EINSTEIN HALF LIGHTLIKE SUBMANIFOLDS WITH SPECIAL CONFORMALITIES

Dae Ho Jin

Abstract. In this paper, we study the geometry of Einstein half lightlike submanifolds \(M \) of a semi-Riemannian space form \(\bar{M}(c) \) subject to the conditions: (a) \(M \) is screen conformal, and (b) the coscreen distribution of \(M \) is a conformal Killing one. The main result is a classification theorem for screen conformal Einstein half lightlike submanifolds of a Lorentzian space form with a conformal Killing coscreen distribution.

1. Introduction

A submanifold \(M \) of a semi-Riemannian manifold \((\bar{M}, \bar{g}) \) is called a lightlike submanifold of \(\bar{M} \) if its radical distribution \(\text{Rad}(TM) = TM \cap TM^\perp \) is a vector subbundle of the tangent bundle \(TM \), of rank \(r > 0 \). A codimension 2 lightlike submanifold \(M \) is called a half lightlike submanifold if \(\text{rank}(\text{Rad}(TM)) = 1 \).

Then there exists two complementary non-degenerate distributions \(S(TM) \) and \(S(TM^\perp) \) of \(\text{Rad}(TM) \) in \(TM \) and \(TM^\perp \) respectively, which called the screen and coscreen distribution on \(M \), such that

\[
TM = \text{Rad}(TM) \oplus_{\text{orth}} S(TM), \quad TM^\perp = \text{Rad}(TM) \oplus_{\text{orth}} S(TM^\perp),
\]

where the symbol \(\oplus_{\text{orth}} \) denotes the orthogonal direct sum. We denote such a half lightlike submanifold by \(M = (M, \bar{g}, S(TM)) \). Denote by \(F(M) \) the algebra of smooth functions on \(M \) and by \(\Gamma(E) \) the \(F(M) \) module of smooth sections of any vector bundle \(E \) over \(M \). Then there exist a non-null section \(u \) on \(S(TM^\perp) \) and a null section \(\xi \) on \(\text{Rad}(TM) \) such that

\[
\bar{g}(u, u) = \epsilon, \quad \bar{g}(\xi, v) = 0, \quad \forall v \in \Gamma(TM^\perp),
\]

where \(\epsilon = \pm 1 \). Consider the orthogonal complementary distribution \(S(TM^\perp) \) to \(S(TM) \) in \(TM \). Certainly \(\xi \) and \(u \) belong to \(\Gamma(S(TM)^\perp) \). Thus we have

\[
S(TM)^\perp = S(TM^\perp) \oplus_{\text{orth}} S(TM^\perp)^\perp,
\]

Received June 18, 2009.
2010 Mathematics Subject Classification. Primary 53C25, 53C40, 53C50.
Key words and phrases. half lightlike submanifold, screen conformal, conformal Killing distribution.

©2012 The Korean Mathematical Society
where $S(TM^\perp)$ is the orthogonal complementary to $S(TM^\perp)$ in $S(TM)$. For any null section ξ of $\text{Rad}(TM)$ on a coordinate neighborhood $U \subset M$, there exists a uniquely defined vector field $N \in \Gamma(\text{ltr}(TM))$ \cite{4} satisfying
\begin{equation}
\bar{g}(\xi, N) = 1, \quad \bar{g}(N, N) = \bar{g}(N, X) = \bar{g}(N, u) = 0, \quad \forall X \in \Gamma(S(TM)).
\end{equation}
We call $\text{ltr}(TM)$, N and $\text{tr}(TM) = S(TM^\perp) \oplus_{\text{orth}} \text{ltr}(TM)$ the lightlike transversal vector bundle, lightlike transversal vector field and transversal vector bundle of M with respect to $S(TM)$ respectively. Then the tangent bundle TM of the ambient manifold M is decomposed as follows:
\begin{equation}
TM = TM \oplus \text{tr}(TM) = \{\text{Rad}(TM) \oplus \text{tr}(TM)\} \oplus_{\text{orth}} S(TM) = \{\text{Rad}(TM) \oplus \text{ltr}(TM)\} \oplus_{\text{orth}} S(TM^\perp) \oplus_{\text{orth}} S(TM).
\end{equation}

Example 1. Suppose M is a surface of R^4_1 given by the equations
\begin{align*}
x_3 &= \sqrt{x_1^2 - x_2^2}, \quad x_4 = \sqrt{1 + x_1^2}.
\end{align*}
Then we derive $TM = \text{Span}\{\xi, U\}$ and $TM^\perp = \text{Span}\{\xi, u\}$, where
\begin{align*}
U &= x_3 x_4 \partial_1 + x_1 x_4 \partial_3 + x_1 x_3 \partial_4, \\
\xi &= x_1 \partial_1 + x_2 \partial_2 + x_3 \partial_3, \quad u = x_1 \partial_1 + x_4 \partial_4.
\end{align*}
It follows that $\text{Rad}(TM)$ is a distribution on M of rank 1 spanned by ξ. Hence M is a half-lightlike submanifold of R^4_1 such that $S(TM) = \text{Span}\{U\}$ and $S(TM^\perp) = \text{Span}\{u\}$. Then the lightlike transversal bundle $\text{ltr}(TM)$ and the transversal bundle $\text{tr}(TM)$ with respect to the screen distribution $S(TM)$ are given by $\text{ltr}(TM) = \text{Span}\{N\}$ and $\text{tr}(TM) = \text{Span}\{N, u\}$, where
\begin{align*}
N &= -\frac{1}{2x_1^2}(x_1 \partial_1 - x_2 \partial_2 - x_3 \partial_3).
\end{align*}

The classification of Einstein hypersurfaces M in Euclidean spaces R^{n+1} was first studied by Fialkow \cite{7} and Thomas \cite{14} in the middle of 1930’s. It was proved that if M is a connected Einstein hypersurface ($n \geq 3$) such that $\text{Ric} = \gamma g$ for some constant γ, then γ is non-negative. Moreover,
\begin{enumerate}
\item if $\gamma > 0$, then M is contained in an n-sphere and
\item if $\gamma = 0$, then M is locally isometric to R^n.
\end{enumerate}
The objective of this paper is the study of half lightlike version of above classical results. For this reason, we consider only screen conformal half lightlike submanifolds with a conformal Killing coscreen distribution. In Section 2, we investigate geometric properties for screen conformal half lightlike submanifolds M of a semi-Riemannian space form $(M^{m+3}(c), \bar{g})$, $m > 2$, with a conformal Killing coscreen distribution. In the last Section 3, we prove our main classification theorem for screen conformal Einstein half lightlike submanifolds M of a Lorentzian space form with a conformal Killing coscreen distribution (Theorem 3.2). Recall the following structure equations.
Let ∇ be the Levi-Civita connection of M and P the projection morphism of TM on $S(TM)$ with respect to the decomposition (1.1). Then the local Gauss and Weingarten formulas M and $S(TM)$ are given respectively by

\begin{align}
\nabla_X Y &= \nabla_X Y + B(X, Y) N + D(X, Y) u, \\
\nabla_X N &= -A_X X + \tau(X) N + \rho(X) u, \\
\nabla_X u &= -A_X X + \phi(X) N; \\
\nabla_X PY &= \nabla_X^p PY + C(X, PY) \xi, \\
\nabla_X \xi &= -A_X X - \tau(X) \xi, \\
\end{align}

for any $X, Y \in \Gamma(TM)$, where ∇ and ∇^* are induced linear connections on TM and $S(TM)$ respectively, the bilinear forms B and D on TM are called the local lightlike and screen second fundamental forms of M respectively, C is called the local radical second fundamental form on $S(TM)$. A_X, A^*_X and A_u are linear operators on $\Gamma(TM)$ and τ, ρ and ϕ are 1-forms on TM.

Since ∇ is torsion-free, ∇^* is also torsion-free, and B and D are symmetric. From the facts $B(X, Y) = \bar{g}(\nabla_X Y, \xi)$ and $D(X, Y) = \epsilon \bar{g}(\nabla_X Y, u)$, we know that B and D are independent of the choice of a screen distribution and satisfy

\begin{align}
B(X, \xi) = 0, \quad D(X, \xi) = -\epsilon \phi(X), \quad \forall X \in \Gamma(TM).
\end{align}

The induced connection ∇ on M is not metric and satisfies

\begin{align}
(\nabla_X g)(Y, Z) = B(X, Y) \eta(Z) + B(X, Z) \eta(Y)
\end{align}

for all $X, Y, Z \in \Gamma(TM)$, where η is a 1-form on TM such that

\begin{align}
\eta(X) = \bar{g}(X, N), \quad \forall X \in \Gamma(TM).
\end{align}

But we show that ∇^* is metric. The above three local second fundamental forms on TM and $S(TM)$ are related to their shape operators by

\begin{align}
B(X, Y) &= g(A^*_X Y, Y), \quad \bar{g}(A^*_X X, N) = 0, \\
C(X, PY) &= g(A_N X, PY), \quad \bar{g}(A_N X, N) = 0, \\
\epsilon D(X, PY) &= g(A_u X, PY), \quad \bar{g}(A_u X, N) = \epsilon \rho(X), \\
\epsilon D(X, Y) &= g(A_u X, Y) - \phi(X) \eta(Y).
\end{align}

From (1.12), A^*_X is $S(TM)$-valued and self-adjoint on $\Gamma(TM)$ such that

\begin{align}
A^*_X \xi = 0.
\end{align}

We denote by \bar{R}, R and R^* the curvature tensors of the Levi-Civita connection ∇ of M, the induced connection ∇ of M and the induced connection ∇^* on $S(TM)$ respectively. Using the Gauss-Weingarten equations for M and $S(TM)$, we obtain the Gauss-Codazzi equations for M and $S(TM)$:

\begin{align}
\bar{g}(\bar{R}(X, Y) Z, PW) &= g(R(X, Y) Z, PW) \\
&+ B(X, Z) C(Y, PW) - B(Y, Z) C(X, PW) \\
&+ \epsilon \{ D(X, Z) D(Y, PW) - D(Y, Z) D(X, PW) \},
\end{align}
(1.18) \(\bar{g}(\bar{\mathcal{R}}(X,Y)Z, \xi) = (\nabla_X B)(Y,Z) - (\nabla_Y B)(X,Z) + B(Y,Z)\tau(X) - B(X,Z)\tau(Y) + D(Y,Z)\phi(X) - D(X,Z)\phi(Y), \)
(1.19) \(\bar{g}(\bar{\mathcal{R}}(X,Y)Z, N) = \bar{g}(\bar{\mathcal{R}}(X,Y)Z, N) + \epsilon\{D(X,Z)\rho(Y) - D(Y,Z)\rho(X)\}, \)
(1.20) \(\bar{g}(\bar{\mathcal{R}}(X,Y)\xi, N) = g(A^*_n X, A_n Y) - g(A^*_n Y, A_n X) + \rho(X)\phi(Y) - \rho(Y)\phi(X) - 2d\tau(X,Y), \)
(1.21) \(\bar{g}(\bar{\mathcal{R}}(X,Y)Z, u) = \epsilon\{[\nabla_X D](Y,Z) - [\nabla_Y D](X,Z) + B(Y,Z)\rho(X) - B(X,Z)\rho(Y)\}, \)
(1.22) \(\bar{g}(\bar{\mathcal{R}}(X,Y)PZ, PW) = g(R^*(X,Y)PZ, PW) + C(X,PZ)B(Y,PW) - C(Y,PZ)B(X,PW), \)
(1.23) \(g(\bar{\mathcal{R}}(X,Y)PZ, N) = (\nabla_X C)(Y,PZ) - (\nabla_Y C)(X,PZ) + C(X,PZ)\tau(Y) - C(Y,PZ)\tau(X) \)

for all \(X, Y, Z \in \Gamma(TM) \). The Ricci curvature tensor \(\bar{\text{Ric}} \) of \(\bar{M} \) and the induced Ricci type tensor \(R^{(0,2)} \) of \(M \) are defined by

\[
\text{Ric}(X,Y) = \text{trace}\{Z \to \bar{\mathcal{R}}(Z,X)Y\}, \quad \forall X, Y \in \Gamma(TM),
\]
\[
R^{(0,2)}(X,Y) = \text{trace}\{Z \to \bar{\mathcal{R}}(Z,X)Y\}, \quad \forall X, Y \in \Gamma(TM).
\]

Consider the induced quasi-orthonormal frame fields \(\{\xi; W_a\} \) on \(M \) such that \(\text{RadTM} = \text{Span}\{\xi\} \) and \(S(TM) = \text{Span}\{W_a\} \) and let \(E = \{\xi, W_a; u, N\} \) be the corresponding frame fields on \(\bar{M} \). Let \(\epsilon_a = g(W_a, W_a) \) be the sign of \(W_a \). Using this quasi-orthonormal frame, (1.24) and (1.25) reduce respectively to

\[
\bar{\text{Ric}}(X,Y) = \sum_{a=1}^{m} \epsilon_a \bar{g}(\bar{\mathcal{R}}(W_a,X)Y, W_a) + \bar{g}(\bar{\mathcal{R}}(\xi,X)Y, N) + \epsilon \bar{g}(\bar{\mathcal{R}}(u,X)Y, u) + \bar{g}(\bar{\mathcal{R}}(N,X)Y, \xi),
\]
\[
R^{(0,2)}(X,Y) = \sum_{a=1}^{m} \epsilon_a g(R(W_a,X)Y, W_a) + \bar{g}(R(\xi,X)Y, N) \]

for any \(X, Y \in \Gamma(TM) \). Substituting (1.17) and (1.19) in (1.26) and then, using (1.12), (1.13) and (1.27), we obtain

\[
R^{(0,2)}(X,Y) = \bar{\text{Ric}}(X,Y) + B(X,Y)\tau A_u + D(X,Y)\tau A_u - g(A_n X, A^*_n Y) - \epsilon g(A_n X, A_n Y) + \rho(X)\phi(Y) - \bar{g}(\bar{\mathcal{R}}(\xi,Y)X, N) - \epsilon \bar{g}(\bar{\mathcal{R}}(u,Y)X, u) \]

for any \(X, Y \in \Gamma(TM) \). A tensor field \(R^{(0,2)} \) of \(M \) is called its induced Ricci tensor if it is symmetric. A symmetric \(R^{(0,2)} \) tensor will be denoted by \(\bar{\text{Ric}} \).
Then we have

\[T \text{ M} \]

1. Using (1.20), (1.28) and the first Bianchi’s identity, we obtain

\[S \]

and the transversal bundle

\[1 \]

spanned by \(\xi \).

By direct calculations we check that

\[R \]

It follows that

\[i.e., \ d\tau = 0 \]

on any \(U \subset M \) [6]. Therefore, suppose \(R^{(0,2)} \) is symmetric, then there exists a smooth function \(f \) on \(U \) such that \(\tau = df \). Consequently we get \(\tau(X) = X(f) \). If we take \(\xi = \alpha \xi \), it follows that \(\tau(X) = \tau(X) + X \ln \alpha \).

Setting \(\alpha = \exp(f) \) in this equation, we get \(\tau(X) = 0 \) for any \(X \in \Gamma(TM_{U}) \).

In the sequel, we call the pair \(\{ \xi, N \} \) on \(U \) such that the corresponding 1-form \(\tau \) vanishes the canonical null pair [9] of \(M \).

2. Screen conformal submanifolds

Definition. A half lightlike submanifold \((M, g, S(TM)) \) of \(M \) is said to be screen conformal [1] if there exists a non-vanishing smooth function \(\varphi \) on a neighborhood \(U \) in \(M \) such that \(A_{N} = \varphi A_{\xi} \), or equivalently,

\[C(X, PY) = \varphi B(X, Y), \ \forall \ X, Y \in \Gamma(TM). \]

(2.1)

In general, \(S(TM) \) is not necessarily integrable. From (1.7) and (1.13), we get

\[g(A_{x}X, Y) - g(X, A_{x}Y) = C(X, Y) - C(Y, X) = \eta([X, Y]) \]

for all \(X, Y \in \Gamma(S(TM)) \). Thus \(A_{x} \) is self-adjoint on \(S(TM) \) with respect to \(g \) if and only if \(C \) is symmetric on \(S(TM) \) if and only if \(\eta([X, Y]) = 0 \) for all \(X, Y \in \Gamma(S(TM)) \), i.e., \(S(TM) \) is integrable [4].

Note 2. For a screen conformal \(M \), since \(C \) is symmetric on \(S(TM) \), the screen distribution \(S(TM) \) is integrable. Thus \(M \) is locally a product manifold \(L \times M^{\ast} \) where \(L \) is a null curve and \(M^{\ast} \) is a leaf of \(S(TM) \) [5].

Example 2. Consider a surface \(M \) in \(R_{3}^{5} \) given by the equation

\[x_{4} = \sqrt{x_{1}^{2} + x_{2}^{2}}, \quad x_{5} = \sqrt{1 - x_{3}^{2}}. \]

Then we have \(TM = \text{Span}\{\xi, U, V\} \) and \(TM^{\perp} = \text{Span}\{\xi, u\} \), where

\[U = x_{4}\partial_{1} + x_{1}\partial_{4}, \quad V = x_{5}\partial_{3} - x_{3}\partial_{5}, \]

\[\xi = x_{1}\partial_{1} + x_{2}\partial_{2} + x_{4}\partial_{4}, \quad u = x_{3}\partial_{3} + x_{5}\partial_{5}. \]

By direct calculations we check that \(\text{Rad}(TM) \) is a distribution on \(M \) of rank 1 spanned by \(\xi \). Hence \(M \) is a half-lightlike submanifold of \(R_{3}^{5} \) such that \(S(TM) = \text{Span}\{U, V\} \) and \(S(TM^{\perp}) = \text{Span}\{u\} \). Then the lightlike transversal bundle \(ltr(TM) \) of the screen \(S(TM) \) is given by

\[ltr(TM) = \text{Span}\left\{ N = \frac{1}{2x_{4}^{2}}(x_{1}\partial_{1} - x_{2}\partial_{2} + x_{4}\partial_{4}) \right\}, \]

and the transversal bundle \(tr(TM) \) is given by \(tr(TM) = \text{Span}\{N, u\} \).
Denote by ∇ the Levi-Civita connection on \mathbb{R}^3. By straightforward calculations, we obtain

$$
\nabla_U U = \xi + 2x_2^2 N, \quad \nabla_U V = 0, \quad \nabla_U \xi = 2U + \frac{x_1 x_4}{2x_2^2} \xi - x_1 x_4 N,
$$

$$
\nabla_U N = \frac{1}{2x_2^2} U - \frac{x_1 x_4}{x_2^2} N + \frac{x_1 x_4}{x_2^2} \xi, \quad \nabla_U u = 0,
$$

$$
\nabla_V U = 0, \quad \nabla_V V = -2u, \quad \nabla_V \xi = 0, \quad \nabla_V N = 0, \quad \nabla_V u = 2V,
$$

$$
\nabla_U U = U + \frac{x_4}{2x_1} \xi + \frac{x_4^2 x_4}{x_1} N, \quad \nabla_U \xi = \frac{x_4}{x_1} U + \left(\frac{3}{2} + \frac{x_4^2}{2x_2^2}\right) \xi - x_4^2 N,
$$

$$
\nabla_U V = 0, \quad \nabla_U N = -N, \quad \nabla_U u = 0.
$$

Then taking into account of Gauss and Weingarten formulas infer

$$
A^2 U = -U, \quad A^2 V = 0, \quad A_\xi U = -\frac{1}{2x_2^4} U, \quad A_N V = 0, \quad A_N \xi = 0,
$$

$$
\tau(U) = \tau(V) = \tau(\xi) = 0, \quad \rho(U) = \rho(V) = \rho(\xi) = 0.
$$

Thus $A_\xi X = (1/2x_2^2) A^2 X$ for any $X \in \Gamma(TM)$ and M is a screen conformal half-lightlike submanifold of \mathbb{R}^3 with a conformal factor $\varphi = 1/2x_2^2$.

Definition. A vector field X on \hat{M} is said to be a *conformal Killing* [15] if $\hat{L}_X g = -2\delta \hat{g}$, where δ is a non-vanishing smooth function on \hat{M} and \hat{L}_X denotes the Lie derivative with respect to X. In particular, if $\delta = 0$, then X is called a *Killing*. A distribution \mathcal{G} on \hat{M} is said to be a *conformal Killing* (Killing) if each vector field belonging to \mathcal{G} is a conformal Killing (Killing).

Theorem 2.1. Let $(M, g, S(TM))$ be a half lightlike submanifold of a semi-Riemannian manifold (\hat{M}, \hat{g}). Then the coscreen distribution is a conformal Killing if and only if $D(X, Y) = \epsilon \delta g(X, Y)$ for any $X, Y \in \Gamma(TM)$.

Proof. By straightforward calculations and use (1.6) and (1.15), we have

$$
(\hat{L}_X \hat{g})(X, Y) = \hat{g}(\nabla_X u, Y) + \hat{g}(X, \nabla_Y u),
$$

$$
\hat{g}(\nabla_X u, Y) = -g(A_\xi X, Y) + \phi(X) \eta(Y) = -\epsilon D(X, Y)
$$

for any $X, Y \in \Gamma(TM)$. Therefore, we obtain $(\hat{L}_X \hat{g})(X, Y) = -2\epsilon D(X, Y)$. □

Let $(M, g, S(TM))$ be a screen conformal half lightlike submanifold of a semi-Riemannian space form $(\hat{M}(c), \hat{g})$ with a conformal Killing coscreen. For all $X, Y, Z, W \in \Gamma(TM)$, by (1.9), (1.14) and (1.15), we have

$$
D(X, Y) = \epsilon \delta g(X, Y), \quad \phi(X) = 0, \quad A_\xi X = \delta P X + \epsilon \rho(X) \xi.
$$

Using (2.1) and (2.2), the Gauss equations (1.17) and (1.22) reduce to

$$
g(R(X, Y) Z, PW) = (c + \epsilon \delta^2) \{g(Y, Z) g(X, PW) - g(X, Z) g(Y, PW)\}
$$

$$
+ \varphi \{B(Y, Z) B(X, PW) - B(X, Z) B(Y, PW)\},
$$
Using (1.19), (1.23), (2.1) and (2.5), we obtain

\[\{ Y \} \]

Replacing \(\phi \) by virtue of (2.10). Thus, from (1.9), (2.1) and (2.10), we have

\[\{ \delta \} g(Y, Z) - Y[\delta] g(X, Z). \]

Replacing \(Y \) by \(\xi \) in the last equation and using (1.9), we obtain

\[\{ \delta - \epsilon \rho(\xi) \} B(X, Z) = \xi[\delta] g(X, Z). \]

Using (1.19), (1.23), (2.1) and (2.5), we obtain

\[\{ X[\varphi] - 2\varphi \tau(X) \} B(Y, PZ) - \{ Y[\varphi] - 2\varphi \tau(Y) \} B(X, PZ) \]

\[= \{ \epsilon \eta(X) + \delta \rho(X) \} g(Y, PZ) - \{ \epsilon \eta(Y) + \delta \rho(Y) \} g(X, PZ). \]

Replacing \(Y \) by \(\xi \) in the last equation and using (1.9), we obtain

\[\{ \xi[\varphi] - 2\varphi \tau(\xi) \} B(X, PZ) = (c + \delta \rho(\xi)) g(X, PZ). \]

Theorem 2.2. Let \((M, g, S(TM))\) be a screen conformal half lightlike submanifold of a semi-Riemannian space form \((M^{m+3}(c), \bar{g}), m > 2, \) with a conformal Killing coscreen distribution. Then we have \(c + \delta \rho(\xi) = 0. \)

Proof. Assume that \(c + \delta \rho(\xi) \neq 0. \) Then we have \(\xi[\varphi] - 2\varphi \tau(\xi) \neq 0 \) and \(B \neq 0 \) by virtue of (2.10). Thus, from (1.9), (2.1) and (2.10), we have

\[B(X, Y) = \sigma g(X, Y), \ C(X, PY) = \varphi \sigma g(X, Y), \forall X, Y \in \Gamma(TM), \]

where \(\sigma = (c + \delta \rho(\xi)) \langle \xi[\varphi] - 2\varphi \tau(\xi) \rangle^{-1} \neq 0. \) From the first equation of (2.2) and (2.11), \(M \) is totally umbilical in \(M \) and \(S(TM) \) is also totally umbilical in \(M \) and \(\bar{M}. \) As \(\bar{M} \) has a constant curvature \(c, \) from (2.4) and (2.11), we have

\[R^*(X, Y) Z = (c + 2\varphi \sigma^2 + \epsilon \delta^2) \{ g(Y, Z) X - g(X, Z) Y \} \]

for all \(X, Y, Z \in \Gamma(S(TM)). \) Let \(M^* \) be the leaf of \(S(TM) \) and \(\text{Ric}^* \) be the Ricci tensor of \(M^*. \) Then, from the last equation, we have

\[\text{Ric}^*(X, Y) = (c + 2\varphi \sigma^2 + \epsilon \delta^2)(m - 1) g(X, Y), \forall X, Y \in \Gamma(S(TM)). \]

Thus \(M^* \) is Einstein. As \(m > 2, \) \((c + 2\varphi \sigma^2 + \epsilon \delta^2) \) is a constant and \(M^* \) is a space of constant curvature \((c + 2\varphi \sigma^2 + \epsilon \delta^2). \) Differentiating the first equation of (2.11) and using (1.10) and (2.5), we have

\[\{ X[\sigma] + \sigma \tau(X) - \sigma^2 \eta(X) \} g(Y, Z) = \{ Y[\sigma] + \sigma \tau(Y) - \sigma^2 \eta(Y) \} g(X, Z) \]

for all \(X, Y, Z \in \Gamma(TM). \) Replacing \(Y \) by \(\xi \) in this equation, we have \(\xi[\sigma] = \sigma^2 - \sigma \tau(\xi). \) From (2.8) and (2.11), we have \(\xi[\delta] = \sigma \delta - \epsilon \sigma \rho(\xi). \) Since \((c + 2\varphi \sigma^2 + \epsilon \delta^2) \) is a
$\epsilon\delta^2$ is a constant, we have $\xi[c+2\varphi^2+\epsilon\delta^2] = 2\sigma(c+2\varphi^2+\epsilon\delta^2) = 0$. Therefore, as $\sigma \neq 0$, we have $c+2\varphi^2+\epsilon\delta^2 = 0$ and consequently we get $R^* = 0$. Thus M^* is a semi-Euclidean space. As the second fundamental form of the totally umbilical semi-Euclidean space M^* as a submanifold of the semi-Riemannian space form M vanishes [3, Section 2.3], we get $C = 0$. Consequently, from (2.1), we get $B = 0$ and $c + \delta\rho(\xi) = 0$ due to (2.10). It is a contradiction to $c + \delta\rho(\xi) \neq 0$. Thus we have $c + \delta\rho(\xi) = 0$. \[\Box\]

Corollary 2.3 ([10]). Let $(M, g, S(TM))$ be a screen conformal half lightlike submanifold of a semi-Riemannian space form $(M^{m+3}(c), \bar{g}), m > 2$, with a Killing coscreen distribution. Then we have $c = 0$ and $\delta = 0$.

Theorem 2.4. Let $(M, g, S(TM))$ be a screen conformal Einstein half lightlike submanifold of a semi-Riemannian space form $(M^{m+3}(c), \bar{g}), m > 2$, with a conformal Killing coscreen distribution of conformal factor δ. Then the leaf M^* of $S(TM)$ is an Einstein manifold and δ is a constant.

Proof. From (2.3) and (2.4), we show that

$$2g(R(X, Y)PZ, PW) = g(R^*(X, Y)PZ, PW) + (c + \epsilon\delta^2)\{g(Y, PZ)g(X, PW) - g(X, PZ)g(Y, PW)\}$$

for all $X, Y, Z, W \in \Gamma(TM)$. Using the equations (1.27), (2.12) and the fact that $\bar{g}(R(\xi, X)Y, N) = (c + \delta\rho(\xi))(X, Y) = 0$, we get

$$2R^{(0,2)}(X, Y) = Ric^*(X, Y) + (m - 1)(c + \epsilon\delta^2)g(X, Y).$$

This shows that the induced tensor $R^{(0,2)}$ on M is symmetric. Thus M admits a symmetric Ricci tensor and $R^{(0,2)} = Ric$. Since M is Einstein, i.e., $Ric = \gamma g$, where γ is a constant if $m > 2$, the last equation reduces to

$$Ric^*(X, Y) = \{2\gamma - (m - 1)(c + \epsilon\delta^2)\}g(X, Y), \quad \forall X, Y \in \Gamma(TM).$$

Thus M^* is also Einstein. Since $m > 2$, the function $\{2\gamma - (m - 1)(c + \epsilon\delta^2)\}$ is a constant. Therefore, the conformal factor δ is a constant. \[\Box\]

Theorem 2.5. Let $(M, g, S(TM))$ be a screen conformal Einstein half lightlike submanifold of a semi-Riemannian space form $(M^{m+3}(c), \bar{g}), m > 2$, with a conformal Killing coscreen distribution of conformal factor δ. If either $\gamma \neq (m - 1)(c + \epsilon\delta^2)$ or rank $A^*_{\xi} > 0$, then we have $c + \epsilon\delta^2 = 0$.

Proof. Since M is Einstein, the conformal factor δ is a constant by Theorem 2.4. From (2.8) with $c + \delta\rho(\xi) = 0$, we get $\{c + \epsilon\delta^2\}B(Y, Z) = 0$, or equivalently, $\{c + \epsilon\delta^2\}A^*_{\xi}X = 0$ for any $X, Y \in \Gamma(TM)$. First, if rank $A^*_{\xi} > 0$, we get $c + \epsilon\delta^2 = 0$. Next, if $c + \epsilon\delta^2 \neq 0$, then, since $(c + \epsilon\delta^2)$ is a constant, we have $B(X, Y) = 0$ for any $X, Y \in \Gamma(TM)$. Thus, from (1.27), (2.3) and the fact that $\bar{g}(R(\xi, X)Y, N) = (c + \delta\rho(\xi))(X, Y) = 0$, we have $\gamma = (m - 1)(c + \epsilon\delta^2)$. This implies that if $\gamma \neq (m - 1)(c + \epsilon\delta^2)$, then we get $c + \epsilon\delta^2 = 0$. \[\Box\]
Recall the following notion of null sectional curvature [2, 5, 6, 8]. Let $x \in M$ and ξ be a null vector of T_xM. A plane H of T_xM is called a null plane directed by ξ if it contains ξ, $g_x(\xi, W) = 0$ for any $W \in H$ and there exists $W_0 \in H$ such that $g_x(W_0, W_0) \neq 0$. Then, the null sectional curvature of H, with respect to ξ and ∇, is defined as a real number

$$K_\xi(H) = \frac{g_x(R(\xi, W)W, \xi)}{g_x(W, W)},$$

where $W \neq 0$ is any vector in H independent with ξ. It is easy to see that $K_\xi(H)$ is independent of W but depends in a quadratic fashion on ξ. An $n(\geq 3)$-dimensional Lorentzian manifold is of constant curvature if and only if its null sectional curvatures are everywhere zero [12].

Theorem 2.6. Let $(M, g, S(TM))$ be a screen conformal half lightlike submanifold of a semi-Riemannian space form $(M^{m+3}(c), g)$, $m > 2$, with a conformal Killing coscreen distribution. Then every null plane H of T_xM directed by ξ has everywhere zero null sectional curvatures.

Proof. From (1.9), (1.19) and (2.3), we show that $g(R(\xi, X)Y, PW) = 0$ and $g(R(\xi, X)Y, N) = (c + \delta g(\xi))g(X, Y) = 0$ for any $X, Y \in \Gamma(TM)$. Thus the curvature tensor R of M satisfies $R(\xi, X)Y = 0$ for any $X, Y \in \Gamma(TM)$. Thus $K_\xi(H) = \frac{g_x(R(\xi, W)W, \xi)}{g_x(W, W)} = 0$ for any null plane H of T_xM directed by ξ. \(\square\)

3. Einstein submanifolds

In this section, let $(M, g, S(TM))$ be a screen conformal half lightlike submanifold of a Lorentzian space form (M, g) with a conformal Killing coscreen distribution. Then $\xi = 1, \phi = 0$ and $S(TM)$ is a Riemannian and integrable vector bundle. As M is a Lorentzian space form, then $R(\xi, Y)X = c\bar{g}(X, Y)\xi, R(u, X)Y = c\bar{g}(X, Y)\xi$ and $\text{Ric}(X, Y) = (m + 2)c\bar{g}(X, Y)$. Thus the equation (1.28) reduces to

(3.1) \[\text{Ric}(X, Y) = mc\bar{g}(X, Y) + B(X, Y)\text{tr}A_X + D(X, Y)\text{tr}A_u - \varphi g(A_\xi^*X, A_\xi^*Y) - g(A_uX, A_uY), \quad \forall X, Y \in \Gamma(TM).\]

From (1.16), ξ is an eigenvector field of A_ξ^* corresponding to the eigenvalue 0. Since A_ξ^* is $\Gamma(S(TM))$-valued real self-adjoint operator on $\Gamma(TM)$ with respect to \bar{g}, A_ξ^* have m real orthonormal eigenvector fields in $S(TM)$ and is diagonalizable. Consider a frame field of eigenvectors $\{\xi, E_1, \ldots, E_m\}$ of A_ξ^* such that $\{E_1, \ldots, E_m\}$ is an orthonormal frame field of $S(TM)$. Then

$$A_\xi^*E_i = \lambda_i E_i, \quad 1 \leq i \leq m.$$

Let M be an Einstein manifold. Then $\text{Ric} = \gamma g$ and (3.1) reduces to

(3.2) \[g(A_\xi^*X, A_\xi^*Y) - sg(A_\xi^*X, Y) + Fg(X, Y) = 0,\]
where $s = \text{tr}A_\xi^2$ is the trace of A_ξ^2 and $F = \varphi^{-1}\{\gamma - mc - \delta\rho(\xi) + (1 - m)\delta^2\}$ is a smooth function. In case $m > 2$, we show that $F = \varphi^{-1}\{\gamma - (m - 1)(c + \delta^2)\}$.

Put $X = Y = E_i$ in (3.2), the eigenvalue λ_i is a solution of

\[(3.3) \quad x^2 - sx + F = 0.\]

The equation (3.3) has at most two distinct solutions. Assume that there exists $p \in \{0, 1, \ldots, m\}$ such that $\lambda_1 = \cdots = \lambda_p = \alpha$ and $\lambda_{p+1} = \cdots = \lambda_m = \beta$, by renumbering if necessary. From (3.3), we have

\[(3.4) \quad s = \alpha + \beta = pa + (m - p)\beta, \quad \alpha\beta = F.\]

Although $S(TM)$ is not unique, it is canonically isomorphic to the factor vector bundle $S(TM)^2 = TM/RadTM$ considered by Kupeli [11]. Thus all $S(TM)$ are isomorphic. For this reason, let $(M, g, S(TM))$ be a screen conformal Einstein half lightlike submanifold equipped with the canonical null pair $\{\xi, \eta\}$ of a Lorentzian space form $(M^{m+1}(c), \bar{g})$, $m > 2$, with a conformal Killing coscreen distribution.

Theorem 3.1. Let $(M, g, S(TM))$ be a screen conformal Einstein half lightlike submanifold of a Lorentzian space form $(M^{m+1}(c), \bar{g})$, $m > 2$, with a conformal Killing coscreen distribution. Then M is locally a product manifold $L \times M_\alpha \times M_\beta$, where L is a null curve and M_α and M_β are totally umbilical leaves of some distributions of M.

Proof. If (3.3) has only one solution α, then, since M is screen conformal, $M = L \times M^* \cong L \times M^* \times \{x\}$ for any $x \in M$, where $M_\alpha = M^*$ is a leaf of $S(TM)$ and $M_\beta = \{x\}$ is a leaf of the trivial vector bundle $\{0\}$. Since $B(X, Y) = g(A_\xi^2X, Y) = \alpha g(X, Y)$ for all $X, Y \in \Gamma(TM)$, we get $C(X, Y) = \varphi \alpha g(X, Y)$ for all $X, Y \in \Gamma(TM)$ by (2.1). Thus M^* is totally umbilical and $\{x\}$ is also totally umbilical. In this case, our assertion is true.

Assume that (3.3) has exactly two distinct solutions α and β. If $p = 0$ or $p = m$, then we also show that $M = L \times M^* \cong L \times M^* \times \{x\}$ for any $x \in M$, and $M^* = M_\alpha$ and $M_\beta = \{x\}$ (if $p = m$) or M_α and $M_\beta = \{x\}$ (if $p = 0$). In these cases, M^* is totally umbilical. If $0 < p < m$. Consider the following four distributions $D_\alpha, D_\beta, D_\alpha^*\beta$ and $D_\beta^*\alpha$ on M:

\[
\Gamma(D_\alpha) = \{X \in \Gamma(TM) \mid A_\xi^2X = \alpha PX\}, \quad D_\alpha^* = PD_\alpha;
\]

\[
\Gamma(D_\beta) = \{U \in \Gamma(TM) \mid A_\xi^2U = \beta PU\}, \quad D_\beta^* = PD_\beta.
\]

Then $D_\alpha \cap D_\beta = \text{Rad}(TM)$ and $D_\alpha^* \cap D_\beta^* = \{0\}$.

Since $A_\xi^2PX = A_\xi^2X = \alpha PX$ for all $X \in \Gamma(D_\alpha)$ and $A_\xi^2PU = A_\xi^2U = \beta PU$ for all $U \in \Gamma(D_\beta)$, PX and PU are eigenvector fields of the real symmetric operator A_ξ^2 corresponding to the different eigenvalues α and β respectively. Thus $PX \perp PU$ and $g(X, U) = g(PX, PU) = 0$, that is, $D_\alpha \perp D_\beta$. Also, since $B(X, U) = g(A_\xi^2X, U) = \alpha g(PX, PU) = 0$, we show that $D_\alpha \perp D_\beta$.

For any $x \in M$, since $\{E_i\}_{1 \leq i \leq p}$ and $\{E_a\}_{p+1 \leq a \leq m}$ are p and $(m - p)$ smooth linearly independent vector fields of D_α^s and D_β^s respectively, D_α^s and D_β^s are smooth distributions. Also, as $\{\xi, E_i\}_{1 \leq i \leq p}$ and $\{\xi, E_a\}_{p+1 \leq a \leq m}$ are $(p + 1)$ and $(m - p + 1)$ smooth linearly independent vector fields of D_α and D_β respectively, D_α and D_β are also smooth distributions on M. Thus D_α^s and D_β^s are orthogonal vector subbundle of $S(TM)$, D_α^s and D_β^s are non-degenerate distributions of rank p and rank $(m - p)$ respectively. Thus $S(TM) = D_\alpha^s \oplus_{\text{orth}} D_\beta^s$. Consequently, $TM = \text{Rad}(TM) \oplus_{\text{orth}} D_\alpha^s \oplus_{\text{orth}} D_\beta^s$.

From (3.2), we show that $(A_\xi^s)^2 - (\alpha + \beta)A_\xi^s + \alpha \beta P = 0$. Let $Y \in \text{Im}(A_\xi^s - \alpha P)$, then there exists $X \in \Gamma(TM)$ such that $Y = (A_\xi^s - \alpha P)X$. Then $(A_\xi^s - \beta P)Y = 0$ and $Y \in \Gamma(D_\beta^s)$. Thus $\text{Im}(A_\xi^s - \alpha P) \subset \Gamma(D_\beta^s)$. Since the morphism $A_\xi^s - \alpha P$ maps $\Gamma(TM)$ onto $\Gamma(S(TM))$, we have $\text{Im}(A_\xi^s - \alpha P) \subset \Gamma(D_\beta^s)$. By duality, we also have $\text{Im}(A_\xi^s - \beta P) \subset \Gamma(D_\alpha^s)$.

For $X, Y \in \Gamma(D_\alpha)$ and $U \in \Gamma(D_\beta)$, we have

$$
(\nabla_X B)(Y, U) = -g((A_\xi^s - \alpha P)\nabla_X Y, U) + \alpha^2 g(X, Y)\eta(U)
$$

and $(\nabla_X B)(Y, U) = (\nabla_Y B)(X, U)$ due to (2.5). Thus $g((A_\xi^s - \alpha P)[X, Y], U) = 0$. As D_β^s is non-degenerate and $\text{Im}(A_\xi^s - \alpha P) \subset \Gamma(D_\beta^s)$, we have $(A_\xi^s - \alpha P)[X, Y] = 0$. Thus $[X, Y] \in \Gamma(D_\alpha)$ and D_α is integrable. By duality, D_β is also integrable. Since $S(TM)$ is integrable, for any $X, Y \in \Gamma(D_\alpha^s)$, we have $[X, Y] \in \Gamma(D_\alpha^s)$ and $[X, Y] \in \Gamma(S(TM))$. Thus $[X, Y] \in \Gamma(D_\alpha^s)$ and D_α^s is integrable. So is D_β^s.

For $X, Y \in \Gamma(D_\alpha)$ and $Z \in \Gamma(TM)$, we show that

$$
(\nabla_X B)(Y, Z) = -g((A_\xi^s - \alpha P)\nabla_X Y, Z) + \alpha^2 g(X, Y)\eta(Z)
\quad + (X \alpha) g(Y, Z) + \alpha^2 \eta(Y) g(X, Z).
$$

Using this equation and the facts that $(\nabla_X B)(Y, Z) = (\nabla_Y B)(X, Z)$ due to (2.5) and $(A_\xi^s - \alpha P)[X, Y] = 0$ for any $X, Y \in \Gamma(D_\alpha)$, we have

$$
[X - \alpha^2 \eta(X)] g(Y, Z) = (Y - \alpha^2 \eta(Y)) g(X, Z), \quad \forall X, Y \in \Gamma(D_\alpha).
$$

Therefore, for $X, Y \in \Gamma(D_\alpha^s)$ and $Z \in \Gamma(S(TM))$, we obtain $(X \alpha) g(Y, Z) = (Y \alpha) g(X, Z)$. Since $S(TM)$ is non-degenerate, we have $d\alpha(X)Y = d\alpha(Y)X$. Suppose there exists a vector field $X_0 \in \Gamma(D_\alpha^s)$ such that $d\alpha(X_0)_{x} \neq 0$ at each point $x \in M$, then $Y = fX_0$ for any $Y \in \Gamma(D_\alpha^s)$, where f is a smooth function. It follows that all vectors from the fiber $(D_\alpha^s)_x$ are colinear with $(X_0)_x$. It is a contradiction as dim $((D_\alpha^s)_x) = p > 1$. Thus we have $d\alpha|_{D_\alpha^s} = 0$. By duality, we also have $d\beta|_{D_\beta^s} = 0$. Thus α is a constant along D_α^s and β is a constant along D_β^s. From the first equation of (3.4), we have $(p - 1)\alpha = -(m - p - 1)\beta$. Thus both α and β are constants along $S(TM)$.

Using (2.9) with $c + \rho(\xi) = 0$ and $\tau = 0$, we have

$$
(3.5) \quad (X \varphi)B(Y, Z) - (Y \varphi)B(X, Z) = \delta(\rho(PX)g(Y, Z) - \rho(PY)g(X, Z))
$$

EINSTEIN HALF LIGHTLIKE SUBMANIFOLDS 1173
for any $X, Y, Z \in \Gamma(TM)$. Take $X, Y, Z \in \Gamma(D_\alpha^\ast)$, then (3.5) reduces to
\[
\{\alpha(X\varphi) - \delta\rho(X)\}Y = \{\alpha(Y\varphi) - \delta\rho(Y)\}X.
\]
Since $\dim(D_\alpha^\ast) > 1$, we have $(X\varphi)\alpha = \delta\rho(X)$ for all $X \in \Gamma(D_\alpha^\ast)$. While, take $X \in \Gamma(D_\beta^\ast)$ and $Y, Z \in \Gamma(D_\alpha^\ast)$ in (3.5), we have $(X\varphi)\alpha = \delta\rho(X)$ for all $X \in \Gamma(D_\beta^\ast)$. Consequently, we obtain $(X\varphi)\alpha = \delta\rho(X)$ for all $X \in \Gamma(S(TM))$.

By duality, we get $(X\varphi)\beta = \delta\rho(X)$ for all $X \in \Gamma(S(TM))$. Thus we have $(X\varphi)\alpha = (X\varphi)\beta$ for all $X \in \Gamma(S(TM))$. Since $\alpha \neq \beta$, we have $X\varphi = 0$ for all $X \in \Gamma(S(TM))$, that is, φ is a constant along $S(TM)$. Take $X, Y \in \Gamma(D_\alpha^\ast)$ in (2.10), we have $\xi[\varphi]\alpha = 0$. Also, take $X, Y \in \Gamma(D_\beta^\ast)$ in (2.10), we have $\xi[\varphi]\beta = 0$. Since $(\alpha, \beta) \neq (0, 0)$, we have $\xi[\varphi] = 0$. Thus we have $X\varphi = 0$ for all $X \in \Gamma(TM)$, i.e., φ is a constant on M.

For all $X \in \Gamma(D_\alpha^\ast)$ and $U \in \Gamma(D_\beta^\ast)$, since $(\nabla_X B)(U, Z) = (\nabla_U B)(X, Z),\nabla((A_\xi^\ast - \beta P)\nabla X - (A_\xi^\ast - \alpha P)\nabla_U X, Z) = 0, \forall Z \in \Gamma(S(TM))$.

As $S(TM)$ is non-degenerate, we get $(A_\xi^\ast - \beta P)\nabla X U = (A_\xi^\ast - \alpha P)\nabla U X$. Since the left term of the last equation is in $\Gamma(D_\alpha^\ast)$ and the right term is in $\Gamma(D_\beta^\ast)$ and $D_\alpha^\ast \cap D_\beta^\ast = \{0\}$, we have $(A_\xi^\ast - \beta P)\nabla X U = 0$ and $(A_\xi^\ast - \alpha P)\nabla U X = 0$.

This imply that $\nabla_X U \in \Gamma(D_\beta^\ast)$ and $\nabla_U X \in \Gamma(D_\alpha^\ast)$. On the other hand, $\nabla_X U = \nabla^* U$ and $\nabla_U X = \nabla^* X$ due to $D_\alpha^\ast \perp \beta D_\beta$, we have
\[
\nabla X U \in \Gamma(D_\alpha^\ast), \quad \nabla_U X \in \Gamma(D_\beta^\ast), \quad \forall X \in \Gamma(D_\alpha^\ast), U \in \Gamma(D_\beta^\ast).
\]

For $X, Y \in \Gamma(D_\alpha^\ast)$ and $U, V \in \Gamma(D_\beta^\ast)$, since $g(X, U) = 0$, we have
\[
g(\nabla_Y X, U) + g(X, \nabla_Y U) = 0, \quad g(\nabla_U X, V) + g(U, \nabla_V X) = 0.
\]

Using (3.6), we have $g(X, \nabla_Y U) = g(U, \nabla_V X) = 0$. Thus we show that
\[
g(\nabla_X U, Y) = 0, \quad g(X, \nabla_U V) = 0.
\]

Since the leaf M^\ast of $S(TM)$ is a semi-Riemannian manifold and $S(TM) = D_\alpha^\ast \oplus_{\text{orth}} D_\beta^\ast$, where D_α^\ast and D_β^\ast are integrable and parallel distributions with respect to the induced connection ∇^\ast on M^\ast due to (3.7), by the decomposition theorem of de Rham [13], we have $M^\ast = M_\alpha \times M_\beta$, where M_α and M_β are some leaves of D_α^\ast and D_β^\ast respectively. Thus we have our theorem. \qed

Theorem 3.2. Let $(M, g, S(TM))$ be a screen conformal half lightlike submanifold of a Lorentzian space form $(M^{m+1}(c), \bar{g})$, $m > 2$, with a conformal Killing coscreen distribution. If M is Einstein, i.e., $\text{Ric} = \gamma g$, then M is locally a product manifold $L \times M_\alpha \times M_\beta$, where L is a null curve and M_α and M_β are totally umbilical leaves of some distributions of M:

1. If $\gamma \neq (m - 1)(c + \delta^2)$, then either M_α or M_β is an m-dimensional Einstein Riemannian space form which is isometric to a sphere ($\gamma > 0$) or a hyperbolic space ($\gamma < 0$) and the other is a point on M. \label{thm:3.2}
(2) If \(\gamma = (m-1)(c+\delta^2) \), then \(M_\alpha \) is an \((m-1)\) or \(m\)-dimensional Einstein Riemannian space form which is isometric to a sphere \((\gamma > 0)\) or a hyperbolic space \((\gamma < 0)\) or a Euclidean space \((\gamma = 0)\) and \(M_\beta \) is a spacelike curve or a point on \(M \).

Proof. First, we prove that \(\gamma = 0 \) and \(\alpha \beta = 0 \) if \(0 < p < m \). If \(0 < p < m \), then, since \(\text{rank} A_\xi^\alpha > 0 \), we have \(c + \delta^2 = 0 \) by Theorem 2.5. If \(p = 1 \) or \(p = m - 1 \), then, from the facts that \((p-1)\alpha + (m-p-1)\beta = 0 \) and \(m > 2 \), we show that if \(p = 1 \), then \(\beta = 0 \) and if \(p = m - 1 \), then \(\alpha = 0 \). Thus \(\gamma = \varphi \alpha \beta = 0 \). If \(1 < p < m - 1 \), then, from (3.7), we know that \(\nabla_U U \) has no component of \(A_\alpha \). Since the projection morphism \(P \) maps \(\Gamma(D_\beta) \) onto \(\Gamma(D^\beta_\alpha) \) and \(S(TM) = D^\alpha_\gamma \oplusorth D^\beta_\gamma \),

\[
\nabla_U U = P(\nabla_U U) + \eta(\nabla_U U)\xi, \quad P(\nabla_U U) \in \Gamma(D^\alpha_\gamma).
\]

It follows that

\[
g(\nabla_X \nabla_U U, X) = g(\nabla_X P(\nabla_U U), X) + \eta(\nabla_U U)g(\nabla_X \xi, X)
\]

\[
= -\alpha \eta(\nabla_U U)g(X, X).
\]

As \(\eta(\nabla_U U) = -\bar{g}(U, \nabla_U N) = g(U, A_\alpha U) = \varphi g(U, A^\alpha_\gamma U) = \varphi \varphi g(U, U) \), we get

\[
g(R(X, U)U, X) = -\varphi \alpha \varphi g(X, X)g(U, U).
\]

While, from the Gauss equation (2.3), we have

\[
g(R(X, U)U, X) = \varphi \alpha \varphi g(X, X)g(U, U),
\]

due to \(c + \delta^2 = 0 \). From the last two equations, we get \(\gamma = \varphi \alpha \beta = 0 \).

(1) Let \(\gamma \neq (m-1)(c+\delta^2) \): In this case, we have \(c + \delta^2 = 0 \). The equation (3.3) has two non-vanishing distinct solutions \(\alpha \) and \(\beta \). If \(0 < p < m \), then \(\gamma = 0 \). This implies that \(\gamma = (m-1)(c+\delta^2) \). Therefore, we have \(p = 0 \) or \(p = m \). If \(p = 0 \), then \(M = L \times M^* = L \times \{ x \} \times M^* \) and \(B(X, Y) = g(A^\alpha_\gamma X, Y) = \beta g(X, Y) \) for any \(X, Y \in \Gamma(TM) \). From this and (2.1), we show that \(C(X, Y) = \varphi \beta g(X, Y) \) for all \(X, Y \in \Gamma(TM) \). Thus \(M^* \) is totally umbilical. From (2.4) and (2.13), we have

\[
R^*(X, Y)Z = 2\varphi \beta^2 \{ g(Y, Z)X - g(X, Z)Y \},
\]

\[
\text{Ric}^*(X, Y) = 2\varphi \beta^2 (m-1) g(X, Y), \quad \forall X, Y, Z \in \Gamma(S(TM)).
\]

Thus \(M^* \) is Einstein and \(2\varphi \beta^2 \) is a constant due to \(m > 2 \). By (2.13), we have

\[
2\gamma = 2\varphi \beta^2.
\]

Therefore, \(M^* \) is an Einstein space of constant curvature \(2\gamma \). By duality, if \(p = m \), then \(M = L \times M^* = L \times M^* \times \{ x \} \) and \(B(X, Y) = \alpha g(X, Y) \) for any \(X, Y \in \Gamma(TM) \). Thus \(M \) is totally umbilical and \(M^* \) is a totally umbilical Einstein space of constant curvature \(2\gamma = 2\varphi \alpha^2 \). In case \(s^2 = 4F \), the equation (3.3) has only one non-vanishing solution, named by \(\alpha \) and \(\alpha \) is a unique eigenvalue of \(A_\xi^\alpha \). In this case, the first equation of (3.4) reduces to \(2\alpha = ma \). This implies \(m = 2 \). Thus this case is an impossible one.
(2) Let $\gamma = (m - 1)(c + \delta^2)$: The equation (3.3) reduces to $x(x - s) = 0$. In case $s \neq 0$. Let $\alpha = 0$ and $\beta = s$. Then we have $s = \beta = (m - p)\beta$, i.e., $(m - p - 1)\beta = 0$. So $p = m - 1$. Thus M_α is a totally geodesic $(m - 1)$-dimensional Riemannian manifold and M_β is a spacelike curve in M. In the sequel, let $X, Y, Z \in \Gamma(D^\alpha_\alpha)$ and $U \in \Gamma(D^\beta_\beta)$. From (2.4), we have

$$R^*(X, Y)Z = (c + \delta^2)\{g(Y, Z)X - g(X, Z)Y\},$$

$$Ric^*(X, Y) = (c + \delta^2)(m - 1)g(X, Y).$$

Thus $g(R^*(X, Y)Z, U) = 0$. This implies $\pi_\alpha R^*(X, Y)Z = R^*(X, Y)Z$, where π_α is the projection morphism of $\Gamma(S(TM))$ on $\Gamma(D^\alpha_\alpha)$ and $\pi_\alpha R^*$ is the curvature tensor of D^α_α. Thus M_α is an Einstein manifold of a constant curvature $(c + \delta^2)$. Therefore, M is locally a product $L \times M_\alpha \times M_\beta$, where M_α is an $(m - 1)$-dimensional Einstein Riemannian space form of a constant curvature $(c + \delta^2)$ and M_β is a spacelike curve in M. In case $s = 0$, we get $\alpha = \beta = 0$, $A^\alpha_\alpha = B = 0$ and $D^\alpha_\alpha = D^\beta_\beta = S(TM)$. Since M is screen conformal, we also have $C = A_\lambda = 0$. Thus M^* is totally geodesic. Using (2.4), we have

$$R^*(X, Y)Z = (c + \delta^2)\{g(Y, Z)X - g(X, Z)Y\}$$

for all $X, Y, Z \in \Gamma(S(TM))$. Thus M is locally a product $L \times M^* \times \{x\}$, where M^* is an m-dimensional Einstein Riemannian space form of a constant curvature $(c + \delta^2)$ and $\{x\}$ is a point. In these cases, since $(c + \delta^2) = \frac{2}{m - 1}$, we have $\text{sgn}(c + \delta^2) = \text{sgn} \gamma$. Thus M_α and M^* are isometric to spheres (if $\gamma > 0$) or hyperbolic spaces (if $\gamma = 0$) or Euclidean spaces (if $\gamma < 0$).

Corollary 3.3. Let $(M, g, S(TM))$ be a screen conformal Einstein half lightlike submanifold of a Lorentzian space form $(M^{m+3}(c), \bar{g})$, $m > 2$, with a Killing coscreen distribution. Then M is locally a product manifold $L \times M_\alpha \times M_\beta$, where L is a null curve and M_α and M_β are totally umbilical leaves of some distributions of M:

1. If $\gamma \neq 0$, either M_α or M_β is an m-dimensional Riemannian space form which is isometric to a sphere ($\gamma > 0$) or a hyperbolic space ($\gamma < 0$) and the other is a point in M.
2. If $\gamma = 0$, M_α is an $(m - 1)$ or m-dimensional Euclidean space and M_β is a spacelike curve or a point in M.

Proof. (1) Let $\gamma \neq 0$: In case $s^2 \neq 4F$. If $0 < p < m$, then $\gamma = 0$. Thus $p = 0$ or $p = m$. Either M_α or M_β is a totally umbilical Riemannian manifold M^* of constant curvature $2\varphi\alpha^2$ or $2\varphi\alpha^2$ respectively due to $\delta = c = 0$. Thus M is locally a product manifold $L \times M^* \times \{x\}$ or $L \times \{x\} \times M^*$, where M^* is an m-dimensional totally umbilical Riemannian manifold of constant curvature $2\gamma = 2\varphi\alpha^2$ or $2\gamma = 2\varphi\alpha^2$ which is isometric to a sphere or a hyperbolic space according to the sign of γ and $\{x\}$ is a point. The case $s^2 = 4F$ is not appear because $m > 2$.

(2) Let \(\gamma = 0 \): In case \(s \neq 0 \). Then \(\alpha = 0 \) and \(\beta = s \). Since \(p = m - 1 \), \(M_\alpha \) is an \((m - 1)\)-dimensional Riemannian manifold of curvature \(c + \delta^2 = 0 \) and \(M_\beta \) is a spacelike curve. Thus \(M \) is locally a product manifold \(L \times M_\alpha \times M_\beta \), where \(M_\alpha \) is an \((m - 1)\)-dimensional Euclidean space and \(M_\beta \) is a spacelike curve in \(M \). In case \(s = 0 \). Then \(\alpha = \beta = 0 \) and \(D_\alpha^* = D_\beta^* = S(TM) \). Thus \(M^* \) is an \(m \)-dimensional Riemannian manifold of curvature \(c + \delta^2 = 0 \). Thus \(M \) is locally a product \(L \times M^* \times \{x\} \) where \(M^* \) is an \(m \)-dimensional Euclidean space, \(L \) is a null curve and \(\{x\} \) is a point.

\[n \]

Example 3. Consider a surface \(M \) in \(R^4_2 \) given by the equations

\[x_3 = \frac{1}{\sqrt{2}}(x_1 + x_2), \quad x_4 = \frac{1}{2}\ln(1 + (x_1 - x_2)^2). \]

Then \(TM = \text{Span}\{U, V\} \) and \(TM^\perp = \text{Span}\{\xi, u\} \), where we set

\[U = \sqrt{2}(1 + (x_1 - x_2)^2)\partial_1 + (1 + (x_1 - x_2)^2)\partial_3 + \sqrt{2}(x_1 - x_2)\partial_4, \]
\[V = \sqrt{2}(1 + (x_1 - x_2)^2)\partial_2 + (1 + (x_1 - x_2)^2)\partial_3 - \sqrt{2}(x_1 - x_2)\partial_4, \]
\[\xi = \partial_1 + \partial_2 + \sqrt{2}\partial_3, \]
\[u = 2(x_2 - x_1)\partial_2 + \sqrt{2}(x_2 - x_1)\partial_3 + (1 + (x_1 - x_2))\partial_4. \]

By direct calculations we check that \(\text{Rad}(TM) \) is a distribution on \(M \) of rank 1 spanned by \(\xi \). Hence \(M \) is a half-lightlike submanifold of \(R^4_2 \). Choose \(S(TM) \) and \(S(TM^\perp) \) spanned by \(V \) and \(u \) which are timelike and spacelike respectively.

We obtain the lightlike transversal vector bundle

\[\text{ltr}(TM) = \text{Span}\left\{ N = -\frac{1}{2}\partial_1 + \frac{1}{2}\partial_2 + \frac{1}{\sqrt{2}}\partial_3 \right\}, \]

and the transversal bundle \(tr(TM) = \text{Span}\{N, u\} \). Denote by \(\bar{\nabla} \) the Levi-Civita connection on \(R^4_2 \) and by straightforward calculations we obtain

\[\bar{\nabla}_V V = 2(1 + (x_1 - x_2)^2) \left\{ 2(x_2 - x_1)\partial_2 + \sqrt{2}(x_2 - x_1)\partial_3 + \partial_4 \right\}, \]
\[\bar{\nabla}_\xi V = 0, \quad \bar{\nabla}_X \xi = \bar{\nabla}_X N = 0, \quad \forall X \in \Gamma(TM). \]

Taking into account of Gauss and Weingarten formulae, we infer

\[B = 0, \quad A_\xi = 0, \quad A_x = 0, \quad \nabla X \xi = 0, \quad \tau(X) = \rho(X) = 0, \]
\[[D(X, \xi) = 0, \quad D(V, V) = 2, \quad \nabla X V = \frac{2\sqrt{2}(x_2 - x_1)^3}{1 + (x_1 - x_2)^2} X^2 V \]

for any \(X = X^1 \xi + X^2 V \) tangent to \(M \). As \(A_\xi X = A_x X = 0 \) for any \(X \in \Gamma(TM) \), \(M \) is a trivial screen conformal half lightlike submanifold of \(R^4_2 \). Since \(g(V, V) = -1 + (x_1 - x_2)^2 \) we have

\[D(V, V) = \delta g(V, V), \quad \text{where} \quad \delta = -\frac{2}{1 + (x_1 - x_2)^2}. \]
Therefore M is a screen conformal half lightlike submanifold of \mathbb{R}^4_2 with a conformal Killing coscreen distribution $S(TM^\perp)$. Thus M is locally a product manifold $M = L_1 \times L_2$, where L_1 is a null curve tangent to $\text{Rad}(TM)$ and L_2 is a timelike curve tangent to $S(TM)$.

References

Department of Mathematics
Dongguk University
Kyongju 780-714, Korea
E-mail address: jinhd@dongguk.ac.kr