 APPROXIMATION AND INTERPOLATION IN THE SPACE OF CONTINUOUS FUNCTIONS VANISHING AT INFINITY

MÁRCIA KASHIMOTO

Abstract. We establish a result concerning simultaneous approximation and interpolation from certain uniformly dense subsets of the space of vector-valued continuous functions vanishing at infinity on locally compact Hausdorff spaces.

1. Introduction and preliminaries

Throughout this paper we shall assume, unless stated otherwise, that X is a locally compact Hausdorff space and $(E, \| \cdot \|)$ is a normed vector space over \mathbb{K}, where \mathbb{K} denotes either the field \mathbb{R} of real numbers or the field \mathbb{C} of complex numbers. We shall denote by E^* the topological dual of E and by $C(X; E)$ the vector space over \mathbb{K} of all continuous functions from X into E.

A continuous function f from X to E is said to vanish at infinity if for every $\varepsilon > 0$ the set $\{ x \in X : \| f(x) \| \geq \varepsilon \}$ is compact. Let $C_0(X; E)$ be the vector space of all continuous functions from X into E vanishing at infinity and equipped with the supremum norm. The vector subspace of all functions in $C(X; E)$ with compact support is denoted by $C_c(X; E)$.

Let A be a nonempty subset of $C_0(X; \mathbb{K})$. We denote by $A \otimes E$ the subset of $C_0(X; E)$ consisting of all functions of the form

$$f(x) = \sum_{i=1}^{n} \phi_i(x)v_i, \quad x \in X,$$

where $\phi_i \in A$, $v_i \in E$, $i = 1, \ldots, n$, $n \in \mathbb{N}$.

A subset $W \subset C_0(X; E)$ is an interpolating family for $C_0(X; E)$ if given any nonempty finite subset $S \subset X$ and any $f \in C_0(X; E)$, there exists $g \in W$ such that $g(x) = f(x)$ for all $x \in S$.

A nonempty subset B of $C_0(X; E)$ is said to have the approximation-interpolation property on finite subsets (in short, the SAI property) if for every $f \in C_0(X; E)$, every $\varepsilon > 0$ and every nonempty finite subset S of X, there exists $g \in B$ such that $\| f - g \| < \varepsilon$ and $f(x) = g(x)$ for all $x \in S$.

Received June 1, 2010; Revised August 13, 2010.

2010 Mathematics Subject Classification. Primary 41A65; Secondary 41A05.

Key words and phrases. simultaneous approximation and interpolation, Walsh’s theorem.

©2011 The Korean Mathematical Society
The purpose of this paper is to present a result of simultaneous approximation and interpolation from certain subsets of $C_0(X; E)$. As a consequence, we obtain a generalization of a result by Prolla concerning simultaneous approximation and interpolation from vector subspaces of $C(X; E)$ when X is a compact Hausdorff space.

2. Main result

Walsh (Theorem 6.5.1 [2]) proved the following result.

Theorem 2.1. Let K be a compact set in the complex plane and let z_1, \ldots, z_n be any set of n points in K. If the function f is defined on K and can be uniformly approximated by polynomials there, then f can be uniformly approximated by polynomials p which also satisfy the auxiliary conditions $p(z_i) = f(z_i), i = 1, \ldots, n$.

Motivated by Walsh, we establish the result below.

Theorem 2.2. Let A be an interpolating family for $C_0(X; K)$ and B an uniformly dense subset of $C_0(X; E)$. If $(A \otimes E) + B \subset B$, then B has the SAI property.

Lemma 2.1. If X is a locally compact Hausdorff space and $\{x_1, \ldots, x_n\} \subset X$, then there exists $l_i \in C_c(X; \mathbb{R})$ such that $l_i(x_i) = 1$ and $l_i(x_j) = 0, j \neq i$.

Proof. Since X is Hausdorff and $\{x_1, \ldots, x_n\}$ is finite there exists an open neighborhood U_i of x_i such that $x_j \notin U_i$ for all $j \neq i$, $j \in \{1, \ldots, n\}$. By Urysohn’s Lemma [8] there exists $l_i \in C_c(X; \mathbb{R})$, $0 \leq l_i \leq 1$, such that $l_i(x_i) = 1$ and $l_i(x) = 0$ if $x \notin U_i$, in particular, $l_i(x_j) = 0, j \neq i$. □

Proof of Theorem 2.2. Let $S = \{x_1, \ldots, x_n\}$ be a subset of X. Let $f \in C_0(X; E)$ and $\varepsilon > 0$.

By Lemma 2.1, for each $x_i \in S$ there exists $l_i \in C_c(X; \mathbb{R})$ such that

\[
\begin{align*}
l_i(x_i) &= 1 \\
l_i(x_j) &= 0; \quad j \neq i, \ x_j \in S.
\end{align*}
\]

Since A is an interpolating family for $C_0(X; \mathbb{R})$, there exist $\phi_1, \ldots, \phi_n \in A$ such that

\[
\phi_i(x_j) = l_i(x_j); \quad 1 \leq i, j \leq n.
\]

Since B is uniformly dense in $C_0(X; E)$ there exists $g \in B$ such that $\|f - g\| < \eta$ where $\eta := \varepsilon/(1 + \sum_{i=1}^n \|\phi_i\|)$.

The function $h : X \rightarrow E$ defined by

\[
h(x) = \sum_{i=1}^n \phi_i(x)(f(x_i) - g(x_i))
\]

belongs to $A \otimes E$ and $h(x_j) = f(x_j) - g(x_j)$ for $j = 1, \ldots, n$.
Now the function \(p = h + g \) belongs to \(B \) and \(p(x_j) = f(x_j) \) for \(j = 1, \ldots, n \). Moreover,
\[
\|f - p\| \leq \|f - g\| + \|h\| < \eta + \eta \sum_{i=1}^{n} \|\phi_i\| = \varepsilon. \tag*{□}
\]

Example 2.1. The set of all continuous real-valued nowhere differentiable functions on \([a, b]\), denoted by \(ND[a, b] \), has the SAI property. Indeed, let \(P[a, b] \) be the set of all real polynomials on \([a, b]\). Note that
(a) \(P[a, b] \) is an interpolating subset of \(C([a, b]; \mathbb{R}) \) (take the Lagrange polynomials);
(b) \(ND[a, b] \) is uniformly dense in \(C([a, b]; \mathbb{R}) \);
(c) \((P[a, b] \otimes \mathbb{R}) + ND[a, b] = P[a, b] + ND[a, b] \subset ND[a, b] \).
Hence, it follows from Theorem 2.2 that \(ND[a, b] \) has the SAI property.

Lemma 2.2. Every uniformly dense vector subspace of \(C_0(X; \mathbb{K}) \) is an interpolating family for \(C_0(X; \mathbb{K}) \).

Proof. Let \(S = \{x_1, \ldots, x_n\} \) be a subset of \(X \) and \(G \) be an uniformly dense vector subspace of \(C_0(X; \mathbb{K}) \). Consider the following continuous linear mapping
\[
T : C_0(X; \mathbb{K}) \rightarrow \mathbb{R}^n
\]
\[
f \mapsto (f(x_1), \ldots, f(x_n)).
\]
Note that \(T(G) \) is closed because it is a vector subspace of \(\mathbb{R}^n \). Then by density of \(G \) and continuity of \(T \), it follows that
\[
T(C_0(X; \mathbb{K})) = T(G) \subset \overline{T(G)} = T(G). \tag*{□}
\]
Therefore, for any \(f \in C_0(X; \mathbb{K}) \), there exists \(g \in G \) such that \((f(x_1), \ldots, f(x_n)) = (g(x_1), \ldots, g(x_n)) \).

A subset \(M \) of \(C_0(X; \mathbb{K}) \) is dense-lineable or algebraically generic if \(M \cup \{0\} \) contains a vector space dense in \(C_0(X; \mathbb{K}) \). For more information, see [1].

Corollary 2.1. If \(M \) is a dense-lineable subset of \(C_0(X; \mathbb{K}) \), then \(M \cup \{0\} \) has the SAI property. In particular, all dense vector subspaces of \(C_0(X; \mathbb{K}) \) have the SAI property.

Proof. Since \(M \cup \{0\} \) contains a vector space \(A \) dense in \(C_0(X; \mathbb{K}) \), it follows from Lemma 2.2 that \(A \) is an interpolating family for \(C_0(X; \mathbb{K}) \). Moreover,
\[
(A \otimes \mathbb{K}) + A \subset A.
\]
Then, by Theorem 2.2, it follows that \(A \) has the SAI property. Since \(A \subset M \cup \{0\} \) we conclude that \(M \cup \{0\} \) has the SAI property. \(\square \)

The last corollary can also be proved by using Deutsch’s result [3].

In order to give a criterion to identify vector subspaces of \(C_0(X; E) \) which have the SAI property, we need the next two results.
Proposition 2.1. The vector subspace \(C_0(X; \mathbb{K}) \otimes E \) is uniformly dense in \(C_0(X; E) \).

Proof. It follows from Corollary 6.4 [5] that \(C_c(X; \mathbb{K}) \otimes E \) is uniformly dense in \(C_0(X; E) \). Since

\[C_c(X; \mathbb{K}) \otimes E \subset C_0(X; \mathbb{K}) \otimes E \subset C_0(X; E), \]

we conclude that \(C_0(X; \mathbb{K}) \otimes E \) is uniformly dense in \(C_0(X; E) \).

Lemma 2.3. If \(A \) is an uniformly dense subset of \(C_0(X; \mathbb{K}) \), then \(A \otimes E \) is uniformly dense in \(C_0(X; E) \).

Proof. By Proposition 2.1, \(C_0(X; \mathbb{K}) \otimes E \) is uniformly dense in \(C_0(X; E) \). Then given \(f \in C_0(X; E) \) and \(\varepsilon > 0 \), there exists \(g \in C_0(X; \mathbb{K}) \otimes E \), say \(g(x) = \sum_{j=1}^{n} \psi_j(x)v_j, \psi_j \in C_0(X; \mathbb{K}), v_j \in E, j = 1, \ldots, n \), such that \(\|f - g\| < \varepsilon/2 \).

Since \(A \) is uniformly dense in \(C_0(X; \mathbb{K}) \), there exists \(a_j \in A \) such that

\[\|\psi_j - a_j\| < \frac{\varepsilon}{2(\sum_{j=1}^{n} \|v_j\| + 1)}. \]

The function \(h := \sum_{j=1}^{n} a_j v_j \in A \otimes E \). Moreover,

\[
\|f - h\| \leq \|f - g\| + \|g - h\| < \frac{\varepsilon}{2} + \sum_{j=1}^{n} \|\psi_j - a_j\| \|v_j\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2(\sum_{j=1}^{n} \|v_j\| + 1)} \sum_{j=1}^{n} \|v_j\| < \varepsilon. \]

We obtain the following result.

Theorem 2.3. If \(A \) is an uniformly dense vector subspace of \(C_0(X; \mathbb{K}) \) and \(B \) is a vector subspace of \(C_0(X; E) \) such that \(A \otimes E \subset B \), then \(B \) has the SAI property.

Proof. It follows from Lemma 2.2, Lemma 2.3 and Theorem 2.2.

Corollary 2.2 (Prolla [7], Theorem 7). Let \(X \) be a compact Hausdorff space and \(B \subset C(X; E) \) a vector subspace such that \(A := \{ \phi \circ g : \phi \in E^*, g \in B \} \) is uniformly dense in \(C(X; \mathbb{K}) \) and \(A \otimes E \subset B \). Then \(B \) has the SAI property.

Example 2.2. Let \((X, d) \) be a compact metric space. A function \(f : X \mapsto E \) is called Lipschitzian if there is some constant \(K_f > 0 \) such that

\[\|f(x) - f(y)\| \leq K_f d(x, y) \]

for every \(x, y \in X \). We denote by \(Lip(X; E) \) the subset of \(C(X; E) \) of all such functions. By Theorem 9 [6], the vector subspace \(Lip(X; \mathbb{K}) \) is uniformly
dense in $C(X; \mathbb{K})$. For any $f_1, \ldots, f_n \in \text{Lip}(X; \mathbb{K})$, $v_1, \ldots, v_n \in E$, there exist constants $k_1, \ldots, k_n > 0$ such that
\[
\left\| \sum_{j=1}^{n} f_j(x)v_j - f_j(y)v_j \right\| \leq \sum_{j=1}^{n} |f_j(x) - f_j(y)||v_j| \leq \left(\sum_{j=1}^{n} k_j \|v_j\| \right) d(x, y)
\]
for every $x, y \in X$. Hence, $\text{Lip}(X; \mathbb{K}) \otimes E \subset \text{Lip}(X; E)$. Then, by Theorem 2.3, $\text{Lip}(X; E)$ has the SAI property.

Example 2.3. Since $C_c(X; \mathbb{K})$ is uniformly dense in $C_0(X; \mathbb{K})$ (see Nachbin [4], p. 64) and $C_c(X; \mathbb{K}) \otimes E \subset C_c(X; E)$, it follows from Theorem 2.3 that $C_c(X; E)$ has the SAI property.

Example 2.4. Let X_i be a locally compact Hausdorff space for $i = 1, \ldots, n$ and $X = X_1 \times \cdots \times X_n$.

Let A be the set of all finite sums of functions of the form
\[
x = (x_1, \ldots, x_n) \mapsto f(x) = g_1(x_1) \cdots g_n(x_n),
\]
where $g_j \in C_0(X_j; \mathbb{K})$ for $j = 1, \ldots, n$. By the weighted Dieudonné theorem ([4] Theorem 1 p. 68), A is an uniformly dense vector subspace of $C_0(X; \mathbb{K})$. From Theorem 2.3, $A \otimes E$ has the SAI property.

Acknowledgement. We thank the referee for comments and suggestions which greatly improved the presentation of the paper.

References

