained as follows:
\[
G = \frac{1}{\sqrt{u^2 - u^2 g^2 - h^2}} (-u, -ug' \cos v + h \sin v, -ug' \sin v - h \cos v)
\]
and
\[
\Delta G = \frac{1}{(u^2 - u^2 g^2 - h^2)^2} (D(u), A(u) \sin v + B(u) \cos v, -A(u) \cos v + B(u) \sin v),
\]
where we have put
\[
A(u) = h(2h^4 - 4h^4 g^2 + (-7h^4 g')'u + (-2h^2 + 2h^4 g^2 - h^4 g''')u^2
+ (8h^2 g'' + h^2 g^2 g')u^3 + (3h^2 g^2 g'' - h^2 g^3 g' + 2h^2 g'' + 2h^2 g'''')u^4
+ (-g' g'' + g^3 g')u^5 + (-g'' - 3g' g'' - g' g''' + g^3 g''')u^6)
\]
\[
B(u) = -3h^6 g'' + (6h^4 g' + 8h^4 g'' - h^4 g''')u + (7h^4 g' + 7h^4 g'' - h^4 g''')u^2
+ (7h^2 g' - 12h^2 g'' + 5h^2 g''' + 4h^4 g'''')u^3
+ (-5h^2 g'' - 6h^2 g'' - h^2 g''')u^4 + (-g' (1 - g^2)^3 - 8h^4 g' g^2 - 3h^2 g'' + 2h^2 g'''')u^5
+ (g'' - g^2 g')u^6 + (-g'' - 4g' g'' + g'''')u^7
\]
and
\[
D(u) = u\{-2h^4 + 4h^4 g^2 + (7h^4 g')'u + (2h^2 - 2h^4 g^2 + h^4 g''')u^2
+ (-8h^2 g'' - h^2 g^2 g')u^3 + (-3h^2 g^2 g'' + h^2 g^3 g' - 2h^2 g''')u^4
- 2h^2 g'''')u^5 + (g' g'' - g^3 g'')u^5 + (g'' + 3g^2 g'' + g' g'' - g^3 g''')u^6\}.
\]

Suppose that \(M \) has harmonic Gauss map, that is, its Gauss map \(G \) satisfies \(\Delta G = 0 \). Then, we obtain that the functions \(A(u) \), \(B(u) \) and \(D(u) \) are all vanishing.
First, we consider the case that M is a helicoidal surface of polynomial kind with harmonic Gauss map, that is, g is a polynomial in u. Then we may put

$$g(u) = a_n u^n + a_{n-1} u^{n-1} + \cdots + a_1 u + a_0,$$

where n is nonnegative integer and a_n is non-zero constant.

Considering the constant terms of $B(u)$, it is easy to see that $h = 0$, that is, M is a surface of revolution. Therefore, $A(u) = 0$. Also, $B(u)$ and $D(u)$ are reduced to respectively:

$$B(u) = -g'(1-g^2)^3 u^5 + (g'' - g' g'') u^6 + (-g'' g'' + 4g' g'^2 + g''') u^7,$$

$$D(u) = (g' g'' - g''^2) u^5 + (g''^2 + 3g'^2 g'' + g''' - g''^3) u^6.$$

Assume that $\deg g(u) \geq 2$, where $\deg g(u)$ means the degree of the polynomial $g(u)$. Then, the term $-g'(1-g^2)^3 u^5$ in $B(u)$ includes the highest degree in u and its leading coefficient must be zero, that is, $n^7 a_n^7 = 0$. Thus, $a_n = 0$, a contradiction.

Assuming $\deg g(u) = 1$, $B(u) = -a_1 (1-a_1^2)^3 u^5$. Hence, $a_1^2 = 1$, which is a contradiction since M is non-degenerate.

If g is constant, then $B(u) = 0$ and $D(u) = 0$. Hence, the Gauss map is harmonic. In this case, the parametrization of M in (3.1) is reduced to

$$x(u,v) = (a, u \cos v, u \sin v), \quad u > 0$$

for some constant a. This means that M is part of a plane.

Conversely, it is obvious that the Gauss map of a plane is harmonic. By a similar process as above, the same conclusion can be made in case of time-like surface. Consequently, we have:

Theorem 3.1. Let M be a helicoidal surface of polynomial kind with time-like axis in a Minkowski 3-space \mathbb{L}^3. Then, M has the harmonic Gauss map if and only if M is part of a plane.

Next, consider M is of rational kind, that is, $g(u)$ is a rational function. Suppose that M is a genuine helicoidal surface of rational kind with harmonic Gauss map, i.e., $h \neq 0$. Then we may put

$$g(u) = p(u) + \frac{r(u)}{q(u)},$$

where $p(u)$ is a polynomial in u and the polynomials $r(u)$ and $q(u)$ are relatively prime with $\deg r(u) < \deg q(u)$ and $\deg q(u) \geq 1$. Let $\deg p(u) = l$, $\deg r(u) = n$ and $\deg q(u) = m$ with $n < m$ and $m \geq 1$ where l, m, and n are some nonnegative integers. Then, we may put

$$p(u) = a_l u^l + a_{l-1} u^{l-1} + \cdots + a_1 u + a_0,$$

$$q(u) = b_m u^m + b_{m-1} u^{m-1} + \cdots + b_1 u + b_0,$$

$$r(u) = c_n u^n + c_{n-1} u^{n-1} + \cdots + c_1 u + c_0.$$
Putting (3.2) in the equation $B(u)$ and multiplying $q^{14}(u)$ with thus obtained equation, we get a polynomial $q^{14}(u)B(u)$ in u.

Assume that $\deg p(u) \geq 2$. By an algebraic computation, we see that the degree of the polynomial is $7l + 14m - 2$ and so its coefficient $l^7a_l^7b_m^{14}$ must be zero. But, this is a contradiction.

Assuming $\deg p(u) = 1$, the leading coefficient of the polynomial is $-a_1(1 - a_1^2)b_1^{14}$. It must be zero and so $a_1^2 = 1$. In this case, we can consider two cases according to the value of $m - n$.

If $m - n = 1$, then the polynomial includes the term of the degree $14m + 1$ with the coefficient $2h^8a_1b_m^{14}$. Hence it must be zero, a contradiction.

Suppose $m - n = 1$. Since the Gauss map of M is harmonic, the polynomials $q^{10}(u)A(u)$ and $q^{14}(u)B(u)$ are vanishing. With the help of (3.2) and (3.3), we have $b_0 = 0$. So we may put

$$q(u) = b_m u^m + \cdots + b_2 u^2 + b_1 u, \quad b_m \neq 0.$$

Then, an algebraic computation shows that the polynomial $q^{10}(u)A(u)$ has the lowest degree 4 with the coefficient $4h^2b_1^6c_0^4$. Similarly, the polynomial $q^{14}(u)B(u)$ has the lowest degree 5 with the coefficient $-b_1^7c_0^7$. Therefore, $b_1c_0 = 0$.

If we assume $c_0 \neq 0$, then $b_1 = 0$ and we have

$$q(u) = b_m u^m + \cdots + b_2 u^2, \quad b_m \neq 0.$$

By considering the coefficients of the terms with the lowest degree in $q^{10}(u)A(u)$ and $q^{14}(u)B(u)$, we get $b_2c_0 = 0$. Hence, $b_2 = 0$. Inductively, b_3, \ldots, b_{m-1} are zero. So we put

$$g(u) = b_m u^m, \quad b_m \neq 0.$$

Then, the polynomial $q^{14}(u)B(u)$ has the lowest degree $7m - 2$ with the coefficient $(-mb_m c_0)^7$. It must be zero, a contradiction. Thus, we conclude that $c_0 = 0$. Hence, $g(u)$ can be written as

$$g(u) = \pm u + a_0 + \frac{r(u)}{q(u)},$$

where $r(u) = c_n u^{n-1} + \cdots + c_1$ and $q(u) = b_m u^{m-1} + \cdots + b_1$ with $c_n \neq 0$ and $b_m \neq 0$. By a similar process as above, we obtain $b_1, \ldots, b_{m-1} = 0$ and $c_1, \ldots, c_{n-1} = 0$. Consequently, we get

$$g(u) = \pm u + a_0 + \frac{c}{u}, \quad c \neq 0.$$

Hence, $q^{14}(u)B(u)$ has the coefficient $-c^7$ of the lowest degree which is 5 and it must be zero. Thus, $c = 0$, that is, g is a polynomial in u.

Finally, if p is constant, then the degree of $q^{14}(u)B(u)$ is $13m + n + 4$ and its leading coefficient is $-(m - n)^4b_m^{14}c_n$. This must be zero, a contradiction.
By a similar argument as above, we lead to a contradiction in case of surfaces of revolution. In case of time-like surface, we have the same result. Consequently, we have:

Theorem 3.2. Let M be a helicoidal surface with time-like axis in a Minkowski 3-space \mathbb{L}^3. Then, there exists no helicoidal surface of rational kind with harmonic Gauss map except polynomial kind.

Combining the above theorems we have the following:

Theorem 3.3 (Characterization). Let M be a rational helicoidal surface with time-like axis in a Minkowski 3-space \mathbb{L}^3. Then, M has the harmonic Gauss map if and only if it is part of a plane.

Combining the results above and [5], we have the following characterization.

Theorem 3.4 (Characterization). Let M be a rational helicoidal surface with time-like axis in a Minkowski 3-space \mathbb{L}^3. Then, the Gauss map G of M satisfies the condition $\Delta G = F(G + C)$ for some smooth function F and constant vector C if and only if M is an open part of a plane, a circular cylinder, a right cone, a right helicoid of type II or a helicoidal surface of elliptic type in \mathbb{L}^3.

4. Helicoidal surfaces with null axis in Minkowski 3-space

In this section, we investigate the helicoidal surfaces with harmonic Gauss map which has null axis in \mathbb{L}^3.

Suppose that M is a helicoidal surface with null axis parameterized by

$$x(u,v) = \left(f(u) + \frac{v^2}{2} p(u) + hv, \ g(u) + \frac{v^2}{2} p(u) + hv, \ p(u) \right), \ h \in \mathbb{R},$$

where $p(u) = f(u) - g(u) \neq 0$. Since the induced metric on M is non-degenerate, $(f(u) - g(u))^2(f''(u) - g''(u)) + h^2(f'(u) - g'(u))^2$ never vanishes and so $f'(u) - g'(u) \neq 0$ everywhere. Thus, we may change the variable in such a way that $p(u) = f(u) - g(u) = -2u$.

Let $k(u) = f(u) + u$. Then, the functions f and g in the profile curve γ look like

$$f(u) = k(u) - u \text{ and } g(u) = k(u) + u.$$

Thus, the parametrization of M becomes

$$x(u,v) = (k(u) - u - uv^2 + hv, \ k(u) + u - uv^2 + hv, \ -2uv).$$

We now suppose that M is space-like, that is, $4u^2k''(u) - h^2 > 0$. By a direct computation, the Gauss map G and its Laplacian ΔG are obtained as follows:

$$G = \frac{1}{\sqrt{4u^2k''(u) - h^2}} (uk'(u) + u + uv^2 + hv, \ uk'(u) - u + uv^2 - vh, \ 2uv - h)$$

and

$$\Delta G = -\frac{1}{(4u^2k''(u) - h^2)^{\frac{3}{2}}} (2uX + Y, \ -2uX + Y, \ 2(2uv - h)X),$$
where we have put

\[(4.1)\]

\[X = X(u) = h^4 + 4h^2k'u^2 + 9h^2k''u^3 + h^3k'''u^4 - 4k'k''u^5 + 8k''^2u^6 - 4k''u^6\]

and

\[(4.2)\]

\[Y = Y(u, v) = 10h^4k'u + 7h^4k''u^2 - 32h^2k'^2u^3 + h^4k'''u^4 - 14h^2k'k''u^4 + 32k'^3u^5 + 6h^2k''u^5 - 6h^2k'k'''u^5 + 8k'^2k''u^6 - 8k'k''u^7 + 8k'^2k''u^7 - 2h^5v - 8h^3k'u^2v - 18h^3k''u^3v + 8hk'k''u^5v - 16hk'^2u^6v + 8hk'k'''u^6v + 2h^4uv^2 + 8h^2k'u^3v^2 + 18h^2k''u^4v^2 + 2h^2k''u^5v^2 - 8k'k'u^6v^2 + 16k'^2u^7v^2 - 8k''u^7v^2.\]

Suppose that \(M\) has harmonic Gauss map, that is, its Gauss map \(G\) satisfies \(\Delta G = 0\). Then the above equations \(X(u)\) and \(Y(u, v)\) are vanishing. Hence, the equation \(Y(u, v)\) in (4.2) can be rewritten as

\[Y(u, v) = Y_1(u) + Y_2(u)v + Y_3(u)v^2,\]

where we put

\[Y_1(u) = 10h^4k'u + 7h^4k''u^2 - 32h^2k'^2u^3 + h^4k'''u^4 - 14h^2k'k''u^4 + 32k'^3u^5 + 6h^2k''u^5 - 6h^2k'k'''u^5 + 8k'^2k''u^6 - 8k'k''u^7 + 8k'^2k''u^7 - 2h^5v - 8h^3k'u^2v - 18h^3k''u^3v + 8hk'k''u^5v - 16hk'^2u^6v + 8hk'k'''u^6v + 2h^4uv^2 + 8h^2k'u^3v^2 + 18h^2k''u^4v^2 + 2h^2k''u^5v^2 - 8k'k'u^6v^2 + 16k'^2u^7v^2 - 8k''u^7v^2,\]

\[Y_2(u) = -2h(h^4 + 4h^2k'u^2 + 9h^2k''u^3 + h^3k'''u^4 - 4k'k''u^5 + 8k'^2u^6 - 4k''u^6),\]

\[Y_3(u) = 2u(h^4 + 4h^2k'u^2 + 9h^2k''u^3 + h^3k'''u^4 - 4k'k''u^5 + 8k'^2u^6 - 4k''u^6).\]

Since \(X(u)\) and \(Y(u, v)\) are vanishing, we have \(Y_1(u) = 0\). Moreover, \(Y_1(u)\) can be written as \(Y_1(u) = -2k'uX(u) + uZ(u)\) and we also get \(Z(u) = 0\), where

\[(4.3)\]

\[Z(u) = 12h^4k' + 7h^4k''u - 24h^2k'^2u^2 + h^4k'''u^3 + 4h^2k'k''u^3 + 32k'^3u^4 + 6h^2k''u^4 - 4h^2k'k'''u^4 + 8k''u^6.\]

Let \(M\) be a helicoidal surface of polynomial kind with harmonic Gauss map, that is, \(k\) is a polynomial in \(u\). Then we may put

\[k(u) = a_nu^n + a_{n-1}u^{n-1} + \cdots + a_1u + a_0,\]

where \(n\) is nonnegative integer and \(a_n\) is non-zero constant.

Considering the constant terms in \(X(u)\), it is easy to see that \(h = 0\). Therefore, the equations \(X(u)\) and \(Z(u)\) can be written as

\[X(u) = -4k'k''u^5 + 8k''u^6 - 4k''u^6\]

and \(Z(u) = 32k'^3u^4 + 8k''u^6\).

Assume that \(\deg k(u) \geq 2\). Considering the equation \(X(u)\), we can easily lead to a contradiction.
If deg \(k(u) = 1 \), then \(X(u) = 0 \) and \(Z(u) = 32u^3 u^4 \). Hence, \(Z(u) \) cannot be zero and so we have a contradiction.

If \(k \) is constant, then \(X(u) = 0 \) and \(Z(u) = 0 \). But, in this case, it contradicts that \(M \) is non-degenerate, i.e., \(4u^2 k'(u) \neq 0 \). Hence, \(M \) does not have harmonic Gauss map.

By a similar argument as above, we have the same results in case of time-like helicoidal surface of polynomial kind with null axis. Thus, we have:

Theorem 4.1. Suppose that \(M \) is a helicoidal surface of polynomial kind with null axis in a Minkowski 3-space \(\mathbb{L}^3 \). Then \(M \) does not have harmonic Gauss map.

We now consider a helicoidal surface of rational kind with harmonic Gauss map, that is, \(k \) is a rational function in \(u \). Then we may put

\[
k(u) = p(u) + \frac{r(u)}{q(u)},
\]

where \(p(u) \) is a polynomial in \(u \), \(r(u) \) and \(q(u) \) are relatively prime polynomials with \(\deg r(u) < \deg q(u) \) and \(\deg q(u) \geq 1 \).

Suppose that \(M \) is a genuine helicoidal surface of rational kind, that is, \(h \neq 0 \). With the help of (4.1) and (4.3), we get

\[
u^2 Z(u) - h^2 X(u) = (4u^2 k' - h^2)(h^4 - 4h^2 k' u^2 + 2h^2 k'' u^3 + 8k'^2 u^4 + 2k''^2 u^6).
\]

Since \(X(u) \) and \(Z(u) \) vanishes identically,

\[
(4u^2 k' - h^2)(h^4 - 4h^2 k' u^2 + 2h^2 k'' u^3 + 8k'^2 u^4 + 2k''^2 u^6) = 0.
\]

Because \(M \) is a nondegenerate surface, i.e., \(4u^2 k' - h^2 \neq 0 \),

(4.4) \hspace{1cm} h^4 - 4h^2 k' u^2 + 2h^2 k'' u^3 + 8k'^2 u^4 + 2k''^2 u^6 = 0.

From the equation (4.4), we get

\[
(2k'' u^3 + h^2)^2 + (4u^2 k' - h^2)^2 = 0.
\]

It is easily seen that this is a contradiction because of \(4u^2 k' - h^2 \neq 0 \). Thus, \(h = 0 \).

If \(h = 0 \), the equation \(Z(u) \) in (4.3) can be reduced as

\[
Z(u) = 8u^2 k'(k''^2 u^4 + 4u^2 k'^2).
\]

Since \(M \) is nondegenerate, \(k''^2 u^4 + 4u^2 k'^2 = 0 \), which implies \(k \) is constant, a contradiction.

Similarly, we prove that a time-like helicoidal surface of rational kind does not have harmonic Gauss map. Consequently, we have:

Theorem 4.2. Let \(M \) be a helicoidal surface with null axis in a Minkowski 3-space \(\mathbb{L}^3 \). Then, there exists no rational helicoidal surface with harmonic Gauss map.
Combining the results we obtained above and those in [5], we have the following:

Theorem 4.3 (Characterization). Let M be a helicoidal surface of rational kind with null axis in a Minkowski 3-space \mathbb{L}^3. Then, the Gauss map G of M satisfies $\Delta G = F(G + C)$ for some smooth function F and constant vector C if and only if it is part of an Enneper’s surface of second kind, a de Sitter space, a hyperbolic space, a helicoidal surface of Enneper type, a helicoidal surface of hyperbolic type or a helicoidal surface of de Sitter type in \mathbb{L}^3.

References

Miekyung Choi
Department of Mathematics
Kyungpook National University
Taegu 702-701, Korea
E-mail address: mkchoi@knu.ac.kr

Young Ho Kim
Department of Mathematics
Kyungpook National University
Taegu 702-701, Korea
E-mail address: yhkim@knu.ac.kr

Gi-Chan Park
Department of Mathematics
Kyungpook National University
Taegu 702-701, Korea