SCALAR CURVATURE OF CONTACT CR-SUBMANIFOLDS IN AN ODD-DIMENSIONAL UNIT SPHERE

HYANG SOOK KIM* AND JIN SUK PAK

Abstract. In this paper we derive an integral formula on an \((n + 1)\)-dimensional, compact, minimal contact CR-submanifold \(M\) of \((n - 1)\) contact CR-dimension immersed in a unit \((2m + 1)\)-sphere \(S^{2m+1}\). Using this integral formula, we give a sufficient condition concerning with the scalar curvature of \(M\) in order that such a submanifold \(M\) is to be a generalized Clifford torus.

1. Introduction

Let \(S^{2m+1}\) be a \((2m + 1)\)-dimensional unit sphere, that is,
\[
S^{2m+1} = \{ z \in \mathbb{C}^{m+1} : \|z\| = 1 \}.
\]
For any point \(z \in S^{2m+1}\) we put \(\xi = Jz\), where \(J\) denotes the almost complex structure of \(\mathbb{C}^{m+1}\). We consider the orthogonal projection \(\pi : T_z\mathbb{C}^{m+1} \rightarrow T_zS^{2m+1}\). Putting \(\phi = \pi \circ J\), we can see that the set \((\phi, \xi, \eta, g)\) is a Sasakian structure on \(S^{2m+1}\), where \(\eta\) is a 1-form dual to \(\xi\) and \(g\) the standard metric tensor field on \(S^{2m+1}\). So \(S^{2m+1}\) can be considered as a Sasakian manifold of constant \(\phi\)-sectional curvature 1, that is, of constant curvature 1 (cf. [1, 2, 12]).

Let \(M\) be an \((n+1)\)-dimensional submanifold tangent to the structure vector field \(\xi\) of \(S^{2m+1}\) and denote by \(D_x\) the \(\phi\)-invariant subspace \(\phi T_xM \cap T_x M\) of the tangent space \(T_x M\) of \(M\) at \(x \in M\). Then \(\xi\) cannot be contained in \(D_x\) at any point \(x \in M\).

When the \(\phi\)-invariant subspace \(D_x\) has constant dimension for any \(x \in M\), \(M\) is called a contact CR-submanifold and the constant is called contact CR-dimension of \(M\) (cf. [5, 6, 9, 10]).

On an \((n + 1)\)-dimensional contact CR-submanifold of \((n - 1)\) contact CR-dimension, there is a non-zero vector \(U\) which is orthogonal to \(\xi\) and contained...
in the complementary orthogonal subspace D^\perp_x of D_x in T_xM. In this case $N =: \phi U$ must be normal to M and thus M can be dealt with a contact CR-submanifold in the sense of Yano-Kon ([12]).

In this paper we shall study $(n+1)$-dimensional contact CR-submanifolds of $(n-1)$ contact CR-dimension immersed in S^{2m+1} and prove the following theorem as a Sasakian version corresponding to the results provided in [3] and [7].

Theorem. Let M be an $(n+1)$ (≥ 3)-dimensional compact, minimal, contact CR-submanifold of $(n-1)$ contact CR-dimension in S^{2m+1}. If the scalar curvature of M is greater or equal to $n^2/2 - 1$, then

$$M = S^{2t+1}(r_1) \times S^{2s+1}(r_2), \quad t + s = \frac{n+1}{2} - 1,$$

where $r_1^2 + r_2^2 = 1$.

Remark. The above main theorem was provided in [9] under the condition that the distinguished normal vector field N is parallel with respect to the normal connection ∇^\perp. For the complex and the quaternionic analogues corresponding to the above theorem, see [3] and [7], respectively.

Manifolds, submanifolds, geometric objects and mappings we discuss in this paper will be assumed to be connected, differentiable and of class C^∞.

2. Fundamental properties of contact CR-submanifolds

Let \overline{M} be a $(2m+1)$-dimensional almost contact metric manifold with structure (ϕ, ξ, η, g). Then, by definition, it follows that

\begin{align*}
\phi^2 X &= -X + \eta(X)\xi, \quad \phi \xi = 0, \quad \eta(\phi X) = 0, \quad \eta(\xi) = 1, \\
g(\phi X, \phi Y) &= g(X, Y) - \eta(X)\eta(Y), \quad \eta(X) = g(X, \xi)
\end{align*}

(2.1)

for any vector fields X, Y tangent to \overline{M}.

Let M be a contact CR-submanifold of $(n-1)$ contact CR-dimension in \overline{M}, where $n - 1$ must be even. Then, as was already mentioned in §1, the structure vector ξ is always contained in D^\perp_x and $\phi D^\perp_x \subset T_xM^\perp$ at any point $x \in M$, where T_xM^\perp denotes the normal space of M at $x \in M$. Further, by definition $\dim D^\perp_x = 2$ at any point $x \in M$, and so there exists a unit vector field U contained in D^\perp_x which is orthogonal to ξ. Since $\phi D^\perp_x \subset T_xM^\perp$ at any point $x \in M$, ϕU is a unit normal vector field to M, which will be denoted by N, that is,

$$N := \phi U.
$$

Moreover, it is clear that $\phi TM \subset TM \oplus \text{Span}\{N\}$. Hence we have, for any tangent vector field X and for a local orthonormal basis $\{N_\alpha\}_{\alpha=1,\ldots,p}$ ($N_1 := N$, $p := 2m - n$) of normal vectors to M, the following decomposition in tangential and normal components:

$$\phi X = F X + u(X)N,$$

(2.3)
SCALAR CURVATURE OF CONTACT CR-SUBMANIFOLDS

\(\phi N_\alpha = PN_\alpha, \quad \alpha = 2, \ldots, p. \)

It is easily shown that \(F \) is a skew-symmetric linear endomorphism acting on \(T_2 M \). Since the structure vector field \(\xi \) is tangent to \(M \), (2.1) and (2.3) imply

\(F \xi = 0, \quad FU = 0, \quad g(U, X) = u(X), \quad u(\xi) = g(U, \xi) = 0, \quad u(U) = 1. \)

Next, applying \(\phi \) to (2.3) and using (2.1), (2.3) and (2.5), we also have

\(F^2 X = -X + \eta(X) \xi + u(X) U, \quad u(FX) = 0. \)

On the other hand, it is clear from (2.1), (2.2) and (2.5) that

\(\phi N = -U, \)

which and (2.4) yield the existence of a local orthonormal basis \(\{ N, N_a, N_a^* \}_{a=1, \ldots, q} \) of normal vectors to \(M \) such that

\(N_a^* := \phi N_a, \quad a = 1, \ldots, q := (p - 1)/2. \)

We denote by \(\nabla \) and \(\nabla \) the Levi-Civita connection on \(M \) and \(M \), respectively, and by \(\nabla^\perp \) the normal connection induced from \(\nabla \) on the normal bundle \(TM^\perp \) of \(M \). Then Gauss and Weingarten formulae are given by

\(\nabla X Y = \nabla X Y + h(X, Y), \)

\(\nabla X N = -AX + \nabla^\perp X N = -AX + \sum_{a=1}^{q} \{ s_a(X) N_a + s_{a^*}(X) N_{a^*} \}, \)

\(\nabla X N_a = -A_a X - s_a(X) N + \sum_{b=1}^{q} \{ s_{ab}(X) N_b + s_{a^* b^*}(X) N_{b^*} \}, \)

\(\nabla X N_{a^*} = -A_{a^*} X - s_{a^*}(X) N + \sum_{b=1}^{q} \{ s_{a^* b}(X) N_b + s_{a^* b^*}(X) N_{b^*} \} \)

for any vector fields \(X, Y \) tangent to \(M \), where \(s \)'s are coefficients of the normal connection \(\nabla^\perp \). Here \(h \) denotes the second fundamental form and \(A, A_a, A_{a^*} \) the shape operators corresponding to the normals \(N, N_a, N_{a^*} \), respectively. They are related by

\(h(X, Y) = g(A X, Y) N + \sum_{a=1}^{q} \{ g(A_a X, Y) N_a + g(A_{a^*} X, Y) N_{a^*} \}. \)

From now on we specialize to the case of an ambient Sasakian manifold \(\overline{M} \), that is,

\(\nabla X \xi = \phi X, \)

\((\nabla X \phi) Y = -g(X, Y) \xi + \eta(Y) X. \)
Since ξ is tangent to M, from (2.1), (2.3), (2.7), (2.8), (2.10)$_2$, (2.10)$_3$ and (2.13), we can easily verify that

$$ (2.14) \quad A_a X = -FA_a \cdot X + s_a \cdot (X) U, \quad A_a \cdot X = FA_a X - s_a (X) U, $$

$$ (2.15) \quad s_a (X) = -u(A_a \cdot X), \quad s_a \cdot (X) = u(A_a X), \quad a = 1, \ldots, q. $$

Since F is skew-symmetric, (2.14) implies

$$ (2.16)_1 \quad g((FA_a + A_a F) X, Y) = s_a (X) u(Y) - s_a (Y) u(X), $$

$$ (2.16)_2 \quad g((FA_a + A_a F) X, Y) = s_a \cdot (X) u(Y) - s_a \cdot (Y) u(X). $$

On the other hand, since $FD_x = D_x$ at each point $x \in M$, we take an orthonormal basis $\{e_i\}_{i=1, \ldots, n+1}$ of tangent vectors to M such that

$$ (2.17) \quad e_{l+1} := Fe_1, \ldots, e_{2l} := Fe_l, \quad e_n := U, \quad e_{n+1} := \xi, $$

where we have put $l = (n - 1)/2$. Replacing X by Fe_i in the first equation of (2.15) and using (2.5), we have

$$ s_a (Fe_i) = -g(A_a \cdot Fe_i, U), $$

which together with (2.5) and (2.16)$_2$ yields

$$ s_a (Fe_i) = -s_a \cdot (e_i), \quad i = 1, \ldots, l. $$

Similarly, replacing X by Fe_i in the second equation of (2.15) and using (2.5) and (2.16)$_1$, we have

$$ s_a (Fe_i) = -s_a \cdot (e_i), \quad s_a \cdot (Fe_i) = s_a (e_i), \quad i = 1, \ldots, l. $$

Differentiating (2.3) and (2.7) covariantly along M and comparing the tangential with normal parts, we have

$$ (2.19) \quad (\nabla_Y F) X = -g(Y, X) \xi + \eta(X) Y - g(A Y, X) U + u(X) A Y, $$

$$ (2.20) \quad (\nabla_Y u) X = g(F A Y, X), $$

$$ (2.21) \quad \nabla_X U = F A X $$

with the aid of (2.3), (2.8), (2.9), (2.10)$_1$, (2.11) and (2.13). On the other hand, since ξ is tangent to M, from (2.9) and (2.12), it follows that

$$ \phi X = \nabla_X \xi = \nabla_X \xi + h(X, \xi), $$

which together with (2.3) and (2.11) gives

$$ (2.22) \quad \nabla_X \xi = F X, $$

$$ (2.23) \quad g(A \xi, X) = u(X), \quad \text{i.e.,} \quad A \xi = U, $$

$$ (2.24) \quad A_a \xi = 0, \quad A_a \cdot \xi = 0, \quad a = 1, \ldots, q. $$

If the ambient manifold M is a $(2m + 1)$-dimensional unit sphere S^{2m+1} as a Sasakian manifold of constant curvature 1, then its curvature tensor \overline{R} satisfies

$$ \overline{R}(X, Y) Z = g(Y, Z) X - g(X, Z) Y $$
for any vector fields X, Y, Z tangent to \mathcal{M}. Therefore, by means of the equation of Gauss, we can easily see that the Ricci tensor $\text{Ric}(Y, Z)$ has the form
\begin{equation}
\text{Ric}(Y, Z) = n g(Y, Z) + (\text{tr} A) g(AY, Z) - g(A^2 Y, Z)
+ \sum_{a=1}^{q} \{ (\text{tr} A_a) g(A_a Y, Z) + (\text{tr} A_a^*) g(A_a^* Y, Z) \\
- g(A_a^2 Y, Z) - g(A_a^{2*} Y, Z) \}
\end{equation}
and consequently the scalar curvature ρ is given by
\begin{equation}
\rho = n(n+1) + (\text{tr} A)^2 - \text{tr} A^2
+ \sum_{a=1}^{q} \{ (\text{tr} A_a)^2 + (\text{tr} A_a^*)^2 - \text{tr} A_a^2 - \text{tr} A_a^{2*} \}.
\end{equation}
Moreover, from the equation of Codazzi, we also have
\begin{equation}
(\nabla_X A) Y - (\nabla_Y A) X = \sum_{a=1}^{q} \{ s_a(X) A_a Y - s_a(Y) A_a X \\
+ s_a^*(X) A_a^* Y - s_a^*(Y) A_a^* X \}
\end{equation}
for any vector fields X, Y tangent to M (cf. [1, 2, 12]).

3. An integral formula on the compact contact CR-submanifold

Let M be an $(n+1)$-dimensional contact CR-submanifold of $(n-1)$ contact CR-dimension immersed in a $(2m+1)$-dimensional unit sphere S^{2m+1}.

We now put $T := \nabla_U U + (\text{div} U)(U)$ and take the same orthonormal basis $\{e_i\}_{i=1,\ldots,n+1}$ of tangent vectors to M as given in (2.17). Then it follows from (2.21) that
\begin{equation}
T = FAU
\end{equation}
since $\text{div} U = \sum_{i=1}^{n+1} g(e_i, \nabla e_i U) = \text{tr}(FA) = 0$.

From now on, for later use we shall compute $\text{div} T = \sum_{i=1}^{n+1} g(e_i, \nabla e_i T)$ (for a general formula of $\text{div} T$, see [11]).

Differentiating (3.1) covariantly and using (2.5), (2.19), (2.21) and (2.23), we have
\begin{equation}
\nabla_X T = - g(X, AU) \xi + X - g(A^2 U, X) U + u(AU)AX \\
+ FAFAX + F(\nabla_X A) U,
\end{equation}
from which, taking account of (2.5), (2.6) and (2.23), it follows that

$$\text{div} T = n - u(A^2U) + (\text{tr} A)u(AU) + \sum_{i=1}^{n+1} g(FAFAe_i, e_i)$$

(3.3)

$$- \sum_{i=1}^{t} g((\nabla e_i, A)Fe_i - (\nabla Fe_i, A)e_i, U).$$

On the other hand, using (2.5), (2.6), (2.15), (2.18) and (2.27), we can easily obtain that

$$\sum_{i=1}^{t} g((\nabla e_i, A)Fe_i - (\nabla Fe_i, A)e_i, U)$$

(3.4)

$$= \sum_{i=1}^{t} \sum_{a=1}^{q} \{s_a(e_i)^2 + s_a(Fe_i)^2 + s_{a^*}(e_i)^2 + s_{a^*}(Fe_i)^2\}$$

because of $2l = n - 1$. Inserting (3.4) back into (3.3), the equation (3.3) turns out to be

$$\text{div} T = n + \sum_{i=1}^{n+1} g(FAFAe_i, e_i) - u(A^2U)$$

(3.5)

$$- \sum_{i=1}^{t} \sum_{a=1}^{q} \{s_a(e_i)^2 + s_a(Fe_i)^2 + s_{a^*}(e_i)^2 + s_{a^*}(Fe_i)^2\}.$$
Lemma 3.1. Let M be an $(n+1)$-dimensional compact contact CR-submanifold of $(n-1)$ contact CR-dimension immersed in S^{2m+1}. Then the following equality is valid:

$$
\frac{1}{2} \int_M \|FA - AF\|^2 + \rho - (n^2 - 1) + (\text{tr}A)u(AU) - (\text{tr}A)^2
$$

(3.7)

$$
- \sum_{a=1}^q \{(\text{tr}A_a)^2 + (\text{tr}A_a^*)^2\} + \sum_{a=1}^q (\text{tr}A_a^2 + \text{tr}A_a^2)
$$

$$
- \sum_{i=1}^l \sum_{a=1}^q \{s_a(e_i)^2 + s_a(Fe_i)^2 + s_a^*(e_i)^2 + s_a^*(Fe_i)^2\} \ast 1 = 0.
$$

4. The proof of main theorem

In order to prove the main theorem stated in §1, we prepare:

Lemma 4.1. Let M be an $(n+1)$-dimensional compact, minimal, contact CR-submanifold of $(n-1)$ contact CR-dimension in S^{2m+1}. If the scalar curvature of M is greater or equal to $n^2 - 1$, then

(4.1) $FA - AF = 0$

and the distinguished normal vector field N is parallel with respect to the normal connection ∇^\perp. Moreover, we have

(4.2) $A_a = 0, \ A_a^* = 0, \ a = 1, \ldots, q.$

Proof. We first notice that (2.15) and (2.24) yield

$$
\sum_{i=1}^l \{s_a(e_i)^2 + s_a(Fe_i)^2\} = u(A_a^2 U) - u(A_a U)^2,
$$

$$
\sum_{i=1}^l \{s_a^*(e_i)^2 + s_a^*(Fe_i)^2\} = u(A_a^2 U) - u(A_a U)^2.
$$

Inserting these equations back into (3.7) and taking account of (2.24), we have

$$
\frac{1}{2} \int_M \|FA - AF\|^2 + \rho - (n^2 - 1) + (\text{tr}A)u(AU) - (\text{tr}A)^2
$$

(4.3)

$$
- \sum_{a=1}^q \{(\text{tr}A_a)^2 + (\text{tr}A_a^*)^2\} + \sum_{a=1}^q (u(A_a U)^2 + u(A_a^* U)^2)
$$

$$
+ \sum_{a=1}^q \sum_{i=1}^l \{g(A_a^2 e_i, e_i) + g(A_a^2 Fe_i, Fe_i) + g(A_a^2, e_i) + g(A_a^2, Fe_i)\} \ast 1 = 0.
$$
If \(\rho \) is greater or equal to \(n^2 - 1 \), our assumptions yield (4.1) and
\[
A_a e_i = A_a F e_i = 0, \quad A_a \cdot e_i = A_a \cdot F e_i = 0,
\]
(4.4)
\[u(A_a U) = 0, \quad u(A_a \cdot U) = 0, \quad a = 1, \ldots, q, \quad i = 1, \ldots, l,
\]
which and (2.15) imply
\[s_a(e_i) = s_a(F e_i) = 0, \quad s_a \cdot (e_i) = s_a \cdot (F e_i) = 0,
\]
\[s_a(U) = 0, \quad s_a \cdot (U) = 0, \quad a = 1, \ldots, q, \quad i = 1, \ldots, l.
\]
Since \(s_a(\xi) = s_a \cdot (\xi) = 0 \) because of (2.24), we have \(s_a = s_a \cdot = 0 \) \((a = 1, \ldots, q)\) which means that the distinguished normal vector field \(N \) is parallel with respect to the normal connection by means of (2.10). Also it is clear from (2.15) that \(A_a U = A_a \cdot U = 0 \), which combined with (2.24) and (4.4) implies (4.2).

Proof of main theorem. By means of Lemma 4.1, for the submanifold \(M \) given in the main theorem, we can easily see that its first normal space is contained in \(\text{Span}\{N\} \) which is invariant under parallel translation with respect to the normal connection. Thus we may apply Erbacher’s reduction theorem ([4]) and so we can see that there exists an \((n + 2)\)-dimensional totally geodesic unit sphere \(S^{n+2} \) such that \(M \subset S^{n+2} \). Here we note that \((n + 2)\) is odd. Moreover, since the tangent space \(T_x S^{n+2} \) of the totally geodesic submanifold \(S^{n+2} \) at \(x \in M \) is \(T_x M \oplus \text{Span}\{N\} \), \(S^{n+2} \) is an invariant submanifold of \(S^{2m+1} \) with respect to \(\phi \) (for definition, see [1, 12]) because of (2.2) and (2.3). Hence the submanifold \(M \) can be regarded as a real hypersurface of \(S^{n+2} \) which is a totally geodesic invariant submanifold of \(S^{2m+1} \).

Tentatively we denote \(S^{n+2} \) by \(M' \), and by \(i_1 \) the immersion of \(M \) into \(M' \) and \(i_2 \) the totally geodesic immersion of \(M' \) onto \(S^{2m+1} \). Then, from the Gauss formula (2.9), it follows that
\[
\nabla'_{i_1} i_1 Y = i_1 \nabla_X Y + h'(X, Y) = i_1 \nabla_X Y + g(A'X, Y)N',
\]
(4.5)
where \(h' \) is the second fundamental form of \(M \) in \(M' \) and \(A' \) is the corresponding shape operator to a unit normal vector field \(N' \) to \(M \) in \(M' \). Since \(i = i_2 \circ i_1 \), making use of (4.5), we have
\[
\nabla_{(i_2 \circ i_1) X} (i_2 \circ i_1 Y) = i_2(\nabla'_{i_1} X) i_1 Y = i_2(i_1 \nabla_X Y + g(A'X, Y)N'),
\]
(4.6)
because \(M' \) is totally geodesic in \(S^{2m+1} \). Comparing (2.9) with (4.6), we easily see that
\[
N = i_2 N', \quad A = A'.
\]
(4.7)
Since \(M' \) is an invariant submanifold of \(S^{2m+1} \), for any \(X' \in TM' \),
\[
\phi i_2 X' = i_2 \phi' X'
\]
(4.8)
is valid, where ϕ' is the induced Sasakian structure of $M' = S^{n+2}$. Thus it follows from (2.3), (4.7) and (4.8) that
\[
\phi i X = \phi (i_2 \circ i_1) X = i_2 \phi' i_1 X = i_2 (i_1 F' X + u' (X) N') = i F' X + u' (X) N.
\]
Comparing this equation with (2.3), we have $F = F'$ and $u = u'$. By means of Lemma 4.1, it is clear that M is a real hypersurface of S^{n+2} which satisfies $F' A' = A' F'$. Thus, applying a theorem due to Kon ([8]), we may complete the proof of our main theorem. \blacksquare

References

Hyang Sook Kim
Department of Computational Mathematics
School of Computer Aided Science
Institute of Basic Science
Inje University
Kimhae 621-749, Korea
E-mail address: mathkim@inje.ac.kr

Jin Suk Pak
Department of Mathematics Education
Kyungpook National University
Dalseg 702-701, Korea
E-mail address: jspak@knu.ac.kr