A NOTE ON HYPONORMAL TOEPLITZ OPERATORS

AN-HYUN KIM

Abstract. In this note we are concerned with the hyponormality of Toeplitz operators T_ϕ with polynomial symbols $\phi = g + f$ ($f, g \in H^\infty(\mathbb{T})$) when g divides f.

1. Introduction

A bounded linear operator A on a complex Hilbert space is said to be hyponormal if its selfcommutator $[A^*, A] = A^*A - AA^*$ is positive semidefinite. Recall that the Hilbert space $L^2(\mathbb{T})$ has a canonical orthonormal basis given by the trigonometric functions $e_n(z) = z^n$ for all $n \in \mathbb{Z}$, and that the Hardy space $H^2(\mathbb{T})$ is the closed linear span of $\{e_n : n = 0, 1, \ldots\}$. Recall that given $\phi \in L^\infty(\mathbb{T})$, the Toeplitz operator with symbol ϕ is the operator T_ϕ on $H^2(\mathbb{T})$ defined by

$$T_\phi f = P(\phi \cdot f) \quad \text{for} \quad f \in H^2(\mathbb{T})$$

and P denotes the projection that maps $L^2(\mathbb{T})$ onto $H^2(\mathbb{T})$. Let $H^\infty(\mathbb{T}) := L^\infty(\mathbb{T}) \cap H^2(\mathbb{T})$. The hyponormality of Toeplitz operators has been studied by many authors (cf. [1-7, 9-16, 18]). In 1988, C. Cowen [3] characterized the hyponormality of a Toeplitz operator T_ϕ on $H^2(\mathbb{T})$ by properties of the symbol $\phi \in L^\infty(\mathbb{T})$. K. Zhu [18] reformulated Cowen’s criterion and then showed that the hyponormality of T_ϕ with polynomial symbols ϕ can be decided by a method based on the classical interpolation theorem of I. Schur [17]. Also D. Farenick and W. Y. Lee [6] characterized the hyponormality of T_ϕ in terms of the Fourier coefficients of the trigonometric polynomial ϕ in the cases that the outer coefficients of ϕ have the same modulus. In [12], it was shown that the hyponormality of T_ϕ with polynomial symbols of the form $\phi(z) = \sum_{n=-m}^{N} a_n z^n$ can be determined by the zeros of the analytic polynomial $z^m \phi$. In this note we consider the hyponormality of Toeplitz operators T_ϕ with polynomial symbols $\phi = g + f$ ($f, g \in H^\infty(\mathbb{T})$) when g divides f.

Received October 27, 2009; Revised January 13, 2010.

2010 Mathematics Subject Classification. Primary 47B20, 47B35.
Key words and phrases. Toeplitz operators, hyponormal.
This research is financially supported by Changwon National University in 2009-2010.

©2011 The Korean Mathematical Society

647
2. Main results

We begin with:

Lemma 1 (Cowen’s Theorem, [3, 16]). Let $\phi \in L^\infty(\mathbb{T})$. If $\mathcal{E}(\phi) := \{k \in H^\infty(\mathbb{T}) : ||k||_{\infty} \leq 1 \text{ and } \phi - k \overline{\phi} \in H^\infty(\mathbb{T})\}$, then T_ϕ is hyponormal if and only if $\mathcal{E}(\phi) \neq \emptyset$.

On the other hand, in 1993, T. Nakazi and K. Takahashi characterized the hyponormality of a Toeplitz operator in the cases that its self-commutator is of finite rank.

Lemma 2 (Nakazi-Takahashi Theorem, [16]). A Toeplitz operator T_ϕ is hyponormal and the rank of the selfcommutator $[T_\phi^*, T_\phi]$ is finite (e.g., ϕ is a trigonometric polynomial) if and only if there exists a finite Blaschke product $k \in E(\phi)$ such that $\deg(k) = \text{rank } [T_\phi^*, T_\phi]$.

We record here results on the hyponormality of Toeplitz operators with polynomial symbols, which have been recently developed in the literature. The statement (vii) appears to be new.

Lemma 3. Suppose that ϕ is a trigonometric polynomial of the form $\phi(z) = \sum_{n=-m}^{N} a_n z^n$, where a_{-m} and a_N are nonzero.

(i) If T_ϕ is a hyponormal operator, then $m \leq N$ and $|a_{-m}| \leq |a_N|$.

(ii) If T_ϕ is a hyponormal operator, then $N - m \leq \text{rank } [T_\phi^*, T_\phi] \leq N$.

(iii) The hyponormality of T_ϕ is independent of the particular values of $a_0, a_1, \ldots, a_{N-m}$ of ϕ. Moreover the rank of the selfcommutator $[T_\phi^*, T_\phi]$ is also independent of those coefficients.

(iv) Write $\phi = \overline{\phi} + f$ ($f, g \in H^\infty$) and put $\tilde{\phi} = \overline{\phi} + T_\phi f$ ($r \leq N - m$). Then T_ϕ is hyponormal if and only if $T_{\tilde{\phi}}$ is.

(v) If $|a_{-m}| = |a_N| \neq 0$, then T_ϕ is hyponormal if and only if the following symmetric condition holds:

\[
\sigma_N a_{-j} = a_{-m} \overline{a_{N-m+j}} \quad (1 \leq j \leq m).
\]

In this case, the rank of $[T_\phi^*, T_\phi]$ is $N - m$ and

\[
\mathcal{E}(\phi) = \{a_{-m} (\overline{\sigma_N})^{-1} z^{N-m}\}.
\]

(vi) T_ϕ is normal if and only if $m = N$, $|a_{-m}| = |a_N|$, and (3.1) holds with $m = N$.

(vii) Write $\phi := \tilde{\phi} + f$, where f and g are in $H^\infty(\mathbb{T})$ and put $\tilde{\phi} := \alpha \tilde{\phi} + f$ ($|\alpha| \leq 1$). If $T_{\tilde{\phi}}$ is hyponormal, then so is $T_{\tilde{\phi}}$.

Proof. The assertions (i) – (vi) were shown from [4, 6, 7, 10, 11, 12, 13, 16]. For the assertion (vii), suppose that there exists a function $k \in H^\infty(\mathbb{T})$ such that $\phi - k \overline{\phi} \in H^\infty(\mathbb{T})$ and $||k||_{\infty} \leq 1$. Thus $\tilde{\phi} - k \tilde{f} \in H^\infty(\mathbb{T})$. Since $|\alpha| \leq 1$ it follows that if we let $\tilde{k} = \alpha k$, then $\alpha \tilde{\phi} - \tilde{k} \tilde{f} = \alpha (\tilde{\phi} - k \tilde{f}) \in H^\infty(\mathbb{T})$ and $||\tilde{k}||_{\infty} = |\alpha| ||k||_{\infty} \leq 1$. Therefore by Lemma 1, $T_{\tilde{\phi}}$ is hyponormal. □
Suppose $\phi = g + f$, where $f = \sum_{n=1}^{N} a_n z^n$ and $g = \sum_{n=1}^{N} b_n z^n$. If T_ϕ is normal, then g divides f: indeed, by Lemma 3 (v),(vi), $g = e^{i\theta} \sum_{n=1}^{N} a_n z^n$ for some $\theta \in [0, 2\pi)$, so that g divides f. But if T_ϕ is hyponormal, then g need not divide f. For example, consider $g(z) = (z + \frac{1}{2})^2$ and $f(z) = 3(z + 1)^2$.

Using an argument of P. Fan [5, Theorem 1] – for every trigonometric polynomial ϕ of the form $\phi(z) = \sum_{n=-2}^{2} a_n z^n$,

$$T_\phi \text{ is hyponormal} \iff |\det \left(\begin{array}{cc} a_{-1} & a_{-2} \\ \pi & \pi^2 \end{array} \right)| \leq |a_2|^2 - |a_{-2}|^2,$$

a straightforward calculation shows that T_ϕ is hyponormal. How is the converse? That is, if g divides f, does it follow that T_ϕ is hyponormal? However we cannot also expect the hyponormality of T_ϕ when g divides f: for example, if $\phi = (z + 1)^2 + (z + 1)^3$, then by Lemma 3 (v), T_ϕ is not hyponormal.

We now consider the hyponormality of T_ϕ with $\phi = g + f$ (f and g are analytic polynomials) when g divides f. If ψ is in $H_\infty(\mathbb{T})$, write $Z(\psi)$ for the set of all zeros of ψ.

Theorem 4. Suppose $\phi = g + f$ with $f, g \in H_\infty(\mathbb{T})$ and $\psi := \frac{f}{g}$ has a factorization $\psi = up$, where u is an inner function and p is an analytic polynomial. If

(i) $Z(\psi) \subseteq \mathbb{D}$;
(ii) $\text{ess inf } |\psi| \geq 1$,

then T_ϕ is hyponormal.

Proof. By the condition (i), p is of the form

$$p(z) = c \prod_{j=1}^{n} (z - \zeta_j) \quad \text{with } |\zeta_j| < 1 \quad (j = 1, \ldots, n).$$

Then we have

$$\frac{1}{p} = \frac{1}{c \prod_{j=1}^{n} (z - \zeta_j)} = \frac{z^n}{c \prod_{j=1}^{n} (1 - \zeta_j z)},$$

which is in $H_\infty(\mathbb{T})$. Put $k := \frac{u}{p}$. Then evidently, $k \in H_\infty(\mathbb{T})$. By the condition (ii),

$$||k||_\infty = \text{ess sup } \left| \frac{u}{p} \right| = \text{ess sup } \left| \frac{1}{p} \right| = \frac{1}{\text{ess inf } |p|} = \frac{1}{\text{ess inf } |\psi|} \leq 1.$$

Since $\tilde{f} = \tilde{g}u\tilde{p}$, it follows

$$\phi - k \tilde{\phi} = (\tilde{g} + \tilde{f}) - \frac{u}{p} (g + \tilde{g}u\tilde{p}) = f - \frac{u}{p} g = f - kg \in H_\infty(\mathbb{T}).$$

Therefore by Cowen’s theorem T_ϕ is hyponormal. \qed
The conditions (i) and (ii) in Theorem 4 need not be necessary for \(T_\phi \) to be hyponormal. To see this consider the trigonometric polynomial \(\phi = \tilde{g} + f \), where
\[
g(z) = (z - 1)^2 \quad \text{and} \quad f(z) = 2(z - 1)^2(z - \frac{3}{2}).
\]
Then \(\phi(z) = z^{-2} - 2z^{-1} - 2 + 8z - 7z^2 + 2z^3 \). Put \(\tilde{\phi}(z) := z^{-2} - 2z^{-1} - 7z + 2z^2 \). By Lemma 3 (iv), \(T_\phi \) is hyponormal if and only if \(T_{\tilde{\phi}} \) is. A straightforward calculation with (3.2) shows that \(T_{\tilde{\phi}} \) is hyponormal and hence so is \(T_\phi \). But note that \(\mathcal{Z}(\frac{\tilde{\phi}}{f}) \subseteq \mathbb{C} \setminus \mathbb{D} \). Also if \(\phi(z) = z^{-1} + z(z - \frac{1}{2}) \), then \(T_\phi \) is hyponormal, whereas \(\text{ess inf} |\psi| = \frac{1}{2} \).

Corollary 5 ([1]). Suppose \(\phi = \tilde{g} + f \) with \(f \) and \(g \) inner. If \(g \) divides \(f \), then \(T_\phi \) is hyponormal.

Proof. Apply Theorem 4 with \(p = 1 \). \(\square \)

Corollary 6. Let \(\phi = \tilde{g} + f \) with \(f, g \in H^\infty(\mathbb{T}) \) and suppose
\[
f(z) = cg(z) \prod_{j=1}^{\infty} (z - \zeta_j)
\]
with \(|\zeta_j| < 1 \) (\(j = 1, \ldots, n \)). If \(|c| \geq \frac{1}{\prod_{j=1}^{n} (1 - |\zeta_j|)} \), then \(T_\phi \) is hyponormal.

Proof. If \(\psi := \frac{f}{g} \), then \(\mathcal{Z}(\psi) \subseteq \mathbb{D} \). Further by assumption,
\[
\text{ess inf} |\psi| = \text{ess inf} |c| \prod_{j=1}^{n} |z - \zeta_j| \geq \text{ess inf} \prod_{j=1}^{n} \frac{|z - \zeta_j|}{1 - |\zeta_j|} \geq 1.
\]
Therefore by Theorem 4, \(T_\phi \) is hyponormal. \(\square \)

For example if \(\phi = \tilde{g} + f \), where
\[
g(z) = \prod_{j=1}^{n} (z - \zeta_j) \quad \text{and} \quad f(z) = \left(\frac{1}{1 - \alpha} \right)^m (z - \alpha)^m \prod_{j=1}^{n} (z - \zeta_j) \quad (|\alpha| < 1),
\]
then by Corollary 6, \(T_\phi \) is hyponormal.

If \(\phi = \tilde{g} + f \) (\(f \) and \(g \) are analytic polynomials), if \(g \) divides \(f \), and if the modulus of the leading coefficient of \(\psi := \frac{f}{g} \) is 1, then we can easily check the hyponormality of \(T_\phi \).

Theorem 7. Let \(\phi = \tilde{g} + f \), where \(f \) and \(g \) are analytic polynomials of degrees \(N \) and \(m \) (\(m \geq 2 \)), respectively. Suppose that \(g \) divides \(f \) and the modulus of the leading coefficient of \(\psi := \frac{f}{g} \) is 1. Then \(T_\phi \) is hyponormal if and only if \(\hat{\psi}(n) = 0 \) for \(N - 2m + 1 \leq n \leq N - m - 1 \), where \(\hat{\psi}(n) \) is the \(n \)-th Fourier coefficient of \(\psi \). Hence, in particular, if \(N < 2m \), then \(T_\phi \) is hyponormal if and only if \(\psi(z) = e^{i\omega} z^{N-m} \) for some \(\omega \in [0, 2\pi) \).
Proof. By assumption, we may write $$\psi(z) = e^{i\omega} \prod_{j=1}^{N-m} (z - \zeta_j)$$ for some $$\omega \in [0, 2\pi)$$. If $$T_\phi$$ is hyponormal, then by Lemma 3(v), the finite Blaschke product $$k \in \mathcal{E}(\phi)$$ should be of the form $$k(z) = e^{i\theta} z^{N-m}$$ for some $$\theta \in [0, 2\pi)$$. Thus we have

$$T_\phi$$ hyponormal $$\iff$$ $$\phi - k \bar{\phi} \in H^\infty$$ with $$k(z) = e^{i\theta} z^{N-m}$$

$$\iff$$ $$\bar{g} - e^{i\theta} z^{N-m} \bar{\bar{f}} \in H^\infty$$

$$\iff$$ $$\bar{g} - e^{i\theta} z^{N-m} \cdot \bar{\bar{g}} e^{-i\omega} \prod_{j=1}^{N-m} (\bar{z} - \bar{\zeta}_j) \in H^\infty$$

$$\iff$$ $$\bar{g} \left(1 - e^{i(\theta - \omega)} \prod_{j=1}^{N-m} (1 - \zeta_j) \right) \in H^\infty$$

$$\iff$$ $$1 - e^{i(\theta - \omega)} \prod_{j=1}^{N-m} (1 - \zeta_j) \in z^m H^\infty.$$

Therefore if $$T_\phi$$ is hyponormal and $$N < 2m$$ then $$e^{i(\theta - \omega)} \prod_{j=1}^{N-m} (1 - \zeta_j) = 1$$, which implies $$\zeta_j = 0$$ for $$1 \leq j \leq N - m$$. Thus we have that $$\psi(z) = e^{i\omega} z^{N-m}$$. The converse immediately follows from applying Theorem 4 with $$p = 1$$. If instead $$N \geq 2m$$, write $$\eta(z) := e^{i(\theta - \omega)} \prod_{j=1}^{N-m} (1 - \zeta_j)$$. Then we have

$$T_\phi$$ hyponormal $$\iff$$ $$\eta(z) = 1 + \sum_{j=m}^{N-m} a_j z^j$$ for some $$a_j (j = m, \ldots, N - m)$$

$$\iff$$ $$z^{N-m} \eta(z) = \sum_{j=0}^{N-2m} a_{N-m-j} z^j + z^{N-m}$$ for some $$a_j (j = m, \ldots, N - m)$$

$$\iff$$ $$e^{i(\omega - \theta)} \prod_{j=1}^{N-m} (z - \zeta_j) = \sum_{j=0}^{N-2m} a_{N-m-j} z^j + z^{N-m}$$

for some $$a_j (j = m, \ldots, N - m)$$

$$\iff$$ $$\hat{\psi}(n) = 0$$ for $$N - 2m + 1 \leq n \leq N - m - 1.$$

This completes the proof. \hfill \Box

Since the hyponormality is translation-invariant, it follows from Lemma 3(ii) and Theorem 4 that the conclusion of Theorem 7 via its proof can be rewritten as: $$z^m T_{e^{i\omega}} f = \frac{a_N}{a_m} z^m g$$, or equivalently, $$T_{e^{i\omega}} f = \frac{a_N}{a_m} g$$. Therefore we can recapture Lemma 3(v): if $$\phi(z) = \sum_{n=-m}^{N-m} a_n z^n$$ with $$|a_{-m}| = |a_N| \neq 0$$, then
T_ϕ is hyponormal if and only if
\[
\begin{pmatrix}
\alpha_{m-1} \\
\alpha_{m-2} \\
\vdots \\
\alpha_1 \\
\alpha_0 \\
0
\end{pmatrix} = \begin{pmatrix}
\alpha_{N-m+1} \\
\alpha_{N-m+2} \\
\vdots \\
\alpha_N \\
\alpha_N \\
\alpha_N
\end{pmatrix}.
\]

Example 8. If
\[
\phi(z) = \prod_{j=1}^{m} (z - \alpha_j) + \prod_{j=1}^{N} (z - \alpha_j) \quad (m < N < 2m, \ \alpha_N \neq 0),
\]
then T_ϕ is not hyponormal.

Proof. This follows immediately from Theorem 7.

Theorem 7 is not true in general if the leading coefficient of f/g does not have modulus 1. Hyponormality for such a case is very complicated.

Corollary 9. Let $\phi = g + f$, where f and g are analytic polynomials of degrees N and m, respectively ($m \geq 2$). Suppose that g divides f and the leading coefficient of $\psi \equiv f/g$ has modulus ≥ 1. If $Z(\psi) \subseteq T$ and $\psi(n) = 0$ for $n = 1, \ldots, m - 1$, then T_ϕ is hyponormal.

Proof. Without loss of generality we may write $g(z) = \prod_{j=1}^{m} (z - \gamma_j)$. Define
\[
k(z) := \frac{\psi(z)}{\psi(0)\overline{\psi(z)}}.
\]
Since $Z(\psi) \subseteq T$, it follows that $|\psi(0)| = 1$. But since $\overline{\psi}/\psi$ is unimodular it follows that $k \in H^\infty$ and $||k||_\infty \leq 1$. Thus
\[
g - k f = \prod_{j=1}^{m} (z - \gamma_j) \left(1 - \frac{\psi(z)}{\psi(0)\overline{\psi(z)}}\overline{\psi(z)}\right)
\]
\[
= \frac{1}{z_m} \prod_{j=1}^{m} (1 - \gamma_j z) \left(1 - \frac{\psi(z)}{\psi(0)}\right)
\]
\[
\in H^\infty \quad \text{(because } \psi(n) = 0 \text{ for } n = 1, \ldots, m - 1),
\]
which implies that $\phi - k \overline{\phi} \in H^\infty$, and hence T_ϕ is hyponormal.

References

A NOTE ON HYPERSONAL TOEPLITZ OPERATORS

Department of Mathematics
Changwon National University
Changwon 641–773, Korea
E-mail address: akkim@changwon.ac.kr