SEMI-DIVISORIALITY OF HOM-MODULES AND INJECTIVE COGENERATOR OF A QUOTIENT CATEGORY

Hwankoo Kim

Abstract. In this paper, we study \(w \)-nullity and (co-)semi-divisoriality of Hom-modules and the semi-divisorial envelope of \(\text{Hom}_R(M, N) \) under suitable conditions on \(R, M, \) and \(N \). We also investigate an injective cogenerator of a quotient category.

1. Introduction

Let \(R \) be an integral domain. In [17] Wang and McCasland defined semi-divisorial closure, or \(w \)-closure for torsion-free \(R \)-modules. In [7], H. Kim extended this notion to any \(R \)-module and introduced and studied the related notions of co-semi-divisoriality and \(w \)-nullity. In [7, 8, 9] these concepts were then used to give new module-theoretic characterizations of \(t \)-linkative domains, generalized GCD domains, and strong Mori domains, classes of domains widely considered in multiplicative ideal theory.

Earlier, in [1, 12, 13], Beck, Nishi and Shinagawa investigated injective modules over a Krull domain in terms of co-divisorial modules, pseudo-null modules, and divisorial modules and investigated pseudo-nullity and (co-)divisoriality of Home-modules. In particular, it was shown that in the case of a Krull domain \(R \) with quotient field \(K \), the injective envelope \(E(K/R) \) of \(K/R \) is a cogenerator of the quotient category \(\text{Mod}(R)/\mathbb{M}_0 \), where \(\text{Mod}(R) \) is the category of all unitary \(R \)-modules and \(\mathbb{M}_0 \) is the thick subcategory of the modules with trivial maps into the codivisorial modules. Recently, in [11] Moucouf characterized the rings of Krull type \(R \) with quotient field \(K \) such that the (canonical) functorial image of \(E(K/R) \) is an injective cogenerator of the quotient category \(\text{Mod}(R)/\mathbb{M}_0 \). Also in [16], Wang investigated the case when Hom-modules are semi-divisorial in torsion-free.

Received July 31, 2009.

2010 Mathematics Subject Classification. Primary 13A15; Secondary 13D30.

Key words and phrases. (co-)semi-divisorial, \(w \)-null, cogenerator, Hom-module, H-domain, Krull domain, torsion theory.

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(2010-0011996).
In this paper, we study an injective cogenerator of a quotient category and \(w \)-nullity and (co-)semi-divisoriality of Hom-modules using methods developed in [1, 11, 12, 13]. As a corollary, for the class of completely integrally closed domains, we characterize Krull domains in terms of an injective cogenerator of a quotient category. We also investigate the semi-divisorial envelope of \(\text{Hom}_R(M, N) \) under suitable conditions on \(R, M, \) and \(N \).

Throughout this paper, \(R \) denotes an integral domain with quotient field \(K \). Let \(\mathcal{F}(R) \) denote the set of nonzero fractional ideals of \(R \). Recall that the function on \(\mathcal{F}(R) \) defined by \(A \mapsto (A^{-1})^{-1} = A_w \) is a star operation called the \(w \)-operation, where \(A^{-1} = R :_K A = \{ x \in K \mid xA \subseteq R \} \). An ideal \(J \) of \(R \) is called a Glaz-Vasconcelos ideal if \(J \) is a finitely generated ideal of \(R \) with \(J^{-1} = R \). We abbreviate this as \(\text{GV-ideal} \), denoted by \(J \in \text{GV}(R) \). Following [17], a torsion-free \(R \) module \(M \) is called a \(w \)-module if \(Jx \subseteq M \) for \(J \in \text{GV}(R) \) and \(x \in M \otimes K \) implies that \(x \in M \), which is said to be semi-divisorial in [4]. For a torsion-free \(R \)-module \(M \), Wang and McCasland defined the \(w \)-envelope of \(M \) in [17] as \(M_w = \{ x \in M \otimes K \mid Jx \subseteq M \text{ for some } J \in \text{GV}(R) \} \). In particular, if \(I \) is a nonzero fractional ideal, then \(I_w = \{ x \in K \mid Jx \subseteq I \text{ for some } J \in \text{GV}(R) \} \).

The canonical map \(I \mapsto I_w \) on \(\mathcal{F}(R) \) is a star-operation, denoted \(w \). It was shown in [17] that a prime ideal \(P \) of \(R \) is a \(w \)-ideal if and only if \(P_w \neq R \). Therefore, all prime ideals contained in a proper \(w \)-ideal of \(R \) are also \(w \)-ideals. We denote by \(w \)-Max\((R) \) the set of \(w \)-maximal ideals of \(R \). It is also worth noting that \(w \) distributes over (finite) intersections [17, Proposition 2.5]. For unexplained terminology and notation, we refer to [2, 3, 14].

2. \(w \)-null and (co-)semi-divisorial Hom-modules

In [7], H. Kim introduced the notions of “co-semi-divisoriality” and “\(w \)-nullity” of a module as follows. Let \(M \) be a module over an integral domain \(R \) and let \(\tau(M) := \{ x \in M \mid (\mathcal{O}(x))_w = R \} \), where \(\mathcal{O}(x) := (0 :_R x) = \text{ann}_R(x) \) is the order ideal of \(x \). Then \(\tau(M) \) is a submodule of \(M \). \(M \) is said to be co-semi-divisorial (resp., \(w \)-null) if \(\tau(M) = 0 \) (resp., \(\tau(M) = M \)). Note that the notions of co-semi-divisoriality and \(w \)-nullity can be interpreted in terms of a suitable torsion theory [2, Proposition IX.6.2 and Proposition IX.6.4] (with \(\mathcal{P} = \text{w-Max}(R) \)).

Let \(R \) be an integral domain, let \(\mathcal{T}_c(R) \) denote the full subcategory of \(\text{Mod}(R) \) consisting of all modules \(M \) such that \(M_P = 0 \) for all \(P \in \text{w-Max}(R) \), and let \(\mathcal{T}_c(R) \) denote the full subcategory of all \(R \)-modules \(M \) that have no sub-object other than zero belonging to \(\mathcal{T}_c(R) \). Finally let \(\mathcal{E}_c(R) \) be the full subcategory of \(\text{Mod}(R) \) consisting of all co-semi-divisorial and semi-divisorial \(R \)-modules.

In an abelian category \(\mathcal{A} \), we have the following definitions:

(a) An injective object \(E \) is called an injective cogenerator if \(\text{Hom}_{\mathcal{A}}(M, E) \neq 0 \) for every \(M \in \mathcal{A} \) that is not a zero object.
(b) A nonempty full subcategory \(C \) of \(\mathcal{A} \) is said to be \textit{thick} if, for each short exact sequence \(0 \to L \to M \to N \to 0 \) in \(\mathcal{A} \), \(M \) is an object of \(C \) if and only if \(L \) and \(N \) are objects of \(C \). It is also called a \textit{Serre subcategory} of \(\mathcal{A} \).

It is clear that \(\mathcal{T}(R) \) is a thick subcategory of \(\text{Mod}(R) \). Then we can now consider the quotient category \(\text{Mod}(R) = \mathcal{T}(R) \) and the canonical functor \(T : \text{Mod}(R) \to \text{Mod}(R)/\mathcal{T}(R) \).

As usual, we denote by \(E(M) \) the injective envelope of an \(R \)-module \(M \).

The following result will be useful later on.

\textbf{Proposition 2.1.} The following statements are equivalent for an \(R \)-module \(M \).

1. \(M \) is co-semi-divisorial, i.e., \(M \in \mathcal{T}(R) \).
2. \(\mathcal{O}(x) \) is a \(w \)-ideal for every element \(x \in M \).
3. \((\mathcal{O}(x))_w \neq R \) for every nonzero element \(x \in M \).
4. \(\text{Hom}_R(N, M) = 0 \) for every \(w \)-null \(R \)-module \(N \).
5. \(\text{Hom}_R(N, E(M)) = 0 \) for every \(w \)-null \(R \)-module \(N \).

\textbf{Proof.} The equivalences of (1), (2), (3), and (4) are given in [7, Proposition 2.6], while the equivalence of (1) and (5) follows from [6, Proposition 1.2]. \(\square \)

Note from [17, Proposition 1.4] that the annihilator ideal of any submodule of a co-semi-divisorial module is a \(w \)-ideal. Recall from [1] that a module \(M \) is said to be \textit{cdivisorial} if the annihilator of every nonzero element of \(M \) is a divisorial ideal. Thus in a Krull domain, the notions of co-semi-divisoriality and cdivisoriality are the same.

Recall from [16, Definition 4.5] that an \(R \)-module \(M \) is said to be \textit{\(w \)-vanishing} if \(M_P = 0 \) for any maximal \(w \)-ideal \(P \) of \(R \).

\textbf{Proposition 2.2.} Let \(N \) be an \(R \)-module. Then the following statements are equivalent.

1. \(N \) is \(w \)-null, i.e., \(M \in \mathcal{T}(R) \).
2. For each \(x \in N \), \(\mathcal{O}(x) \) is not contained in any maximal \(w \)-ideal.
3. \(N \) is \(w \)-vanishing.
4. There is a torsion-free \(R \)-module \(F \) with \(N \cong F_w/F \).
5. \(\text{Hom}_R(N, E(M)) = 0 \) for every co-semi-divisorial \(R \)-module \(M \).

\textbf{Proof.} The equivalences of (1), (2), (3), and (4) are given in [7, Proposition 9.3], while the equivalence of (1) and (5) follows from [6, Proposition 1.2]. \(\square \)

Now we study \(w \)-nullity and (co-)semi-divisoriality of \(\text{Hom} \)-modules. It was shown in [7, Proposition 3.1] that an \(R \)-module \(M \) is co-semi-divisorial if and only if \(\text{Hom}_R(\mathcal{Z}(R), M) = 0 \), where \(\mathcal{Z}(R) := \bigoplus_{I \leq R \mid I_w = R} R/I \).

\textbf{Proposition 2.3.} Let \(R \) be an integral domain and let \(M \) and \(N \) be \(R \)-modules. If \(M \) is co-semi-divisorial, then so is \(\text{Hom}_R(N, M) \).
Proof. By [7, Proposition 2.6], it suffices to show that $\text{Hom}_R(L, \text{Hom}_R(N, M)) = 0$ for every w-null R-module L. But this follows from $\text{Hom}_R(L, \text{Hom}_R(N, M)) \cong \text{Hom}_R(N, \text{Hom}_R(L, M)) = 0$ since M is co-semi-divisorial.

Proposition 2.4. Let R be an integral domain and let M and N be any R-module. If M is w-null, then so is $\text{Tor}_n^R(N, M)$ for all $n \geq 0$.

Proof. First we consider the case $n = 0$. For every co-semi-divisorial R-module L we have $\text{Hom}_R(N \otimes_R M, E(L)) = \text{Hom}_R(N, \text{Hom}_R(M, E(L))) = 0$ since M is w-null; therefore $N \otimes_R M$ is w-null by Proposition 2.2. For the case when $n \geq 1$, we consider a projective resolution of N:

$$\cdots \to P_n \to P_{n-1} \to \cdots \to P_2 \to P_1 \to P_0 \to N \to 0.$$

Then, since each $P_i \otimes M$ is w-null, we can see that $\text{Tor}_n^R(N, M)$ is w-null for every $n \geq 0$ by noting that the submodules and homomorphic images of w-null modules are also w-null.

Now we recall some definitions from [7]: Let M be an R-module. Then $W(M) := \pi^{-1}(\tau(E(M)/M))$ is called the semi-divisorial envelope of M, where $\pi : E(M) \to E(M)/M$ is the canonical projection, M is said to be semi-divisorial if $W(M) = M$, and M is said to be weakly w-flat if $\text{Tor}_1^R(\mathbb{Z}(R), M) = 0$. It is clear from the definition that every injective R-module is semi-divisorial.

Let N be an R-module. Then we denote $U_w(N) := \{ L \mid L \text{ is a submodule of } N \text{ such that } (L :_R x)_w = R \text{ for every } x \in N \}$.

Proposition 2.5. The following statements are equivalent for an R-module M.

1. M is weakly w-flat.
2. $M^\flat := \text{Hom}_\mathbb{Z}(M, \mathbb{Q}/\mathbb{Z})$ is semi-divisorial.
3. $I \otimes_R M \to M$ is a monomorphism for all $I \in U_w(R)$.
4. $L \otimes_R M \to N \otimes_R M$ is a monomorphism for all $L \in U_w(N)$.

Proof. The equivalence of (1) and (2) is given in [7, Proposition 4.3], while the equivalences of (2), (3), and (4) are given in [14, IX, Exercise 25].

Let M be a semi-divisorial R-module and N be an R-module. Then it was shown in [7, Corollary 3.4] that if $\text{Hom}_R(\text{Tor}_1^R(\mathbb{Z}(R), N), M) = 0$, then $\text{Hom}_R(N, M)$ is semi-divisorial.

Theorem 2.6. Let R be an integral domain, M be a semi-divisorial R-module, and N be an R-module. Then $\text{Hom}_R(N, M)$ is semi-divisorial if one of the following conditions is satisfied:

1. M is co-semi-divisorial;
2. N is weakly w-flat.

Proof. It suffices to show that $\text{Hom}_R(\text{Tor}_1^R(\mathbb{Z}(R), N), M) = 0$ by [7, Corollary 3.4].
(i) Note that R/I is w-null for every $I \in \mathcal{U}_w(R)$ ([7, Proposition 2.5]). Thus we have that $\text{Tor}_1^R(R/I, N)$ is w-null for every $I \in \mathcal{U}_w(R)$. Now since Tor commutes with direct sums and w-nullity is closed under direct sums, we have $\text{Tor}_1^R(\mathcal{Z}(R), N)$ is w-null. Therefore $\text{Hom}_R(\text{Tor}_1^R(\mathcal{Z}(R), N), M) = 0$ by the co-semi-divisoriality of M ([7, Proposition 2.6]).

(ii) This follows from the definition of “weakly w-flat”. □

It was shown in [5, Proposition 2.2] that for a rank one \nat ideal I in K, the endomorphism $\text{End}_R(I) = I : I$ of I is semi-divisorial. We extend this result to any \nat module in the following corollary. Note that \nat R-modules are torsion-free (and so co-semi-divisorial) for every integral domain R.

Corollary 2.7. Let R be an integral domain.

(1) If M is a flat R-module, then $\text{End}_R(M)$ is a semi-divisorial R-module.

(2) If M is a co-semi-divisorial and semi-divisorial R-module, then so is $\text{End}_R(M)$.

(3) If M is co-semi-divisorial, then $M^* = \text{Hom}_R(M, R)$ is semi-divisorial.

3. Semi-divisorial equivalence

In this section, we investigate the semi-divisorial envelope of $\text{Hom}_R(M, N)$ under suitable conditions on $R, M,$ and N. To do so, we need some definitions and results.

Lemma 3.1 ([15, Proposition 1.1]). Let R be an integral domain and let $L \to M \to N$ be an exact sequence of R-modules. If L and N are w-null, then so is M.

Let M and N be R-modules and let $f : M \to N$ be an R-homomorphism. Then f is said to be w-injective (resp., w-surjective) if $\ker(f)$ (resp., $\text{coker}(f)$) is w-null. And f is said to be w-isomorphic if f is both w-injective and w-surjective.

Lemma 3.2 ([15, Lemma 1.2]). Let R be an integral domain and let $f : L \to M$ and $g : M \to N$ be homomorphisms of R-modules. If f and g are w-injective (resp., w-surjective or w-isomorphic), then so is gf.

Theorem 3.3 ([7, Theorem 8.1]). The following statements are equivalent for an integral domain R.

(1) If an R-module M is injective, then so is $\tau(M)$.

(2) $E(\tau(M)) = \tau(E(M))$ for any R-module M.

(3) Let N be an essential extension of M. If M is w-null, then so is N.

(4) Let $I \leq R$ such that $I_w \neq R$. Then $I : R \alpha$ is a w-ideal for some $\alpha \in R \setminus I_w$.

(5) If M is not w-null, then M has a nonzero co-semi-divisorial submodule.

(6) If $I \leq R$, then there exists an ideal J of R such that $J_w = R$ and $I = I_w \cap J$.

Recall that an integral domain R is said to be pseudo-t-linkative if R satisfies one of the equivalent conditions of Theorem 3.3.

Proposition 3.4. Let R be a pseudo-t-linkative domain with quotient field $K(\neq R)$. Let $f : M \to N$ be a homomorphism of R-modules and $p : M \to M/\tau(M)$, $q : N \to N/\tau(N)$ be the canonical projections.

1. There is a unique homomorphism $f_* : M/\tau(M) \to N/\tau(N)$ such that $f_* p = q f$.
2. If f is w-injective, then f_* is injective, and if f is w-isomorphic, then so is f_*.
3. If f is w-isomorphic and M is semi-divisorial, then f_* is an isomorphism.

Proof.
\begin{itemize}
 \item (1) The existence of f_* follows from [7, Proposition 2.8] and its uniqueness is clear.
 \item (2) Suppose first that f is w-injective. Since $\tau(M) \subseteq f^{-1}(\tau(N))$, we have the following exact sequence
 \[0 \to \ker(f) \to f^{-1}(\tau(N)) \to \tau(N).\]
 This implies, by Lemma 3.1, that $f^{-1}(\tau(N))$ is w-null; therefore $\tau(M) = f^{-1}(\tau(N))$. Thus f_* must be injective. If, moreover, f is w-surjective, then $\ker(f)$ is w-null. Since the induced homomorphism of $\ker(f)$ to $\ker(f_*)$ is surjective, $\ker(f_*)$ must be w-null.
 \item (3) Suppose that M is semi-divisorial. Then $M \cong \tau(M) \oplus M/\tau(M)$ by [7, Corollary 8.9], and hence $M/\tau(M)$ is also semi-divisorial. Now the assertion follows from [7, Corollary 5.3].
\end{itemize}

It was shown in [16, Proposition 2.1] that $\text{Hom}_R(M, N) = \text{Hom}_R(M_w, N)$ for a torsion-free R-module M and a w-module N. It follows from this result that w, as a functor from the category of all torsion-free R-modules to the category of all w-modules, is a reflector. The following result shows that the functor W is a reflector from the category $\mathcal{F}_r(R)$ to the category $\mathcal{C}_r(R)$. By the R-dual of an R-module M is meant the R-module $M^* = \text{Hom}_R(R, M)$.

Proposition 3.5. Let R be an integral domain and let M, N be R-modules. Let i be the canonical injection of M to $W(M)$. If N is co-semi-divisorial, then
\[\text{Hom}_R(i, W(N)) : \text{Hom}_R(W(M), W(N)) \to \text{Hom}_R(M, W(N))\]
is an isomorphism. In particular, we have $M^* = (W(M))^*$.

Proof. Since N is co-semi-divisorial, so is $W(N)$ by [7, Proposition 2.9]. On the other hand, $W(M)/M$ is w-null by the definition of a semi-divisorial envelope W. Therefore $\text{Hom}(W(M)/M, W(N)) = 0$, which implies that $\text{Hom}_R(i, W(N))$ is an injection. By [7, Proposition 3.2], we can see that $\text{Hom}_R(i, W(N))$ is a surjection.
Corollary 3.6. Let R be a pseudo-t-linkative domain with quotient field $K(\neq R)$. Let $f : M \to N$ be a homomorphism of R-modules. Then there exists a unique homomorphism $T(f) : T(M) \to T(N)$ such that $T(f)i = jf$, where i (resp., j) is the canonical homomorphism of M (resp., N) into $T(M)$ (resp., $T(N)$). Moreover, if f is a w-isomorphism, then $T(f)$ is an isomorphism.

Proof. The homomorphism f induces the homomorphism f^*_w of $M/\tau(M)$ to $N/\tau(N)$ by Proposition 3.4. Applying Proposition 3.5 to f^*_w, we can obtain a homomorphism $T(f) : T(M) \to T(N)$ such that $T(f)i = jf$.

It is easy to show that, similarly to the proof of Proposition 3.5, $\text{Hom}(i; T(N))$ is an injection. This shows the uniqueness of $T(f)$.

Suppose now that f is a w-isomorphism. Then by Proposition 3.4, f^*_w is a w-isomorphism (f^*_w is necessarily injective). Since the canonical injection of $M/\tau(M)$ to $T(M)$ is an essential extension, $T(f)$ must be an injection. Since both f^*_w and the canonical injection of $N/\tau(N)$ to $T(N)$ are w-surjective, so is the composition of them by Lemma 3.2. We can conclude from this fact that $T(f)$ is a w-surjection. Since a w-isomorphism of co-semi-divisorial and semi-divisorial modules is an isomorphism by [7, Corollary 5.3], $T(f)$ must be an isomorphism.

It was shown in [16, Proposition 2.3] that $(\text{Hom}_R(M, N))_w = \text{Hom}_R(M, N_w)$ for a torsion-free finitely generated R-module M and a torsion-free R-module N. As a corollary, Wang obtained that $(\text{End}_R(M))_w = \text{End}_R(M_w)$ for a torsion-free finitely generated R-module M ([16, Corollary 2.4]).

Theorem 3.7. Let R be a pseudo-t-linkative domain. Let M and N be co-semi-divisorial R-modules. If M is a submodule of a finitely generated R-module L, then we have

$$W(\text{Hom}_R(M, N)) \cong \text{Hom}_R(W(M), W(N)).$$

Proof. By Proposition 3.5, we have only to prove

$$W(\text{Hom}_R(M, N)) \cong \text{Hom}_R(M, W(N)).$$

Consider the following exact sequence

$$0 \to \text{Hom}_R(M, N) \to \text{Hom}_R(M, W(N)) \to \text{Hom}_R(M, W(N)/N).$$

Since N is co-semi-divisorial, so is $W(N)$; thus, by Proposition 2.3, $\text{Hom}_R(M, N)$ and $\text{Hom}_R(M, W(N))$ are co-semi-divisorial. Also we have that $\text{Hom}_R(M, W(N))$ is semi-divisorial by Theorem 2.6. Since a w-isomorphism of co-semi-divisorial modules is an essential extension, it suffices to show that $\text{Hom}_R(M, W(N)/N)$ is w-null.

In general, for a submodule M_1 of a finitely generated R-module M_2 and a w-null R-module N_1, we will show that $\text{Hom}_R(M_1, N_1)$ is w-null. Set $N_2 := E(N_1)$. Then N_2 is w-null by [7, Theorem 8.1], since R is pseudo-t-linkative. Let $\{x_1, \ldots, x_n\}$ be a system of generators of M_2 and let $f \in \text{Hom}_R(M_2, N_2)$. Then $O(f) = O(f(x_1)) \cap \cdots \cap O(f(x_n))$. Since each $(O(f(x_i)))_w = R$, we
have $(\mathcal{O}(f))_w = R$ by the distributivity of the star-operation w over finite intersection. Hence $\text{Hom}_R(M_2, N_2)$ is w-null. Therefore, $\text{Hom}_R(M_1, N_2)$ is w-null, since it is a homomorphic image of $\text{Hom}_R(M_2, N_2)$. Thus $\text{Hom}_R(M_1, N_1)$ is w-null since it is isomorphic to a submodule of $\text{Hom}_R(M_1, N_2)$.

\textbf{Corollary 3.8.} Let R be a pseudo-t-linkative domain with quotient field $K(\neq R)$ and let M and N be co-semi-divisorial and semi-divisorial R-modules. If M is a submodule of a finitely generated R-module, then $\text{Hom}_R(M, N)$ is semi-divisorial.

Let M and N be an R-modules. We say that M is semi-divisorially equivalent to N if there exists a w-isomorphism of $W(M)$ to $W(N)$.

\textbf{Proposition 3.9.} Let R be a pseudo-t-linkative domain with quotient field $K(\neq R)$. Let M and N be R-modules.

(1) M is semi-divisorially equivalent to N if and only if $W(M/\tau(M))$ is isomorphic to $W(N/\tau(N))$. In particular, the “semi-divisorial equivalence” is an equivalence relation.

(2) If M is w-isomorphic to N, then M is semi-divisorially equivalent to N.

\textbf{Proof.} (1) The necessity follows from the facts that $W(M) \cong W(\tau(M)) \oplus W(M/\tau(M))$ and $W(N) \cong W(\tau(N)) \oplus W(N/\tau(N))$ by [7, Corollary 8.9] and $W(\tau(M))$ and $W(\tau(N))$ are w-null by [7, Theorem 8.1] since R is pseudo-t-linkative. The sufficiency follows from Proposition 3.4.

(2) The assertion follows immediately from Corollary 3.6.

\section{4. Injective cogenerator of a quotient category}

In this section, we generalize some results of [1, 11] related to an injective cogenerator in a quotient category. We recall from [4] that a domain R is said to be an H-domain if every ideal I of R with $I^{-1} = R$ is quasi-finite (i.e. $I^{-1} = J^{-1}$ for some finitely generated subideal J of I).

\textbf{Theorem 4.1.} Let R be an H-domain with quotient field $K(\neq R)$, and let M be any R-module. Then M is w-null if and only if $\text{Hom}_R(M, E(K/R)) = 0$.

\textbf{Proof.} (\Rightarrow): This follows from Proposition 2.1 since $E(K/R)$ is co-semi-divisorial by [7, Corollary 2.11].

(\Leftarrow): Suppose that M is not w-null and let $N = M/\tau(M)$. By Proposition 2.1 and [7, Proposition 2.8], there is a non-zero element of $x \in N$ such that $\mathcal{O}(x)$ is a proper w-ideal and hence $R : \mathcal{O}(x) \not\subseteq R$ (since R is an H-domain). Let $a \in R : \mathcal{O}(x) \setminus R$. Then $R : R a \supset \mathcal{O}(x)$. Let $f : R \to K/R$ be the homomorphism defined by $f(b) = ab$, where ab is the class of ab in K/R. Since $\ker(f) = R : R a \supset \mathcal{O}(x)$, there is a non-zero homomorphism $g : R/\mathcal{O}(x) \to K/R$ such that $f = gp$, where p is the canonical projection of R to $R/\mathcal{O}(x)$. Let i be the canonical injection of $R/\mathcal{O}(x)(\cong Rx)$ to N. Then there is a non-zero homomorphism h of N to $E(K/R)$ such that $ih = hj$, and hence hq is a
non-zero homomorphism of M to $E(K/R)$, where q is the canonical projection of M to N.

Since $K/R \in \mathcal{F}(R)$, i.e., K/R has no subobject other than zero belonging to $\mathcal{F}(R)$, then $T(E(K/R))$ is the injective envelope of the object $T(K/R)$ of $\text{Mod}(R)/\mathcal{I}(R)$.

Corollary 4.2. If R is an H-domain, then $T(E(K/R))$ is an injective cogenerator in the quotient category $\text{Mod}(R)/\mathcal{I}(R)$. Hence every co-semi-divisorial and semi-divisorial module over an H-domain can be embedded in an injective module.

Proof. Let $T(N) \in \text{Mod}(R)/\mathcal{I}(R)$ with $\text{Hom}_{\text{Mod}(R)/\mathcal{I}(R)}(T(N), T(E(K/R))) = 0$. Then by [11, Lemma 2.6] we have $\text{Hom}_{\text{Mod}(R)}(N, E(K/R)) = 0$, and by Theorem 4.1 we have $N \in \mathcal{I}(R)$, and then $T(N) = 0$. It is clearly seen that $T(E(K/R))$ is a cogenerator object of $\text{Mod}(R)/\mathcal{I}(R)$. The last assertion follows from [14, Proposition I.6.6].

Lemma 4.3. Let R be an integral domain, let $P \in w\text{-Max}(R)$, let M be a co-semi-divisorial R-module and let $f : R/P \to M$ a homomorphism. Then either $f \equiv 0$ or f is injective.

Proof. Suppose that $f \neq 0$ and let $f(1) = x$. Then we have $x \in M$. Since M is co-semi-divisorial, then $O(x)$ is a w-ideal, and since $x \neq 0$, there exists $Q \in w\text{-Max}(R)$ such that $O(x) \subseteq Q$, but since $P \subseteq O(x)$, we have $P \subseteq Q$ and hence $P = Q$, so $O(x) = P$ and f is injective.

We recall from [10, III.1.4] two facts related to $\mathcal{C}(R)$, $\text{Mod}(R)/\mathcal{I}(R)$, and T.

(a) The subcategory $\mathcal{C}(R)$ of $\text{Mod}(R)$ may be identified with $\text{Mod}(R)/\mathcal{I}(R)$.

(b) Let M be an R-module. Then $T(M) = W(M/\tau(M))$.

Therefore, we have that $T(E(K/R)) = W(E(K/R)/\tau(E(K/R))) \cong E(K/R)$.

Theorem 4.4. Let R be an integral domain with quotient field K satisfying $(R :_R x)_v = (R :_R x)$ for every $x \in K$. If $T(E(K/R))$ is an injective cogenerator in the quotient category $\text{Mod}(R)/\mathcal{I}(R)$, then R is an H-domain.

Proof. Note that if R satisfies that $(R :_R x)_v = (R :_R x)$ for every $x \in K$, then K/R is co-divisorial. Suppose that R is not an H-domain. Then by [17, Proposition 5.7] there exists a prime ideal P which is w-maximal but not a v-ideal. First we show that the module R/P cannot be injected in $E(K/R)$. If this were not so, then the kernel of the composition $R \xrightarrow{\Pi} R/P \to E(R/K)$ is P, where Π is the canonical projection. Then by [1, Corollary 1.7] P is a v-ideal, which is a contradiction. Thus by Lemma 4.3, $\text{Hom}_{\text{Mod}(R)}(R/P, E(K/R)) \neq 0$. So $\text{Hom}_{\text{Mod}(R)/\mathcal{I}(R)}(T(R/P), T(E(K/R))) \cong \text{Hom}_{\text{Mod}(R)}(W(R/P), E(K/R)) \cong \text{Hom}_{\text{Mod}(R)}(R/P, E(K/R)) = 0$ (note that the last isomorphism follows from Proposition 3.5). Since $T(E(K/R))$ is a cogenerator object in $\text{Mod}(R)/\mathcal{I}(R)$,
$T(R/P) = 0$, and thus $R/P \in \mathcal{T}_\mathcal{R}(R)$, i.e., R/P is w-null. Hence $P_w = R$, which is a contradiction. Therefore R is an H-domain.

It is well known that if R is a completely integrally closed domain, then R satisfies the hypothesis of Theorem 4.4. Now the following result follows from Corollary 4.2, Theorem 4.4, and the fact that an integral domain R is a Krull domain if and only if R is a completely integrally closed H-domain ([4, 3.2(d)]).

Corollary 4.5. Let R be a completely integrally closed domain. Then R is a Krull domain if and only if $E(K/R)$ is an injective cogenerator in the quotient category $\text{Mod}(R)/\mathcal{T}_\mathcal{R}(R)$.

Let M be any R-module. We have a canonical mapping:

$$\lambda_M : M \to \text{Hom}_R(\text{Hom}_R(M, E(K/R)), E(K/R)).$$

Let $f \in \text{Hom}_R(M, E(K/R))$. Then define $\lambda_M(m)$ by the equation $\lambda_M(m)(f) = f(m)$ for all $m \in M$.

Theorem 4.6. Let R be an H-domain with quotient field $K(\neq R)$, and let M be any R-module. Then M is co-semi-divisorial if and only if λ_M is injective.

Proof. (\Leftarrow): This follows from the facts that $E(K/R)$ is co-semi-divisorial and $\text{Hom}_R(L, N)$ is co-semi-divisorial whenever N is co-divisorial.

(\Rightarrow): Let $x \in M \setminus \{0\}$. Since Rx is not w-null, we can find a homomorphism $f : Rx \to E(K/R)$ such that $f(x) \neq 0$ by Theorem 4.1. Since $E(K/R)$ is injective, we can lift f to a mapping $\bar{f} : M \to E(K/R)$. This shows that λ_M is injective, since $\lambda_M(x)(\bar{f}) = f(x) = f(x) \neq 0$ and hence $\lambda_M(x) \neq 0$.

References

Department of Information Security
Hoseo University
Asan 336-795, Korea
E-mail address: hkkim@hoseo.edu