AMALGAMATED DUPLICATION OF SOME SPECIAL RINGS

Elham Tavasoli, Maryam Salimi, and Abolfazl Tehranian

Abstract. Let R be a commutative Noetherian ring and let I be an ideal of R. In this paper we study the amalgamated duplication ring $R \triangleright ◁ I$ which is introduced by D’Anna and Fontana. It is shown that if R is generically Cohen-Macaulay (resp. generically Gorenstein) and I is generically maximal Cohen-Macaulay (resp. generically canonical module), then $R \triangleright I$ is generically Cohen-Macaulay (resp. generically Gorenstein). We also defined generically quasi-Gorenstein ring and we investigate when $R \triangleright ◁ I$ is generically quasi-Gorenstein. In addition, it is shown that $R \triangleright ◁ I$ is approximately Cohen-Macaulay if and only if R is approximately Cohen-Macaulay, provided some special conditions. Finally it is shown that if R is approximately Gorenstein, then $R \triangleright ◁ I$ is approximately Gorenstein.

1. Introduction

Throughout this paper all rings are considered commutative with identity element and all ring homomorphisms are unital. In [8], D’Anna and Fontana considered a different type of construction obtained involving a ring R and an ideal $I \subset R$ that is denoted by $R \triangleright I$, called amalgamated duplication, and it is defined as the following subring of $R \times R$:

$$R \triangleright I = \{(r, r + i) \mid r \in R, i \in I\}.$$

In [6] D’Anna showed that if R is a Noetherian local ring, then $R \triangleright I$ is Cohen-Macaulay if and only if R is Cohen-Macaulay and I is maximal Cohen-Macaulay. In [1] it is shown that if R is a Noetherian local ring, then $R \triangleright I$ is Gorenstein if and only if R is Cohen-Macaulay and I is a canonical module for R, and then R/I is Cohen-Macaulay of dimension $\dim (R) - 1$. In this paper it is shown that if $R \triangleright I$ is a Gorenstein ring where I is a non-zero flat ideal of Noetherian zero dimensional ring R, then R is Gorenstein (see Proposition 2.2). Recently, the authors in [4] showed that if R is a Noetherian local ring and I is a proper ideal of R such that $\text{Ann}_R(I) = 0$, then $R \triangleright I$ is a quasi-Gorenstein...
ring if and only if \hat{R} satisfies Serre’s condition (S_2) and I is a canonical ideal of R.

Recall that a Noetherian ring R is called generically Cohen-Macaulay (resp. generically Gorenstein) if the ring R_p is Cohen-Macaulay (resp. Gorenstein) for all $p \in \text{Ass}(R)$. Every Cohen-Macaulay (resp. Gorenstein) ring is also generically Cohen-Macaulay (resp. generically Gorenstein) and every Artinian generically Cohen-Macaulay (resp. generically Gorenstein) ring is Cohen-Macaulay (resp. Gorenstein). In Section 2 we define a generically quasi-Gorenstein ring and we investigate when $R \bowtie I$ is a generically Cohen-Macaulay (resp. generically Gorenstein, generically quasi-Gorenstein) ring (see Theorem 2.8 and Proposition 2.9).

In [9] Goto defined approximately Cohen-Macaulay ring and in [13] the authors examined how this property transfers under flat maps and tensor product operations. In [10] Hochster defined approximately Gorenstein ring. In Section 3 we provide necessary and sufficient conditions which led $R \bowtie I$ be an approximately Cohen-Macaulay (resp. approximately Gorenstein) ring (see Proposition 3.2 and Theorem 3.4).

2. Generically Cohen-Macaulay, generically Gorenstein and generically quasi-Gorenstein rings

As general reference for terminology and well-known results, we refer the reader to [5]. This section deals with some general results about generically Cohen-Macaulay, generically Gorenstein and generically quasi-Gorenstein properties of a general construction, introduced in [8], called amalgamated duplication of a ring along an ideal.

Let R be a commutative ring with unit element 1 and let I be a proper ideal of R. Set

$$R \bowtie I = \{(r,s) \mid r, s \in R, s - r \in I\}.$$

It is easy to check that $R \bowtie I$ is a subring, with unit element $(1,1)$, of $R \times R$ (with the usual componentwise operations) and that $R \bowtie I = \{(r,r + i) \mid r \in R, i \in I\}$. In the following we bring some main properties of the ring $R \bowtie I$ from [6].

Proposition 2.1. Let R be a ring and let I be an ideal of R. Then the following statements hold.

1. The map $f : R \oplus I \to R \bowtie I$ defined by $f((r,i)) = (r,r + i)$ is an R-isomorphism. Moreover, there is a split exact sequence of R-modules

 $$(a)\quad 0 \to R \xrightarrow{\varphi} R \bowtie I \xrightarrow{\psi} I \to 0,$$

 where $\varphi(r) = (r,r)$ for all $r \in R$, and $\psi((r,s)) = s - r$ for all $(r,s) \in R \bowtie I$. We also have the short exact sequence of R-modules:

 $$(b)\quad 0 \to I \xrightarrow{\psi'} R \bowtie I \xrightarrow{\varphi'} R \to 0,$$
where \(
abla'(i) = (0, i) \) and \(\varphi'(r, s) = r \) for every \(r \in R \) and \((r, s) \in R \cong I \). Note that the exact sequence (b) is also a sequence of \(R \cong I \)-module, while the other one is not.

(2) Let \(p \) be a prime ideal of \(R \) and set:

\[
\begin{align*}
p_0 &= \{(p, p + i) \mid p \in p, i \in I \cap p\}, \\
p_1 &= \{(p, p + i) \mid p \in p, i \in I\}, \text{ and} \\
p_2 &= \{(p + i, p) \mid p \in p, i \in I\}.
\end{align*}
\]

(a) If \(I \subseteq p \), then \(p_0 = p_1 = p_2 \) is a prime ideal of \(R \cong I \) and it is the unique prime ideal of \(R \cong I \) lying over \(p \) and \((R \cong I)_{p_0} \cong R_0 \cong I_p \).

(b) If \(I \nsubseteq p \), then \(p_1 \neq p_2 \) and \(p_1 \cap p_2 = p_0 \). Moreover, \(p_1 \) and \(p_2 \) are the only prime ideals of \(R \cong I \) lying over \(p \), and \((R \cong I)_{p_1} \cong R_p \cong (R \cong I)_{p_2} \).

(3) \(R \) and \(R \cong I \) have the same Krull dimension and if \(R \) is a local ring with maximal ideal \(m \), then \(R \cong I \) is local with maximal ideal \(m_0 = \{(r, r + i) \mid r \in m, i \in I\} \). Also, if \(R \) is a Noetherian ring, then \(R \cong I \) is a finitely generated \(R \)-module.

In [6, Discussion 10], D’Anna showed that if \(R \) is a local ring of dimension \(d \) and \(I \) is a non-unit ideal of \(R \), then the ring \(R \cong I \) is Cohen-Macaulay if and only if \(R \) is Cohen-Macaulay and \(I \) is a maximal Cohen-Macaulay \(R \)-module. Recently in [1, Theorem 1.8], it is shown that if \(R \) is a Noetherian local ring, then \(R \cong I \) is Gorenstein if and only if \(R \) is Cohen-Macaulay and \(I \) is a canonical module for \(R \), and then \(R/I \) is Cohen-Macaulay of dimension \(\dim (R) - 1 \). In the following proposition we suppose that \(R \cong I \) is Gorenstein and we would like to know when \(R \) is Gorenstein.

Proposition 2.2. Let \(I \) be a non-zero flat ideal of Noetherian zero dimensional ring \(R \). If \(R \cong I \) is a Gorenstein ring, then \(R \) is Gorenstein.

Proof. By Proposition 2.1(3), \(\dim (R \cong I) = \dim (R) = 0 \) and so \(R \cong I \) is self-injective. Hence by [14, Corollary 3.4], \(\id_R(R \cong I) = \id_R(R \cong I) \). Now by assumption \(I \) is a flat ideal of \(R \), so \(R \cong I \) is a flat \(R \)-module. Therefore \(R \cong I \) is an injective \(R \)-module and hence for every \(R \)-module \(M \) and every integer \(i \geq 1 \), we have

\[
0 = \Ext^i_R(M, R \cong I) \cong \Ext^i_R(M, R) \oplus \Ext^i_R(M, I).
\]

So for every \(R \)-module \(M \) and for all \(i \geq 1 \), we have \(\Ext^i_R(M, R) = 0 \). Hence \(R \) is self-injective and therefore \(R \) is Gorenstein, since \(\dim (R) = 0 \).

We recall the notion of quasi-Gorenstein ring due to Platte and Storch in [12].
Definition 2.3. A local ring R is said to be a quasi-Gorenstein ring if a canonical module of R exists and is a free R-module (of rank one). This is equivalent to saying that $\tilde{H}_m^d(R) \cong E_R(R/m)$, where $d = \dim R$ and m is the maximal ideal of R.

The ring R is Gorenstein if and only if it is quasi-Gorenstein and Cohen-Macaulay. In [4, Theorem 3.3], it is shown that if R is a Noetherian local ring and I is a proper ideal of R such that $\text{Ann}_R(I) = 0$, then $R \triangleright I$ is a quasi-Gorenstein ring if and only if \hat{R} satisfies Serre’s condition (S_2) and I is a canonical ideal of R.

Recall that a Noetherian ring R is called generically Cohen-Macaulay (resp. generically Gorenstein) if the ring R_p is Cohen-Macaulay (resp. Gorenstein) for all $p \in \text{Ass } (R)$. Every Cohen-Macaulay (resp. Gorenstein) ring is also generically Cohen-Macaulay (resp. generically Gorenstein) and every Artinian generically Cohen-Macaulay (resp. generically Gorenstein) ring is Cohen-Macaulay (resp. Gorenstein). We are ready now to introduce generically quasi-Gorenstein ring.

Definition 2.4. Let R be a Noetherian local ring. Then R is called generically quasi-Gorenstein if the ring R_p is quasi-Gorenstein for all $p \in \text{Ass } (R)$.

According to [2, Corollary 2.4], the localization of every quasi-Gorenstein ring is quasi-Gorenstein. Therefore every quasi-Gorenstein ring is generically quasi-Gorenstein. It is straightforward to see that if R is a zero dimensional local ring, then R is quasi-Gorenstein if and only if R is generically quasi-Gorenstein. It is routine to show that a Noetherian local ring R is generically Gorenstein if and only if R is generically quasi-Gorenstein and generically Cohen-Macaulay.

We are interested in understanding when $R \triangleright I$ is generically Cohen-Macaulay (resp. generically Gorenstein, generically quasi-Gorenstein). In the following lemma we investigate the associated prime ideals of the ring $R \triangleright I$.

Lemma 2.5. Let R be a Noetherian ring and let I be a proper ideal of R. Consider the ring homomorphism $\varphi : R \to R \triangleright I$, where $\varphi(r) = (r, r)$. Then the following statements hold.

(i) If $p \in \text{Ass } (R \triangleright I)$, then $\varphi^{-1}(p) \in \text{Ass } (R)$.

(ii) If $q \in \text{Ass } (R)$, then there exists $p \in \text{Ass } (R \triangleright I)$ such that $\varphi^{-1}(p) = q$.

Proof. (i) The exact sequence $0 \to I \to R \to R \triangleright I \to 0$ of $R \triangleright I$-modules implies that

$$\text{Ass } (R \triangleright I) \subseteq \text{Ass }_{R \triangleright I}(I) \cup \text{Ass }_{R \triangleright I}(R) = \text{Ass }_{R \triangleright I}(R).$$

So by assumption $p \in \text{Ass }_{R \triangleright I}(R)$. By [11, Exercise 6.7] we have $\varphi^{-1}(p) \in \text{Ass } (R)$, since R is a finitely generated $R \triangleright I$-module.
(ii) From the R-monomorphism $\varphi : R \to R \bowtie I$, we have $\text{Ass}_R(R) \subseteq \text{Ass}_R(R \bowtie I)$. So by assumption $q \in \text{Ass}_R(R \bowtie I)$ and by [11, Exercise 6.7] there exists $p \in \text{Ass}_R(R \bowtie I)$ such that $\varphi^{-1}(p) = q$. □

Definition 2.6. A finitely generated R-module M is called generically maximal Cohen-Macaulay (resp. generically canonical module) if the R_p-module M_p is maximal Cohen-Macaulay (resp. canonical module) for all $p \in \text{Ass}(R)$.

Definition 2.7. The ring R is called generically (S_n) if R satisfies Serre’s condition (S_n) for all $p \in \text{Ass}(R)$.

Theorem 2.8. Let R be a Noetherian ring and let I be a proper ideal of R. Then the following statements hold.

(i) If $R \bowtie I$ is generically Cohen-Macaulay, then R is generically Cohen-Macaulay.

(ii) If R is generically Cohen-Macaulay (resp. generically Gorenstein) and I is generically maximal Cohen-Macaulay (resp. generically canonical module), then $R \bowtie I$ is generically Cohen-Macaulay (resp. generically Gorenstein).

(iii) If R is generically quasi-Gorenstein and I is a generically canonical ideal of R, then $R \bowtie I$ is generically quasi-Gorenstein.

(iv) If $\text{Ann}_R(I) = 0$, then R is generically (S_2) provided that $R \bowtie I$ is generically quasi-Gorenstein.

Proof. We prove items (iii) and (iv). The proof of the others is similar.

(iii) Let $p \in \text{Ass}(R \bowtie I)$. By Lemma 2.5, $q = \varphi^{-1}(p) \in \text{Ass}(R)$. According to Proposition 2.1(2), we have the following two cases:

Case (1). If $I \subseteq q$, then $(R \bowtie I)_p = R_q \bowtie I_q$. By assumption I_q is a canonical ideal and R_q is quasi-Gorenstein. Therefore R_q satisfies Serre’s condition (S_2) by [3, Remark 1.4]. Hence R_q satisfies Serre’s condition (S_2) by [3, Proposition 1.2]. Now according to [4, Theorem 3.3], $(R \bowtie I)_p$ is quasi-Gorenstein.

Case (2). If $I \nsubseteq q$, then $(R \bowtie I)_p = R_q$. So $(R \bowtie I)_p$ is quasi-Gorenstein.

(iv) Let $q \in \text{Ass}(R)$. By Lemma 2.5, there exists $p \in \text{Ass}(R \bowtie I)$ such that $\varphi^{-1}(p) = q$ and, by Proposition 2.1(2), we have the following two cases:

Case (1). If $I \subseteq q$, then $(R \bowtie I)_p = R_q \bowtie I_q$. So by assumption $R_q \bowtie I_q$ is quasi-Gorenstein. Therefore by [4, Theorem 3.3], R_q satisfies Serre’s condition (S_2) and so R_q satisfies Serre’s condition (S_2) by [3, Proposition 1.2].

Case (2). If $I \nsubseteq q$, then $(R \bowtie I)_p = R_q$. So R_q satisfies Serre’s condition (S_2), by [3, Remark 1.4]. □

Proposition 2.9. Let R be a Cohen-Macaulay ring and let I be a non-zero ideal of R such that I_q is a flat R_q-module for all $q \in \text{Ass}(R)$. If $R \bowtie I$ is generically Gorenstein, then R is generically Gorenstein.

Proof. Note that $\dim(R_q) = 0$ for all $q \in \text{Ass}(R)$, since R is Cohen-Macaulay. The assertion follows by Propositions 2.2 and 2.1(3). □
3. Approximately Cohen-Macaulay and approximately Gorenstein rings

In this section we study when $R ▷◁ I$ is approximately Cohen-Macaulay and when it is approximately Gorenstein. To state the first result of this section, we need the notion of approximately Cohen-Macaulay ring due to Goto in [9].

Definition 3.1. The local ring $(R; m)$ is called an approximately Cohen-Macaulay ring if either $\dim(R) = 0$ or there exists an element a of m such that R/a^nR is a Cohen-Macaulay ring of dimension $\dim(R) - 1$ for every integer $n > 0$.

It is straightforward to see that a Cohen-Macaulay local ring R is approximately Cohen-Macaulay and the converse is true when $\dim(R) = 0$. Also Goto in [9, Corollary 2.8], showed that if $(R; m)$ is an approximately Cohen-Macaulay local ring such that $\dim(R) \geq 2$ and that $H^i_m(R)$ is finitely generated R-module for all $i \neq \dim(R)$, then R is Cohen-Macaulay.

The next result shows that $R ▷◁ I$ is approximately Cohen-Macaulay if and only if R is approximately Cohen-Macaulay provided some special conditions.

Proposition 3.2. Let (R, m) be a Noetherian local ring and let I be a non-zero flat ideal of R. Assume that R is not a Cohen-Macaulay ring such that R is a homomorphic image of a Cohen-Macaulay local ring. Then $R ▷◁ I$ is approximately Cohen-Macaulay if and only if R is approximately Cohen-Macaulay.

Proof. Note that $\varphi : R \to R ▷◁ I$ is a flat ring homomorphism. By [7, Proposition 5.1], we have $R ▷◁ I/m_0 \cong R/m$, where $m_0 = \{(r, r + i) \mid r \in m, i \in I\}$ is the maximal ideal of $R ▷◁ I$. So $R ▷◁ I/m_0$ is a Cohen-Macaulay ring. Now the assertion follows from [13, Theorem 6]. \qed

Before stating our main results of this section, we recall the definition of approximately Gorenstein ring due to Hochster in [10].

Definition 3.3. A Noetherian local ring (R, m) is called approximately Gorenstein, if for every integer $n > 0$ there is an ideal $I \subseteq m^n$ such that R/I is Gorenstein.

It is routine to see that every Gorenstein ring is approximately Gorenstein, and a zero dimensional ring is approximately Gorenstein if and only if it is Gorenstein. While approximately Gorenstein rings must have positive depth, they need not to be Cohen-Macaulay. In fact, every complete Noetherian domain is approximately Gorenstein [10, Theorem 1.6].

The next result shows that $R ▷◁ I$ is approximately Gorenstein provided some special conditions.

Theorem 3.4. Let (R, m) be a Noetherian local ring and let I be a proper ideal of R. Then the following statements hold.
(i) If R is approximately Gorenstein, then $R \bowtie I$ is approximately Gorenstein.

(ii) If $R \bowtie I$ is Gorenstein and R is generically Gorenstein, then R is approximately Gorenstein.

Proof. (i) According to Proposition 2.1(3), $(R \bowtie I, m_0)$ is a Noetherian local ring. Let $n > 0$ be an integer. By assumption there exists an ideal $J \subseteq m^n$ such that R/J is Gorenstein. By [7, Proposition 5.1], $J \bowtie I$ is an ideal of $R \bowtie I$ and

$$\frac{R \bowtie I}{J \bowtie I} \cong \frac{R}{J}.$$

It is straightforward to see that $J \bowtie I \subseteq m^n \bowtie I = m_0^n$ and so $(R \bowtie I)/(J \bowtie I)$ is Gorenstein, therefore the assertion is proved.

(ii) By [1, Theorem 1.8], R is Cohen-Macaulay and I is a canonical ideal of R. The assertion follows from [10, Remarks (4.8b)].

Corollary 3.5. Let R be a generically Gorenstein local ring and let I be a proper ideal of R. Assume that R is Cohen-Macaulay with canonical module. Then $R \bowtie I$ is approximately Gorenstein.

Proof. According to [10, Remarks (4.8b)], R is approximately Gorenstein, so $R \bowtie I$ is approximately Gorenstein by Theorem 3.4(i).

Acknowledgment. We thank Siamak Yassemi for his detailed reading of this manuscript and many thoughtful suggestions.

References

Elham Tavasoli
Department of Mathematics
Science and Research Branch
Islamic Azad University
Tehran, Iran
E-mail address: elhamtavasoli@ipm.ir

Maryam Salimi
Department of Mathematics
Science and Research Branch
Islamic Azad University
Tehran, Iran
E-mail address: maryamsalimi@ipm.ir

Abolfazl Tehranian
Department of Mathematics
Science and Research Branch
Islamic Azad University
Tehran, Iran
E-mail address: tehranian@srbiau.ac.ir