VALUE SHARING RESULTS OF A MEROMORPHIC FUNCTION \(f(z) \) AND \(f(qz) \)

XIAOGUANG QI, KAI LIU, AND LIANZHONG YANG

Abstract. In this paper, we investigate sharing value problems related to a meromorphic function \(f(z) \) and \(f(qz) \), where \(q \) is a non-zero constant. It is shown, for instance, that if \(f(z) \) is zero-order and shares two values CM and one value IM with \(f(qz) \), then \(f(z) = f(qz) \).

1. Introduction

In what follows, a meromorphic function will mean meromorphic in the whole complex plane. We say that two meromorphic functions \(f \) and \(g \) share a value \(a \) \(\in \mathbb{C} \cup \{\infty\} \) IM (ignoring multiplicities) when \(f - a \) and \(g - a \) have the same zeros. If \(f - a \) and \(g - a \) have the same zeros with the same multiplicities, then we say that \(f \) and \(g \) share the value \(a \) CM (counting multiplicities). We assume that the reader is familiar with the standard symbols and fundamental results of Nevanlinna theory, as found in [5, 10].

As usual, by \(S(r, f) \) we denote any quantity satisfying \(S(r, f) = o(T(r, f)) \) for all \(r \) outside of a possible exceptional set of finite linear measure. In addition, denote by \(S(f) \) the family of all meromorphic functions \(a(z) \) that satisfy \(T(r, a) = o(T(r, f)) \), for \(r \to \infty \) outside a possible exceptional set of finite logarithmic measure. In particular, we denote by \(S_1(r, f) \) any quality satisfying \(S_1(r, f) = o(T(r, f)) \) for all \(r \) on a set of logarithmic density 1.

The classical results due to Nevanlinna [9] in the uniqueness theory of meromorphic functions are the five-point, resp. four-point, theorems:

Theorem A. If two meromorphic functions \(f \) and \(g \) share five distinct values \(a_1, a_2, a_3, a_4, a_5 \in \mathbb{C} \cup \{\infty\} \) IM, then \(f \equiv g \).

Theorem B. If two meromorphic functions \(f \) and \(g \) share four distinct values \(a_1, a_2, a_3, a_4 \in \mathbb{C} \cup \{\infty\} \) CM, then \(f \equiv g \) or \(f \equiv T \circ g \), where \(T \) is a Möbius transformation.

Received July 13, 2010; Revised October 5, 2010.
2010 Mathematics Subject Classification. 30D35, 39A05.
Key words and phrases. meromorphic functions, uniqueness, \(q \)-difference, sharing value.

This work was supported by the NNSF of China (No. 10671109) and the NSF of Shandong Province, China (No.ZR2010AM030).
It is well-known that 4 CM can not be improved to 4 IM, see [3]. Further, Gundersen [4, Theorem 1] has improved the assumption 4 CM to 2 CM+2 IM, while 1 CM+3 IM is still an open problem.

In recent papers [6], Heittokangas et al. started to consider the uniqueness of a finite order meromorphic function sharing values with its shift. They concluded that:

Theorem C. Let f be a meromorphic function of finite order, let $c \in \mathbb{C}$, and let $a_1, a_2, a_3 \in S(f) \cup \{\infty\}$ be three distinct periodic functions with period c. If $f(z)$ and $f(z+c)$ share a_1, a_2 CM and a_3 IM, then $f(z) = f(z+c)$ for all $z \in \mathbb{C}$.

Closely related to difference expressions are q-difference expressions, where the usual shift $f(z+c)$ of a meromorphic function will be replaced by the q-shift $f(qz)$, $q \in \mathbb{C} \setminus \{0\}$. The Nevanlinna theory of q-difference expressions and its applications to q-difference equations have recently been considered, see [1, 7]. In addition, some results about solutions of zero-order for complex q-difference equations, can be found in the introduction in [1].

A natural question is: what is the uniqueness result in the case when $f(z)$ shares values with $f(qz)$ for a zero-order meromorphic function $f(z)$. Corresponding to this question, we get the following result:

Theorem 1.1. Let f be a zero-order meromorphic function, and $q \in \mathbb{C} \setminus \{0\}$, and let $a_1, a_2, a_3 \in \mathbb{C} \cup \{\infty\}$ be two distinct values. If $f(z)$ and $f(qz)$ share a_1 and a_2 IM, then $f(z) = f(qz)$.

Remark 1. Indeed, from the proof of Theorem 1.1, we know the assumption that share a_3 IM can be replaced by one of the following assumptions:

1. if there exists a point z_0 such that $f(z_0) = f(qz_0) = a_3$; or
2. if a_3 is a Picard exceptional value of f.

However, we give Theorem 1.1 just as a q-difference analogue of Theorem C.

If f is an entire function in Theorem 1.1, then the conclusion will be improved.

Theorem 1.2. Let f be a zero-order entire function, $q \in \mathbb{C} \setminus \{0\}$, and let $a_1, a_2 \in \mathbb{C}$ be two distinct values. If $f(z)$ and $f(qz)$ share a_1 and a_2 IM, then $f(z) = f(qz)$.

Remark 2. As a corollary of Theorem 1.1, we just know that $f(z) = f(qz)$ provided that $f(z)$ and $f(qz)$ share values under the condition that “1 CM + 1 IM”.

In the following, we consider the value sharing problems relative to $F(z) = f^n$ and $F(qz)$, and we obtain the following results:
Theorem 1.3. Let f be a zero-order meromorphic function, and $q \in \mathbb{C} \setminus \{0\}$, $n \geq 4$ be an integer, and let $F = f^n$. If $F(z)$ and $F(qz)$ share $a \in \mathbb{C} \setminus \{0\}$ and ∞ CM, then $f(z) = tf(qz)$ for a constant t that satisfies $t^n = 1$.

Remark 3. Theorem 1.3 is not true, if $a = 0$. This can be seen by considering $f(z) = z$ and $f(\frac{1}{2}z) = \frac{1}{2}z$. Then $f(z)^n$ and $f(\frac{1}{2}z)^n$ share 0 and ∞ CM, however, $f(z) = 2f(\frac{1}{2}z)$, $2^n \neq 1$, where n is a positive integer.

Corollary 1.4. Let f be a zero-order entire function, and $q \in \mathbb{C} \setminus \{0\}$, $n \geq 3$ be an integer, and let $F = f^n$. If $F(z)$ and $F(qz)$ share 1 CM, then $f(z) = tf(qz)$ for a constant t that satisfies $t^n = 1$.

Corollary 1.5. Let f be a zero-order meromorphic function, and $q \in \mathbb{C} \setminus \{0\}$, $n \geq 4$ be an integer, and let $F = f^n$. If $F(z)$ and $F(qz)$ share 0 and 1 CM, then $f(z) = tf(qz)$ for a constant t that satisfies $t^n = 1$.

Remark 4. By simply calculations, we get $|q| = 1$ in above results. And some ideas of this paper are from [8].

2. Some lemmas

Lemma 2.1 ([1, Theorem 1.1]). Let f be a zero-order meromorphic function, and $q \in \mathbb{C} \setminus \{0\}$. Then

$$m \left(r, \frac{f(qz)}{f(z)} \right) = S_1(r, f).$$

Lemma 2.2 ([1, Theorem 2.1]). Let f be a zero-order meromorphic function, let $q \in \mathbb{C} \setminus \{0, 1\}$, and let $a_1, \ldots, a_p \in \mathbb{C}$, $p \geq 2$, be distinct points. Then

$$m(r, f) + \sum_{k=1}^{p} m \left(r, \frac{1}{f - a_k} \right) \leq 2T(r, f) - N_{\text{pair}}(r, f) + S_1(r, f),$$

where

$$N_{\text{pair}}(r, f) = 2N(r, f) - N(r, \Delta_q f) + N \left(r, \frac{1}{\Delta_q f} \right)$$

and $\Delta_q f = f(qz) - f(z)$.

Lemma 2.3 ([11, Theorem 1.1 and Theorem 1.3]). Let f be a zero-order meromorphic function, and $q \in \mathbb{C} \setminus \{0\}$. Then

(2.1) $$T(r, f(qz)) = (1 + o(1))T(r, f(z))$$

and

(2.2) $$N(r, f(qz)) = (1 + o(1))N(r, f(z))$$

on a set of lower logarithmic density 1.

Remark. From Remark 1 after Theorem 1.1 in [11], we know that $f(z)$ and $f(qz)$ are simultaneously of order zero.
Lemma 2.4 ([10, Theorem 2.17]). Let \(f \) and \(g \) be meromorphic functions, and the order of \(f \) and \(g \) is less than 1. If \(f \) and \(g \) share 0 and \(\infty \) CM, then \(f \equiv kg \), where \(k \) is a non-zero constant.

3. Proof of Theorem 1.1

If \(q = 1 \), then the conclusion holds. Now we consider the case that \(q \neq 1 \). Suppose first that \(a_1, a_2, a_3 \in \mathbb{C} \). Denote

\[
g(z) = \frac{f(z) - a_1 a_3 - a_2}{f(z) - a_2 a_3 - a_1},
\]

then

\[
g(qz) = \frac{f(qz) - a_1 a_3 - a_2}{f(qz) - a_2 a_3 - a_1}.
\]

From the assumption of Theorem 1.1, we know \(g(z) \) and \(g(qz) \) share 0, \(\infty \) CM.

Suppose first that 1 is not a Picard exceptional value of \(g(z) \) and \(g(qz) \). Assume that \(g(z) \neq g(qz) \), and from Lemma 2.2, we obtain

\[
m(r, g) + m \left(r, \frac{1}{g} \right) + m \left(r, \frac{1}{g - 1} \right) \\
\leq 2T(r, g) - 2N(r, g) + N(r, \Delta g) - N \left(r, \frac{1}{\Delta g} \right) + S_1(r, g),
\]

and so

\[
T(r, g) \leq N(r, g) + N \left(r, \frac{1}{g} \right) + N \left(r, \frac{1}{g - 1} \right) + N(r, g(qz)) \\
+ N(r, g) - 2N(r, g) - N \left(r, \frac{1}{\Delta g} \right) + S_1(r, g).
\]

Since 1 is a Picard exceptional value of \(g(z) \), by combining (2.2) and (3.1), it follows that

\[
T(r, g) \leq N(r, g) + N \left(r, \frac{1}{g} \right) - N \left(r, \frac{1}{\Delta g} \right) + S_1(r, g).
\]

Since \(g(z) \) and \(g(qz) \) share 0, \(\infty \) CM, we get

\[
N(r, g) + N \left(r, \frac{1}{g} \right) \leq N \left(r, \frac{1}{\Delta g} \right).
\]

From (3.2) and (3.3), we conclude that

\[
T(r, g) = S_1(r, g),
\]

which is impossible. Hence, we conclude that \(f(z) = f(qz) \).
It remains to consider the case that one of $a_j (j = 1, 2, 3)$ is infinite. Without loss of generality, we suppose that $a_1 = \infty$, while $a_2, a_3 \in \mathbb{C}$. Take $d \in \mathbb{C} \setminus \{a_2, a_3\}$ and denote $h(z) = \frac{1}{f(z) - d}$, $b_2 = \frac{1}{a_2 - d}$ and $b_3 = \frac{1}{a_3 - d}$. Then $b_2, b_3 \in \mathbb{C} \setminus \{0\}$ are two distinct values. Hence $h(z)$ and $h(qz)$ share 0, b_2 CM and b_3 IM. By the above argument, we get $h(z) = h(qz)$, and therefore $f(z) = f(qz)$.

4. Proof of Theorem 1.2

From the fact that a non-constant meromorphic function of zero-order can have at most one Picard exceptional value (see, e.g., [2, p. 114]), we obtain that $N(r, \frac{1}{f(z) - a_1}) \neq 0$ and $N(r, \frac{1}{f(z) - a_2}) \neq 0$. Let

$$F(z) = \frac{f(z) - a_1}{a_2 - a_1} \quad \text{and} \quad F(qz) = \frac{f(qz) - a_1}{a_2 - a_1}$$

Then $F(z)$ and $F(qz)$ share 0 and 1 IM. Clearly, neither 0 nor 1 is a Picard exceptional value of $F(z)$. From Lemma 2.3, we obtain that

$$T(r, F(qz)) = T(r, F(z)) + S_1(r, F).$$

Denote

$$V(z) = \frac{F'(z)(F(qz) - F(z))}{F(z)(F(z) - 1)}.$$

Lemma 2.1 and the lemma on logarithmic derivative yield that $m(r, V) = S_1(r, F)$. From (4.3), we know the poles of $V(z)$ are at the zeros and 1-points of $F(z)$. Since $F(z)$ and $F(z + c)$ share 0 and 1, we get $N(r, V) = S(r, F)$. Therefore, $T(r, V) = S_1(r, F)$.

Case 1. If $V \neq 0$, then $F(z) \neq F(qz)$. From (4.3) and Lemma 2.1, we have

$$N \left(r, \frac{1}{F(z)} \right) + N \left(r, \frac{1}{F(z) - 1} \right)$$

$$= N \left(r, \frac{F'(z)}{F(z)(F(z) - 1)} \right) + S(r, F)$$

$$= N \left(r, \frac{V}{F(qz) - F(z)} \right) + S(r, F)$$

$$\leq T(r, F(qz) - F(z)) + S_1(r, F) = m(r, F(qz) - F(z)) + S_1(r, F)$$

$$\leq m \left(r, \frac{F(qz) - F(z)}{F(z)} \right) + m(r, F(z)) + S_1(r, F)$$

$$\leq T(r, F) + S_1(r, F).$$

According to second main theorem and above inequality, we get

$$T(r, F) = N \left(r, \frac{1}{F} \right) + N \left(r, \frac{1}{F - 1} \right) + S_1(r, F).$$
Now we define
\begin{equation}
U(z) = \frac{F'(qz)(F(qz) - F(z))}{F(qz)(F(qz) - 1)}.
\end{equation}
Using the same argument as above, we know that \(T(r, U) = S_1(r, F(qz)) = S_1(r, F(z)) \).

In what follows, we denote \(S_{f\sim g(m,n)}(a) \) for the set of those points \(z \in \mathbb{C} \) such that \(z \) is an \(a \)-point of \(f \) with multiplicity \(m \) and an \(a \)-point of \(g \) with multiplicity \(n \). Let \(N_{(m,n)}(r, \frac{1}{F(qz)}) \) and \(N_{(m,n)}(r, \frac{1}{F(z)}) \) denote the counting function and reduced counting function of \(f \) with respect to the set \(S_{f\sim g(m,n)}(a) \), respectively.

For any point \(z_0 \in S_{F(z)\sim F(qz)(m,n)}(0) \), we have \(mn \neq 0 \), since 0 is not a Picard exceptional value of \(F(z) \) as we discuss above. From (4.3), (4.5) and the Taylor expansion of \(F(z) \) and \(F(qz) \) at \(z_0 \), by calculating carefully, we get
\begin{equation}
-V(z_0) = m \left(\frac{F'(qz_0) - F'(z_0)}{n} \right),
\end{equation}
and
\begin{equation}
-U(z_0) = n \left(\frac{F'(qz_0) - F'(z_0)}{m} \right).
\end{equation}
From (4.6) and (4.7), we know \(nV(z_0) = mU(z_0) \).

If \(nV = mU \), then we deduce that
\begin{equation}
n \left(\frac{F'(z)}{F(z) - 1} - \frac{F'(z)}{F(z)} \right) = m \left(\frac{F'(qz)}{F(qz) - 1} - \frac{F'(qz)}{F(qz)} \right),
\end{equation}
which implies that
\begin{equation}
\left(\frac{F - 1}{F} \right)^n = b \left(\frac{F(qz) - 1}{F(qz)} \right)^m,
\end{equation}
where \(b \) is a non-zero constant. If \(m \neq n \), then we get from above equality and (4.2) that
\begin{equation}
n T(r, F(z)) = m T(r, F(qz)) + S_1(r, F) = m T(r, F(z)) + S_1(r, F),
\end{equation}
which is a contradiction. If \(m = n \), then we get
\begin{equation}
\left(\frac{F'(z)}{F(z) - 1} - \frac{F'(z)}{F(z)} \right) = \left(\frac{F'(qz)}{F(qz) - 1} - \frac{F'(qz)}{F(qz)} \right).
\end{equation}
Hence
\begin{equation}
\frac{F(z) - 1}{F(z)} = d \frac{F(qz) - 1}{F(qz)},
\end{equation}
where \(d \) is a non-zero constant. If \(d = 1 \), then we obtain \(F(z) = F(qz) \), which contradicts the assumption of Case 1. It remains to consider the case that
It follows from (4.8) that
\[\frac{d - 1}{d} \frac{F(z)}{F(z)} + \frac{1}{d} = \frac{1}{F(qz)}. \]
Since \(N(r, F(z)) = N(r, F(qz)) = 0 \), we get \(N(r, \frac{1}{F(z)} - \frac{1}{F(qz)}) = 0 \). Clearly,
\(\frac{1}{F(z)} \neq 0 \) and \(\frac{1}{F(qz)} \neq 1 \), then apply the second main theorem, resulting in
\[2T(r, F) \leq \mathcal{N} \left(r, \frac{1}{F} \right) + \mathcal{N} \left(r, \frac{1}{F - 1} \right) + S(r, F), \]
which contradicts (4.4).

Hence \(nV \neq mU \). By the above argument, we know any point \(z_0 \in S_{F(z)} \sim F(qz)(m,n)(0) \) satisfies that \(nV(z_0) = mU(z_0) \). Therefore,
\[\mathcal{N}_{(m,n)} \left(r, \frac{1}{F} \right) \leq N \left(r, \frac{1}{nU - mV} \right) = S_1(r, F). \]
Using the same reason, we get
\[\mathcal{N}_{(m,n)} \left(r, \frac{1}{F - 1} \right) \leq N \left(r, \frac{1}{nU - mV} \right) = S_1(r, F). \]
It follows that
\[(4.9) \quad \mathcal{N}_{(m,n)} \left(r, \frac{1}{F} \right) + \mathcal{N}_{(m,n)} \left(r, \frac{1}{F - 1} \right) = S_1(r, F). \]
From Lemma 2.3, (4.4) and (4.9), we obtain that
\[T(r, F) = \mathcal{N} \left(r, \frac{1}{F} \right) + \mathcal{N} \left(r, \frac{1}{F - 1} \right) + S_1(r, F) \]
\[= \sum_{m,n \geq 5} (\mathcal{N}_{(m,n)}(r, \frac{1}{F}) + \mathcal{N}_{(m,n)}(r, \frac{1}{F - 1})) + S_1(r, F) \]
\[= \sum_{m+n \geq 5} (\mathcal{N}_{(m,n)}(r, \frac{1}{F}) + \mathcal{N}_{(m,n)}(r, \frac{1}{F - 1})) + S_1(r, F) \]
\[\leq \frac{1}{5} \sum_{m+n \geq 5} (N_{(m,n)}(r, \frac{1}{F}) + N_{(m,n)}(r, \frac{1}{F - 1})) \]
\[+ N_{(m,n)}(r, \frac{1}{F(qz)}) + N_{(m,n)}(r, \frac{1}{F(qz) - 1})) + S_1(r, F) \]
\[\leq \frac{2}{5} T(r, F) + \frac{2}{5} T(r, F(qz)) + S_1(r, F) \]
\[= \frac{4}{5} T(r, F) + S_1(r, F), \]
which is a contradiction.

Case 2. If \(V = 0 \), then \(F(z) = F(qz) \). Clearly, \(f(z) = f(qz) \). This completes the proof of Theorem 1.2.
5. Proof of Theorem 1.3

Let $G(z) = \frac{f(z)}{z}$, then we know $G(z)$ and $G(qz)$ share 1 and ∞ CM, and since the order of f is zero, it follows that

$$\frac{G(qz) - 1}{G(z) - 1} = \tau,$$

where τ is a non-zero constant. Rewriting the above equation, gives

$$G(z) + \frac{1}{\tau} - 1 = \frac{G(qz)}{\tau}. \quad (5.1)$$

Assume that $\tau \neq 1$. Noting (2.2) and (5.1), the second main theorem yields

$$nT(r, f(z)) = T(r, G(z)) \leq N(r, G(z)) + N \left(r, \frac{1}{G(z)} \right)$$

$$+ N \left(r, \frac{1}{G(z) - 1 + \frac{1}{\tau}} \right) + S(r, f)$$

$$\leq N(r, f(z)) + N \left(r, \frac{1}{f(z)} \right) + N \left(r, \frac{1}{f(qz)} \right) + S(r, f)$$

$$\leq N(r, f(z)) + 2N \left(r, \frac{1}{f(z)} \right) + S_1(r, f)$$

$$\leq 3T(r, f(z)) + S_1(r, f), \quad (5.2)$$

which contradicts the assumption that $n \geq 4$. Hence, we get $\tau = 1$, which implies that $G(z) = G(qz)$, that is, $f^n(z) = f^n(qz)$. So we have $f(z) = tf(qz)$ for a constant t with $t^n = 1$.

References

XIAOGUANG Qi
School of Mathematics
University of Jinan
Jinan, Shandong, 250022, P. R. China
E-mail address: xiaogqi@gmail.com, xiaogqi@mail.sdu.edu.cn

KAI LII
Department of Mathematics
Nanchang University
Nanchang, Jiangxi, 330031, P. R. China
E-mail address: liukai418@126.com

LIANZHONG YANG
School of Mathematics
Shandong University
Jinan, Shandong, 250100, P. R. China
E-mail address: lyang@sdu.edu.cn