ASYMPTOTIC BEHAVIOR OF \mathcal{A}-HARMONIC FUNCTIONS AND p-EXTREMAL LENGTH

SEOK WOO KIM, SANG MOON LEE, AND YONG HAH LEE

Abstract. We describe the asymptotic behavior of functions of the Royden p-algebra in terms of p-extremal length. We also prove that each bounded \mathcal{A}-harmonic function with finite energy on a complete Riemannian manifold is uniquely determined by the behavior of the function along p-almost every curve.

1. Introduction

Let Ω be an open subset of an n-dimensional complete Riemannian manifold M and $W^{1,p}(\Omega)$ be the Sobolev space of all functions u in $L^p(\Omega)$ whose distributional gradient ∇u also belongs to $L^p(\Omega)$, where p is a constant such that $1 < p < \infty$. We equip $W^{1,p}(\Omega)$ with the norm $||u||_{1,p} = ||u||_p + ||\nabla u||_p$. We denote by $W^{1,p}_0(\Omega)$ the closure of $C^\infty_0(\Omega)$ in $W^{1,p}(\Omega)$. Let $F : \bigcup_{x \in \Omega} T_x M \to \mathbb{R}$ be a variational kernel satisfying following conditions:

(A1) the mapping $F_x = F|_{T_x M} : T_x M \to \mathbb{R}$ is strictly convex and differentiable for all x in Ω, and the mapping $x \mapsto F_x(\xi)$ is measurable whenever ξ is;

(A2) for a constant $1 < p < \infty$, there exist constants $0 < C_1 \leq C_2 < \infty$ such that

$$C_1|\xi|^p \leq F_x(\xi) \leq C_2|\xi|^p$$

for all x in Ω and ξ in $T_x M$.

It is instructive to note that if $\mathcal{A}_x(\xi) = (A^1_x(\xi), A^2_x(\xi), \ldots, A^n_x(\xi))$, where $A^i_x(\xi) = \frac{\partial}{\partial \xi^i} F_x(\xi)$ for each $i = 1, 2, \ldots, n$, then \mathcal{A} satisfies the following properties: (See [1] and [7])

Received November 19, 2008.
2000 Mathematics Subject Classification. 58J05, 31B05.
Key words and phrases. \mathcal{A}-harmonic function, p-harmonic boundary, comparison principle, maximum principle, p-extremal length, p-almost every curve.

The first and second named authors were supported by grant No. R01-2006-000-10047-0(2008) from the Basic Research Program of the Korea Science & Engineering Foundation and the second named author was also supported by the second stage of BK21 project.

©2010 The Korean Mathematical Society
(A3) the mapping \(A_x = \mathcal{A}|_{T_x M} : T_x M \to T_x M \) is continuous for a.e. \(x \) in \(\Omega \), and the mapping \(x \mapsto \mathcal{A}_x(\xi) \) is a measurable vector field whenever \(\xi \) is;

for a.e. \(x \) in \(\Omega \) and for all \(\xi, \xi' \) in \(T_x M \),

(A4) \(\langle \mathcal{A}_x(\xi), \xi \rangle \geq C_1 |\xi|^p \);

(A5) \(|\mathcal{A}_x(\xi)| \leq C_2 |\xi|^{p-1} \);

(A6) \(\langle \mathcal{A}_x(\xi) - \mathcal{A}_x(\xi'), \xi - \xi' \rangle > 0 \) whenever \(\xi \neq \xi' \).

We say that a function \(u \) in \(W^{1,p}_{\text{loc}}(\Omega) \) is a solution (supersolution, respectively) of the equation

\[
- \text{div} \mathcal{A}_x(\nabla u) = 0 \quad (\geq 0, \text{ respectively})
\]

in \(\Omega \) if

\[
\int_{\Omega} \langle \mathcal{A}_x(\nabla u), \nabla \phi \rangle = 0 \quad (\geq 0, \text{ respectively})
\]

for any (nonnegative, respectively) function \(\phi \) in \(C_0^\infty(\Omega) \). A function \(v \) in \(W^{1,p}_{\text{loc}}(\Omega) \) is called a subsolution of (1.1) in \(\Omega \) if \(-v \) is a supersolution of (1.1) in \(\Omega \). We say that a function \(u \) is \(\mathcal{A} \)-harmonic (of type \(p \)) if \(u \) is a continuous solution of (1.1). In a typical case \(\mathcal{A}_x(\xi) = |\xi|^{p-2} \), \(\mathcal{A} \)-harmonic functions are called \(p \)-harmonic and, in particular, if \(p = 2 \), then we obtain harmonic functions. Suppose that \(E \) is a measurable set and that \(u \in W^{1,p}_{\text{loc}}(\Omega) \) for an open neighborhood \(\Omega \) of \(E \). Then the variational integral

\[
J(u, E) = \int_E F_x(\nabla u)
\]

is well defined. If \(J(u, M) < \infty \), then we say that \(u \) has finite energy. In fact, given \(f \in W^{1,p}(\Omega) \), each \(\mathcal{A} \)-harmonic function \(u \) with \(u - f \in W^{1,p}_0(\Omega) \) minimizes the energy functional \(J(v, \Omega) \) on the set \(\{ v \in W^{1,p}(\Omega) : v - f \in W^{1,p}_0(\Omega) \} \) (See [1]). A Green’s function \(G = G(o, \cdot) \) for \(\mathcal{A} \) on \(M \) denotes (if exists) a positive solution of the equation

\[
- \text{div} \mathcal{A}(\nabla G) = \delta_o
\]

for each \(o \) in \(M \), in the sense of distributions, i.e.,

\[
\int_M \langle \mathcal{A}(\nabla G), \nabla \phi \rangle = \phi(o)
\]

for any function \(\phi \) in \(C_0^\infty(M) \). In fact, there exists a Green’s function \(G \) satisfying (1.2) if and only if \(M \) has positive \(p \)-capacity at infinity, i.e., there exists a compact subset \(K \) of \(M \) such that

\[
\text{Cap}_p(K, \infty, M) = \inf_u \int_M |\nabla u|^p > 0,
\]

where the infimum is taken over all functions \(u \) in \(C_0^\infty(M) \) with \(u = 1 \) on \(K \).

In particular, we say that a complete Riemannian manifold \(M \) is \(p \)-parabolic if \(\text{Cap}_p(K, \infty, M) = 0 \) for every compact subset \(K \) of \(M \). Otherwise, \(M \) is called \(p \)-nonparabolic. It is well known that a complete Riemannian manifold \(M \) is...
\(p\)-nonparabolic if and only if \(M\) has the positive \(A\)-capacity, i.e., there exists a compact subset \(K\) of \(M\) such that

\[
\text{Cap}_A(K, \infty, M) = \inf_u J(u, M) > 0,
\]

where the infimum is taken over all functions \(u\) in \(C_0^\infty(M)\) with \(u = 1\) on \(K\).

We now introduce additional conditions on \(F\) as follows:

(A7) \(A_x(\lambda \xi) = \lambda|\lambda|^{p-2} A_x(\xi)\) whenever \(\lambda \in \mathbb{R} \setminus \{0\}\),

for any \(\xi, \xi'\) in \(T_xM\),

(A8) in case 2 \(\leq p < \infty\),

\[
F_x\left(\frac{\xi + \xi'}{2}\right) + F_x\left(\frac{\xi - \xi'}{2}\right) \leq \frac{1}{2} (F_x(\xi) + F_x(\xi')),
\]

in case 1 \(1 \leq p \leq 2\),

\[
F_x\left(\frac{\xi + \xi'}{2}\right)^\bar{p} + F_x\left(\frac{\xi - \xi'}{2}\right)^\bar{p} \leq \left(\frac{1}{2} (F_x(\xi) + F_x(\xi'))\right)^\bar{p},
\]

where \(\bar{p} = 1/(p - 1)\).

For \(F(\xi) = \frac{1}{2} |\xi|^p\), the condition (A8) is called the Clarkson inequality (See [3]).

Let \(BD_p(M)\) be the set of all bounded continuous functions \(u\) on a complete Riemannian manifold \(M\) whose distributional gradient \(\nabla u\) belongs to \(L^p(M)\). Then, by using the Minkowski inequality, it is easy to see that \(BD_p(M)\) forms an algebra over the real numbers with the usual addition and multiplication of functions and scalar multiplication defined pointwise. The function space \(BD_p(M)\) is called the Royden \(p\)-algebra of \(M\) (See [9]). We say that a sequence \(\{f_n\}\) of functions in \(BD_p(M)\) converges to a function \(f \in BD_p(M)\) in the \(BD_p\)-topology if

(i) \(\{f_n\}\) is uniformly bounded;

(ii) \(f_n\) converges uniformly to \(f\) on each compact subset of \(M\);

(iii) \(\lim_{n \to \infty} \int_M |\nabla (f_n - f)|^p = 0\).

It is well known that \(BD_p(M)\) is complete in the \(BD_p\)-topology. Let \(BD_{p,0}(M)\) be the closure of the set of all compactly supported smooth functions in \(BD_p(M)\). It is easy to see that \(BD_{p,0}(M)\) is not only a subalgebra but also an ideal of \(BD_p(M)\). We denote by \(\mathcal{H}BD_A(M)\) the subset of all bounded energy finite \(A\)-harmonic functions in \(BD_p(M)\), where \(A\) is an elliptic operator on \(M\) satisfying conditions (A1), (A2), (A7) and (A8). Adopting the arguments in [6], one can prove the following \(A\)-harmonic version of the Royden decomposition theorem:

Proposition 1.1. Let \(A\) be an elliptic operator on a \(p\)-nonparabolic complete Riemannian manifold \(M\) satisfying conditions (A1), (A2), (A7) and (A8). Then for each \(f \in BD_p(M)\), there exist unique \(u \in \mathcal{H}BD_A(M)\) and \(g \in BD_{p,0}(M)\) such that \(f = u + g\).

For a complete Riemannian manifold \(M\), there exists a locally compact Hausdorff space \(M\), called the Royden \(p\)-compactification of \(M\), which contains
M as an open dense subset. In particular, every function $f \in \mathcal{B}D_0(M)$ can be extended to a continuous function, denoted again by f, on \bar{M} and the class of such extended functions separates points in \bar{M}. The Royden p-boundary of M is the set $\bar{M} \setminus M$ and will be denoted by ∂M. Throughout the paper, for a subset Ω of M, we denote by $\overline{\Omega}$ the closure of Ω in M and $\hat{\Omega}$ the closure of Ω in \bar{M}. An important part of the Royden p-boundary $\partial \bar{M}$ is the p-harmonic boundary $\Delta \bar{M}$ defined by

$$\Delta \bar{M} = \{ x \in \partial \bar{M} : f(x) = 0 \text{ for all } f \in \mathcal{B}D_0(M)\}.$$

Let \mathcal{F} be a family of locally rectifiable curves in a complete Riemannian manifold M. Let us fix a real number p such that $1 < p < \infty$. A nonnegative Borel measurable function $\rho : M \to \mathbb{R}$ is called admissible with respect to \mathcal{F} if $\int_\gamma \rho \geq 1$ for all curves γ in \mathcal{F}. The p-extremal length of \mathcal{F}, denoted by $\lambda_p(\mathcal{F})$, is defined as

$$\lambda_p(\mathcal{F}) = \left(\inf_\rho \int_M \rho^p \right)^{-1},$$

where the infimum is taken over the set of all admissible functions ρ with respect to \mathcal{F}. A property is said to hold for p-almost every curve in \mathcal{F} if it holds for all curves in $\mathcal{F} \setminus \mathcal{F}_0$, where \mathcal{F}_0 is a subfamily of \mathcal{F} with p-extremal length ∞.

Under the above setting, the value at the p-harmonic boundary of each function of the Royden p-algebra is completely determined by its asymptotic behavior along p-almost every curve as follows:

Theorem 1.2. Let us denote \mathcal{G} to be the family of all locally rectifiable curves in a complete Riemannian manifold M. Let us fix a real number p such that $1 < p < \infty$. A nonnegative Borel measurable function $\rho : M \to \mathbb{R}$ is called admissible with respect to \mathcal{G} if $\int_\gamma \rho \geq 1$ for all curves γ in \mathcal{G}. The p-extremal length of \mathcal{G}, denoted by $\lambda_p(\mathcal{G})$, is defined as

$$\lambda_p(\mathcal{G}) = \left(\inf_\rho \int_M \rho^p \right)^{-1},$$

where the infimum is taken over the set of all admissible functions ρ with respect to \mathcal{G}. A property is said to hold for p-almost every curve in \mathcal{G} if it holds for all curves in $\mathcal{G} \setminus \mathcal{G}_0$, where \mathcal{G}_0 is a subfamily of \mathcal{G} with p-extremal length ∞.

Under the above setting, the value at the p-harmonic boundary of each function of the Royden p-algebra is completely determined by its asymptotic behavior along p-almost every curve as follows:

Theorem 1.2. Let us denote \mathcal{G} to be the family of all locally rectifiable curves in a complete Riemannian manifold M. Let us fix a real number p such that $1 < p < \infty$. A nonnegative Borel measurable function $\rho : M \to \mathbb{R}$ is called admissible with respect to \mathcal{G} if $\int_\gamma \rho \geq 1$ for all curves γ in \mathcal{G}. The p-extremal length of \mathcal{G}, denoted by $\lambda_p(\mathcal{G})$, is defined as

$$\lambda_p(\mathcal{G}) = \left(\inf_\rho \int_M \rho^p \right)^{-1},$$

where the infimum is taken over the set of all admissible functions ρ with respect to \mathcal{G}. A property is said to hold for p-almost every curve in \mathcal{G} if it holds for all curves in $\mathcal{G} \setminus \mathcal{G}_0$, where \mathcal{G}_0 is a subfamily of \mathcal{G} with p-extremal length ∞.

Applying the comparison principle in Lemma 2.3 together with Theorem 1.2, one can prove that each bounded \mathcal{A}-harmonic function with finite energy is uniquely determined by the behavior of the function along p-almost every curve as follows:

Corollary 1.3. Let \mathcal{G} be given as in Theorem 1.2. Suppose that $f, h \in \mathcal{H}BD_\mathcal{A}(M)$ and

$$\lim_{t \to \infty} f(\gamma(t)) = \lim_{t \to \infty} h(\gamma(t))$$

for p-almost every curve in \mathcal{G}. Then $f \equiv h$ on M.

Corollary 1.4. Let G be given as in Theorem 1.2. Suppose that $h \in \mathcal{HBD}_A(M)$ and $c \in \mathbb{R}$ with
$$\lim_{t \to \infty} h(\gamma(t)) = c$$
for p-almost every curve in G. Then $h \equiv c$ on M.

2. The maximum principle and the p-extremal length

We now study the relation between a sort of asymptotic behavior of functions in the Royden p-algebra $\mathcal{BD}_p(M)$ near infinity of M and the values of the functions at the p-harmonic boundary Δ_M of M. We first give a characterization of the p-parabolicity in terms of the p-harmonic boundary as follows (See [6]):

Lemma 2.1. A complete Riemannian manifold M is p-parabolic if and only if the p-harmonic boundary Δ_M of M is empty.

Furthermore, there is a useful duality relation between $\mathcal{BD}_{p,0}(M)$ and Δ_M (See [6]):

Lemma 2.2. For any complete Riemannian manifold M,
$$\mathcal{BD}_{p,0}(M) = \{ f \in \mathcal{BD}_p(M) : f = 0 \text{ on } \Delta_M \}.$$

We now give the comparison principle and the maximum principle for A-harmonic functions as follows:

Lemma 2.3. Let A be an elliptic operator on a p-nonparabolic complete Riemannian manifold M satisfying conditions $(A1), (A2), (A7)$ and $(A8)$.

(C) Suppose that there exist A-harmonic functions $u, v \in \mathcal{HBD}_A(M)$ such that
$$v \leq u \text{ on } \Delta_M.$$

Then we have $v \leq u$ on M.

(M) Suppose that there exists an A-harmonic function $u \in \mathcal{HBD}_A(M)$ such that
$$a \leq u \leq b \text{ on } \Delta_M$$
for some constants a and b with $a \leq b$. Then we have $a \leq u \leq b$ on M.

Proof. Let us consider a function $\phi = \min\{u - v, 0\}$. Since $v \leq u$ on Δ_M, we conclude that $\phi = 0$ on Δ_M. Thus by Lemma 2.2, we conclude that ϕ belongs to $\mathcal{BD}_{p,0}(M)$. Since u and v are A-harmonic on M and there is a sequence of compactly supported smooth functions converging to ϕ in $\mathcal{BD}_p(M)$, we have
$$\int_M \langle A_x(\nabla u), \nabla \phi \rangle = 0$$
and
$$\int_M \langle A_x(\nabla v), \nabla \phi \rangle = 0.$$
Let 1_{Ω} be the characteristic function of the set $\Omega = \{x \in M : u(x) \leq v(x)\}$. Since $\nabla \phi = 1_{\Omega} \nabla (u - v)$ almost everywhere in M, we conclude that
\[
\int_{\Omega} (A_x(\nabla u) - A_x(\nabla v), \nabla (u - v)) = 0.
\]
By the condition (A6), $u - v$ is almost everywhere constant in Ω. Since u and v are continuous, $u - v$ is constant in Ω. Hence we have (C) from the continuity of u and v.

On the other hand, since every constant function is also A-harmonic, we have (M) from (C).

We now introduce the notion of the p-capacity of a condenser: Let $\Omega \subset M$ be a nonempty open set and let E_1 and E_2 be mutually disjoint closed subsets of Ω. The p-capacity for a triple (E_1, E_2, Ω) is defined by
\[
\text{Cap}_p(E_1, E_2, \Omega) = \inf \int_{\Omega} |\nabla v|^p,
\]
where the infimum is taken over all smooth functions v on $\Omega \cup E_1 \cup E_2$ such that $0 \leq v \leq 1$ on Ω, $v = 0$ on E_1 and $v = 1$ on E_2. Such a triple (E_1, E_2, Ω) is called a condenser. For an unbounded open set $\Omega \subset M$ and a nonempty compact set $E \subset \overline{\Omega}$, we define
\[
\text{Cap}_p(E, \infty, \Omega) = \lim_{r \to \infty} \text{Cap}_p(E, \overline{\Omega} \setminus B_r(o), \Omega),
\]
where $B_r(o)$ denotes the geodesic ball of radius $r > 0$ centered at a fixed point o in M. It is needed to note that $\text{Cap}_p(E, \overline{\Omega} \setminus B_r(o), \Omega)$ is monotone decreasing in $r > 0$. On the other hand, an unbounded open set $\Omega \subset M$ is called p-hyperbolic if there exists a nonempty compact set $E \subset \overline{\Omega}$ such that $\text{Cap}_p(E, \infty, \Omega) > 0$.

From the properties of the p-capacity, it is easy to see that any open set Ω is p-hyperbolic if there exists a p-hyperbolic subset Ω' of Ω. An unbounded open proper set $\Omega \subset M$ is called A-massive if there exists a function u in $BD_p(M)$ such that
\[
\begin{cases}
A u = 0 & \text{in } \Omega; \\
u = 0 & \text{on } M \setminus \Omega; \\
sup_{\Omega} u = 1.
\end{cases}
\]
Such a function u is called an inner potential of Ω. In fact, for each nonconstant function u in $HBD_A(M)$, the set $\{x \in M : u(x) > c\}$ is A-massive, where $\inf_M u < c < \sup_M u$. There is a useful property of A-massive sets (See [4], [5] and [6]):

Lemma 2.4. Let A be an elliptic operator on a complete Riemannian manifold M satisfying conditions (A1), (A2), (A7) and (A8). If Ω is A-massive, then there exists a proper p-hyperbolic subset Ω_0 of Ω such that $\overline{\Omega_0} \subset \Omega$ and a continuous function v on $\overline{\Omega}$ such that $A v = 0$ in $\Omega \setminus \overline{\Omega_0}$, $v = 0$ on $\partial \Omega$ and v has finite energy, that is, $\mathcal{J}(v, M) < \infty$.

On the other hand, the p-capacity of a condenser is closely related to the p-extremal length of a family of curves as follows: Let Ω be an unbounded open subset of M and E be a compact set in Ω. Let $\mathcal{F}_{\Omega,E}$ be the family of all locally rectifiable curves in Ω joining E to infinity of Ω. This means that γ is a curve in $\mathcal{F}_{\Omega,E}$ if $\gamma : [\alpha, \beta] \to \Omega$ (β may be ∞) is locally rectifiable, $\gamma(\alpha)$ belongs to E, and for any compact set K of M, there exists $t_K \in [\alpha, \beta)$ such that $\gamma(t)$ does not belong to K for all $t > t_K$. Then, by results in [2], we have

$$(2.1) \quad \left(\lambda_p(\mathcal{F}_{\Omega,E}) \right)^{-1} = \text{Cap}_p(E, \infty, \Omega)$$

(See also [12] or [8]). In particular, if Ω is A-massive, then by Lemma 2.4, there exists a proper p-hyperbolic subset Ω_0 of Ω such that $\Omega_0 \subset \Omega$. Since Ω_0 is p-hyperbolic, there exists a nonempty compact subset $E \subset \Omega_0$ such that $\text{Cap}_p(E, \infty, \Omega_0) > 0$. Therefore, combining (2.1) and the monotone property of the p-capacity, we conclude that

$$(2.2) \quad \left(\lambda_p(\mathcal{F}_{\Omega,E}) \right)^{-1} = \text{Cap}_p(E, \infty, \Omega) > 0.$$

Let us denote \mathcal{G} to be the family of all locally rectifiable curves in M joining $B_R(o)$ to infinity of M. For an unbounded set Ω of M, \mathcal{G}_Ω denotes the subfamily of \mathcal{G} which consists of all locally rectifiable curves in Ω joining $B_R(o) \cap \Omega$ to infinity of Ω, where $R > 0$ is sufficiently large such that $B_R(o) \cap \Omega \neq \emptyset$. From now on, \mathcal{G} and \mathcal{G}_Ω mean those appear in the above setting unless otherwise specified. In particular, if Ω is a A-massive set of M, we have $\lambda_p(\mathcal{G}_\Omega) < \infty$.

In fact, the p-extremal length of a family of curves in an unbounded set is closely related to the p-harmonic boundary as follows: Let us denote $e(\gamma)$ to be the end part of a curve $\gamma \in \mathcal{G}$ in $\partial \hat{M}$, this means that $e(\gamma) = \hat{\gamma} \cap \partial \hat{M}$, where $\hat{\gamma}$ denotes the closure in \hat{M} of the image set under γ. The following lemmas give a tractable criterion for a family of curves in an unbounded set to have infinite p-extremal length:

Lemma 2.5. Let Ω be an unbounded open subset of M such that $B_R(o) \cap \Omega \neq \emptyset$ for sufficiently large $R > 0$. Let \mathcal{G}_0 be a subfamily of $\mathcal{G}_{\hat{\Omega}}$ and K be the closure of the set $\bigcup_{\gamma \in \mathcal{G}_0} e(\gamma)$ in $\partial \hat{M}$. Suppose that K is disjoint from $\Omega \cap \Delta_M$. Then $\lambda_p(\mathcal{G}_0) = \infty$.

Proof. If M is p-parabolic, then $\Delta_M = \emptyset$ and $\text{Cap}_p(B_R(o), \infty, M) = 0$. Thus by (2.1), we have

$$\left(\lambda_p(\mathcal{G}) \right)^{-1} = \text{Cap}_p(B_R(o), \infty, M) = 0.$$

So we may assume that M is p-nonparabolic. By the result in [11], it suffices to show that there exists a function ρ in $L^p(M)$ such that

$$\int \rho = \infty \quad \text{for each curve } \gamma \in \mathcal{G}_0.$$
Since K is a nonempty compact subset in $\partial M \setminus \Delta_M$, there exists a continuous function f such that $f|_K = \infty$ and $\int_M |\nabla f|^p < \infty$ (See [10], [1], and [13]). Hence the lemma follows. To be precise, from the definition of K, we have $e(\gamma) \in K$ for any curve $\gamma \in \mathcal{G}_0$. Thus we conclude that $f(\gamma) = \infty$ for any curve $\gamma \in \mathcal{G}_0$, where $f(\gamma) = \lim_{t \to \infty} f(\gamma(t))$. Then for any $\varepsilon > 0$, the function $\varepsilon|\nabla f|$ is admissible with respect to \mathcal{G}_0. Consequently,

$$\lambda_p(\mathcal{G}_0) \geq \left(\varepsilon^p \int_M |\nabla f|^p\right)^{-1}.$$

This completes the proof. \hfill \Box

Lemma 2.6. Let \mathcal{G}_0 be a subfamily of \mathcal{G} such that $\lambda_p(\mathcal{G}_0) = \infty$ and K be the closure of the set $\bigcup_{\gamma \in \mathcal{G} \setminus \mathcal{G}_0} e(\gamma)$ in ∂M. Then K contains Δ_M.

Proof. If $\Delta_M = \emptyset$, then nothing to prove. So we may assume that $\Delta_M \neq \emptyset$. That is, M is p-nonparabolic. Then by (2.1), we have

$$\left(\lambda_p(\mathcal{G})\right)^{-1} = \text{Cap}_p(\overline{B}_R(0), \infty, M) > 0.$$

Since $\lambda_p(\mathcal{G} \setminus \mathcal{G}_0) < \infty$, by Lemma 2.5, we have $K \cap \Delta_M \neq \emptyset$. Suppose that the lemma is not true. We may assume that $x \in \Delta_M \setminus K$. Let us choose a function $f \in \mathcal{BD}_p(M)$ such that $0 < f < 1$ on M and

$$\begin{cases} f(x) = 1; \\
 f|_{K \cap \Delta_M} = 0. \end{cases}$$

By Proposition 1.1, there exist unique $h \in \mathcal{HBD}_p(M)$ and $g \in \mathcal{BD}_{p,0}(M)$ such that $f = h + g$, where \mathcal{A} is an elliptic operator on M satisfying conditions (A1), (A2), (A7) and (A8). Since g belongs to $\mathcal{BD}_{p,0}(M)$, by Lemma 2.2, $g = 0$ on Δ_M. From this fact together with the maximum principle, one can conclude that $0 < h < 1$ on M and

$$\begin{cases} h(x) = 1; \\
 h|_{K \cap \Delta_M} = 0. \end{cases}$$

Let us consider the set

$$\Omega = \{x \in M : h(x) > 1 - \varepsilon\},$$

where ε is a positive constant so small that $1 - \varepsilon > 0$. Clearly, Ω is an \mathcal{A}-massive subset of M. Similarly arguing as (2.2), we have $\lambda_p(\mathcal{G}_\Omega) < \infty$. Let us denote K_1 to be the closure of the set $\bigcup_{\gamma \in \mathcal{G} \setminus \mathcal{G}_\Omega} e(\gamma)$ in ∂M. Since $\lambda_p(\mathcal{G}_\Omega \setminus \mathcal{G}_0) < \infty$, by Lemma 2.5 again, we have $K_1 \cap \Delta_M \neq \emptyset$. Since $K_1 \cap \Delta_M$ is a subset of $K \cap \Delta_M$, we conclude that

$$h|_{K_1 \cap \Delta_M} = 0.$$

On the other hand, from the definition of Ω, we see that $h(\gamma) \geq 1 - \varepsilon$ for all curves $\gamma \in \mathcal{G}_\Omega$, where $h(\gamma) = \lim_{t \to \infty} h(\gamma(t))$. Hence we have

$$h|_{K_1} \geq 1 - \varepsilon$$

which is a contradiction. This completes the proof. \hfill \Box
3. The proof of Theorem 1.2

We are ready to prove the main theorem which gives a connection between a sort of asymptotic behavior of functions in $BD_p(M)$ near infinity of M and the values of the functions at Δ_M:

Proof of Theorem 1.2. Suppose that $f|_{\Delta_M} = 0$. By considering the positive part and the negative part of f separately, we may assume that $f \geq 0$. For each positive integer n, let us consider the family of curves $G_n = \{ \gamma \in \mathcal{G} : f(\gamma) \geq \frac{1}{n} \}$, where $f(\gamma) = \lim_{t \to \infty} f(\gamma(t))$. Since $f|_{\Delta_M} = 0$, we conclude that $K_n \cap \Delta_M = \emptyset$ for each positive integer n, where K_n is the closure of the set $\bigcup_{\gamma \in G_n} e(\gamma)$ in ∂M. Hence, by Lemma 2.5, one can conclude that $\lambda_p(G_n) = \infty$ for each positive integer n. Then $\lim_{t \to \infty} f(\gamma(t)) = 0$ for all curves $\gamma \in \mathcal{G} \setminus G_{\infty}$, where $G_{\infty} = \bigcup_{n=1}^{\infty} G_n$. Since $\lambda_p(G_{\infty}) = \infty$, we have $\lim_{t \to \infty} f(\gamma(t)) = 0$ for p-almost every curve $\gamma \in \mathcal{G}$.

On the other hand, the converse follows immediately from Lemma 2.6. This completes the proof. □

References

Seok Woo Kim
Department of Mathematics Education
Konkuk University
Seoul 143-701, Korea
E-mail address: swkim@konkuk.ac.kr

Sang Moon Lee
Department of Mathematics
Konkuk University
Seoul 143-701, Korea
E-mail address: upsm99@konkuk.ac.kr

Yong Hah Lee
Department of Mathematics Education
Ewha Womans University
Seoul 120-750, Korea
E-mail address: yonghab@ewha.ac.kr