CONGRUENCES OF THE WEIERSTRASS $\wp(x)$ AND $\wp''(x)(x = \frac{1}{2}, \frac{3}{2}, \frac{5}{2})$-FUNCTIONS ON DIVISORS

DAEYEOL KIM, AERAN KIM, AND HWASIN PARK

Abstract. In this paper, we find the coefficients for the Weierstrass $\wp(x)$ and $\wp''(x)(x = \frac{1}{2}, \frac{3}{2}, \frac{5}{2})$-functions in terms of the arithmetic identities appearing in divisor functions which are proved by Ramanujan ([23]). Finally, we reprove congruences for the functions $\mu(n)$ and $\nu(n)$ in Hahn’s article [11, Theorems 6.1 and 6.2].

1. Introduction

In a series of articles [18] Liouville stated many identities for general functions satisfying certain parity conditions. When specialized these yield results of number-theoretic interest. The Liouville identities are equivalent to identities among elliptic functions. In this article we considered the Weierstrass \wp-functions and identities of the basic hypergeometric series. Let $\sigma_s(N)$ denote the sum of sth power of the positive divisors of N, and let $\sigma_s(0) = \frac{1}{2}\zeta(-s)$, where $\zeta(s)$ is the Riemann Zeta-function. Ramanujan ([23]) wrote several formulas for

$$
\sigma_r(0)\sigma_s(N) + \sigma_r(1)\sigma_s(N - 1) + \cdots + \sigma_r(N)\sigma_s(0).
$$

Some of these convolution sums involving divisor functions had been considered earlier by Glaisher [8], [9], MacMahon [20, pp. 303–341], Melfi [21], Huard, Ou, Spearman and Williams [12], etc.

For $N, m, r, s, d \in \mathbb{Z}$ with $d, s > 0$ and $r \geq 0$, we define some necessary divisor functions and infinite products for later use, which appear in many areas of number theory:

$$
\sigma_{s,r}(N; m) = \sum_{d | N \text{ and } r \mod m} d^s,
$$

$$
\sigma(N) := \sigma_1(N) = \sum_{d | N} d,
$$

Received July 25, 2011; Revised May 16, 2012.

2010 Mathematics Subject Classification. 11A67.

Key words and phrases. Weierstrass $\wp(x)$ functions, convolution sums.

©2013 The Korean Mathematical Society
\[S_1 := \sum_{N \text{ odd}} \sigma_{1,1}(N;2)q^N, \]
\[S_2 := \sum_{N \geq 2 \text{ even}} \sigma_{1,1}(N;2)q^N, \]
\[(a; q)_\infty := (a)_\infty := \prod_{n \geq 0} (1 - aq^n).\]

In Section 2, we state the coefficients for \(\wp(\tau^2) \), \(\wp(\tau^2 + 1) \) and \(\wp(1/2) \) dealing with the summation of odd divisors and even divisors. They permit us to obtain \(\Delta(\tau) \) from \(g_2(\tau) \) and \(g_3(\tau) \) and to get the differences between roots.

In Section 3, it will be shown that the derivatives of the Weierstrass \(\wp \)-functions have the infinite \(q \)-series. We can retrieve the actual values of the coefficients belonging to \(q \)-series. Also, we introduce the tables about the coefficients of \(\wp'(x) \) for \(x = 1/2, \tau, \tau^2, \tau^3 \). Using the function \(p_r(n) \) by
\[
\sum_{n=0}^{\infty} p_r(n)q^n := \prod_{n=1}^{\infty} (1 - q^n)^r.
\]

Note that \(p_{-1}(n) = p(n) \), the ordinary partition function. A positive integer \(n \) has \(k \) colors if there are \(k \) copies of \(n \) available and all of them are viewed as distinct objects. Partitions of positive integers into parts with colors are called colored partitions. For example, if 1 is allowed to have 2 colors, say \(r \) (red), and \(g \) (green), then all colored partitions of 2 are \(2, 1_r + 1_g, 1_r + 1_g, 1_r + 1_g \). Setting \(p_{e,r}(n) \) and \(p_{o,r}(n) \) denote the number of \(r \)-colored partitions into an even (respectively, odd) number of distinct parts, it is easy to see that
\[
p_r(n) = p_{e,r}(n) - p_{o,r}(n),
\]
when \(r \) is a positive integer. In [11, Theorems 6.1 and 6.2], Hahn considered congruences for the function \(\mu(n) \) and \(\nu(n) \) which was defined by
\[
\sum_{n=1}^{\infty} \mu(n)q^n := \prod_{n=1}^{\infty} (1 - q^n)^8(1 - q^{2n})^8 \quad \text{and} \quad \sum_{n=0}^{\infty} \nu(n)q^n := \prod_{n=1}^{\infty} (1 - q^{2n})^8(1 + q^n)^8.\]

Using the function \(\wp''(\frac{\tau}{2}, \tau) \) and \(\wp''(\frac{\tau}{2}, \tau) \times (\wp(\tau) - \wp(\frac{\tau}{2}))^2 \), we prove
\[
\nu(n - 1) \equiv \sigma_3(n) \pmod{3} \quad \text{and} \quad \mu(3n - 1) \equiv 0 \pmod{3}.
\]
(Please see Remarks 3.9 and 3.12).

2. Divisor functions

N. J. Fine’s list of identities of the basic hypergeometric series type appeared in [7]. While studying these identities, we found that some identities appeared more than once on the list, usually in similar form (see [3], [4]). In this section,
we state two identities that appeared in [7, pp. 78–79]:

\[
(2) \quad \frac{(q^2; q^4)_{\infty}^8}{(q; q^4)_{\infty}^8} = 1 + 8 \sum_{N=1}^{\infty} q^N (2 + (-1)^N) \sum_{\omega | N \omega \text{ odd}} \omega,
\]

\[
(3) \quad \frac{q(q^4; q^4)_{\infty}^8}{(q^2; q^2)_{\infty}^8} = \sum_{N \text{ odd}} \sigma(N) q^N.
\]

Let \(\Lambda_\tau = \mathbb{Z} + \tau \mathbb{Z} (\tau \in \mathfrak{H}) \) the complex upper half plane be a lattice and \(z \in \mathbb{C} \). The Weierstrass \(\wp \) function relative to \(\Lambda_\tau \) is defined by the series

\[
\wp(z; \Lambda_\tau) = \frac{1}{z^2} + \sum_{\omega \in \Lambda_\tau, \omega \neq 0} \left(\frac{1}{(z - \omega)^2} - \frac{1}{\omega^2} \right),
\]

and the Eisenstein series of weight 2\(k \) for \(\Lambda_\tau \) with \(k > 1 \) is the series

\[
G_{2k}(\Lambda_\tau) = \sum_{\omega \in \Lambda_\tau, \omega \neq 0} \omega^{-2k}.
\]

We used the notations \(\wp(z) \) and \(G_{2k} \) instead of \(\wp(z; \Lambda_\tau) \) and \(G_{2k}(\Lambda_\tau) \), respectively, when the lattice \(\Lambda_\tau \) has been fixed. Now, Laurent series for \(\wp(z) \) about \(z = 0 \) is given by

\[
\wp(z) = z^{-2} + \sum_{k=1}^{\infty} (2k + 1) G_{2k+2} z^{2k}.
\]

As is customary, by setting

\[
g_2(\tau) = g_2(\Lambda_\tau) = 60 G_4 \quad \text{and} \quad g_3(\tau) = g_3(\Lambda_\tau) = 140 G_6,
\]

the algebraic relation between \(\wp(z) \) and \(\wp'(z) \) becomes

\[
\wp'(z)^2 = 4 \wp(z)^3 - g_2(\tau) \wp(z) - g_3(\tau).
\]

Proposition 2.1 ([15, p. 251]). Let \(e_1 = \wp(\frac{1}{2}), \ e_2 = \wp(\frac{1}{3}) \) and \(e_3 = \wp(\frac{\tau + 1}{2}) \), where \(P_0 = \prod_{n=1}^{\infty} (1 - q^{2n}), \ P_1 = \prod_{n=1}^{\infty} (1 - q^{2n-1}), \ P_2 = \prod_{n=1}^{\infty} (1 + q^{2n}) \) and \(P_3 = \prod_{n=1}^{\infty} (1 + q^{2n-1}) \). Then,

\[\begin{align*}
(a) \quad e_2 - e_1 &= \pi^2 P_0^4 P_3^8, \\
(b) \quad e_2 - e_3 &= \pi^2 P_0^4 P_1^8, \\
(c) \quad e_3 - e_1 &= 2^4 \pi^2 q P_0^4 P_2^8.
\end{align*}\]

Let us recall

\[
\prod_{n=1}^{\infty} (1 - q^{2n-1}) = \prod_{n=1}^{\infty} \left(\frac{1 - q^n}{1 - q^{2n}} \right),
\]

\[
\prod_{n=1}^{\infty} (1 + q^{2n-1}) = \prod_{n=1}^{\infty} \left(\frac{1 - q^{2n}}{1 - q^n} \right) \left(\frac{1 - q^{2n}}{1 - q^{2n}} \right).
\]
\[
\prod_{n=1}^{\infty} (1 + q^{2n}) = \prod_{n=1}^{\infty} \frac{(1 - q^{4n})}{(1 - q^{2n})}.
\]

Equations (2), (3) and (4) suggest that

\[
\wp(\tau/2) = -\frac{\pi^2}{3} \left(\frac{(q^2; q^2)_\infty^{20}}{(q^8; q^8)_\infty} + 16 \frac{q(q^4; q^4)_\infty^{8}}{(q^2; q^2)_\infty^{4}} \right)
\]

\[
= -\frac{\pi^2}{3} \left(1 + 8 \sum_{N=1}^{\infty} q^N (2 + (-1)^N) \sum_{\omega | N \text{ odd}} \omega + 16 \sum_{N \text{ odd}} \sigma(N) q^N \right)
\]

\[
= -\frac{\pi^2}{3} \left(1 + 24 \sum_{N=1}^{\infty} q^N \sum_{\omega | N \text{ odd}} \omega \right)
\]

\[
= -\frac{\pi^2}{3} \left(1 + 24 \sum_{N=1}^{\infty} \sigma_{1,1}(N; 2) q^N \right)
\]

\[
= -\frac{\pi^2}{3} (1 + 24S_1 + 24S_2).
\]

Similarly, the relations (2) and (3) yield the following arithmetic results [13], [14]:

\[
\wp(\tau + 1/2) = -\frac{\pi^2}{3} \left(\frac{(q^2; q^2)_\infty^{20}}{(q^8; q^8)_\infty} - 32 \frac{q(q^4; q^4)_\infty^{8}}{(q^2; q^2)_\infty^{4}} \right)
\]

\[
= -\frac{\pi^2}{3} (1 - 24S_1 + 24S_2),
\]

\[
\wp(1/2) = 2\frac{\pi^2}{3} \left(\frac{(q^2; q^2)_\infty^{20}}{(q^8; q^8)_\infty} - 8 \frac{q(q^4; q^4)_\infty^{8}}{(q^2; q^2)_\infty^{4}} \right)
\]

\[
= 2\frac{\pi^2}{3} (1 + 24S_2),
\]

\[
g_2(\tau) = 4\frac{\pi^4}{9} [3(1 + 24S_2)^2 + 24^2 S_1^2],
\]

and

\[
g_3(\tau) = \frac{8\pi^6}{27} [(1 + 24S_2)^3 - 24^3 S_1^3 (1 + 24S_2)].
\]

We consider the formula for the modular discriminant \(\Delta(\tau) = (2\pi)^{12} \eta(\tau)^{24} = g_2(\tau)^3 - 27g_3(\tau)^2\), where the Dedekind \(\eta\)-function is given by the infinite
CONGRUENCES OF $\wp(x)$ AND $\wp'(x)(x = \tau, 2\tau, \frac{3+\tau}{2})$-FUNCTIONS ON DIVISORS 245

The product $\eta(\tau) = q^{\frac{1}{24}}(q^2; q^2)_{\infty}$ ([26]). From (8) and (9) we see that

$$\Delta(\tau) = g_2(\tau)^3 - 27g_3(\tau)^2$$

$$= \left\{ \frac{4\pi^4}{9} [3(1 + 24S_2)^2 + 24^2S_1^2] \right\}^3 - 27 \left\{ \frac{8\pi^6}{27} [(1 + 24S_2)^3 - 24^2S_1^2(1 + 24S_2)] \right\}^2$$

$$= 4096\pi^4S_1^2(-1 + 8S_1 - 24S_2)^2(1 + 8S_1 + 24S_2)^2.$$

Calculating the differences between roots, writing them in terms of infinite sums, and using (5), (6) and (7), we get

(11)
$$\wp\left(\frac{1}{2}\right) - \wp\left(\frac{\tau}{2}\right) := \pi^2 \sum_{n=0}^{\infty} a_n q^n$$

$$= \frac{2\pi^2}{3} (1 + 24S_2) + \frac{\pi^2}{3} (1 + 24S_1 + 24S_2)$$

$$= \pi^2 \left(1 + 8 \sum_{N \text{ odd}} \sigma_{1,1}(N; 2)q^N + 24 \sum_{N \geq 2 \text{ even}} \sigma_{1,1}(N; 2)q^N \right),$$

(12)
$$\wp\left(\frac{1}{2}\right) - \wp\left(\frac{\tau + 1}{2}\right) := \pi^2 \sum_{n=0}^{\infty} b_n q^n$$

$$= \frac{2\pi^2}{3} (1 + 24S_2) + \frac{\pi^2}{3} (1 - 24S_1 + 24S_2)$$

$$= \pi^2 \left(1 - 8 \sum_{N \text{ odd}} \sigma_{1,1}(N; 2)q^N + 24 \sum_{N \geq 2 \text{ even}} \sigma_{1,1}(N; 2)q^N \right),$$

and

(13)
$$\wp\left(\frac{\tau + 1}{2}\right) - \wp\left(\frac{\tau}{2}\right) := \pi^2 \sum_{n=0}^{\infty} c_n q^n$$

$$= -\frac{\pi^2}{3} (1 - 24S_1 + 24S_2) + \frac{\pi^2}{3} (1 + 24S_1 + 24S_2)$$

$$= \pi^2 \sum_{N \text{ odd}} 16\sigma_{1,1}(N; 2)q^N.$$

If we define

$$H(q) := \frac{1}{16} \left(\prod_{n=1}^{\infty} \left(\frac{1 - q^n}{1 + q^n} \right)^8 - 1 \right) := \sum_{n=0}^{\infty} h(n)q^n,$$

then by

(14)
$$\prod_{n=1}^{\infty} \left(\frac{1 - q^n}{1 + q^n} \right)^8 = 1 + 16 \sum_{N \geq 1} q^N \sum_{d | N} (-1)^d d^3$$
as in [7, p. 77], we find that

\[
H(q) = \sum_{N \geq 1} (\sigma_{3,0}(N; 2) - \sigma_{3,1}(N; 2))q^N.
\]

Thus, we can obtain the table below for the coefficients appearing in the infinite sum with positive integers for \(0 \leq N \leq 51\).

<table>
<thead>
<tr>
<th>N</th>
<th>a_N</th>
<th>b_N</th>
<th>c_N</th>
<th>h_N</th>
<th>N</th>
<th>a_N</th>
<th>b_N</th>
<th>c_N</th>
<th>h_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>26</td>
<td>336</td>
<td>336</td>
<td>0</td>
<td>15386</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>-8</td>
<td>16</td>
<td>-1</td>
<td>27</td>
<td>320</td>
<td>-320</td>
<td>640</td>
<td>-20440</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>24</td>
<td>0</td>
<td>7</td>
<td>28</td>
<td>192</td>
<td>192</td>
<td>0</td>
<td>24424</td>
</tr>
<tr>
<td>3</td>
<td>32</td>
<td>-32</td>
<td>64</td>
<td>-28</td>
<td>29</td>
<td>240</td>
<td>-240</td>
<td>480</td>
<td>-24390</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>24</td>
<td>0</td>
<td>71</td>
<td>30</td>
<td>576</td>
<td>576</td>
<td>0</td>
<td>24696</td>
</tr>
<tr>
<td>5</td>
<td>48</td>
<td>-48</td>
<td>96</td>
<td>-126</td>
<td>31</td>
<td>256</td>
<td>-256</td>
<td>512</td>
<td>-29792</td>
</tr>
<tr>
<td>6</td>
<td>96</td>
<td>96</td>
<td>0</td>
<td>196</td>
<td>32</td>
<td>24</td>
<td>24</td>
<td>0</td>
<td>37447</td>
</tr>
<tr>
<td>7</td>
<td>64</td>
<td>-64</td>
<td>128</td>
<td>-344</td>
<td>33</td>
<td>384</td>
<td>-384</td>
<td>768</td>
<td>-37296</td>
</tr>
<tr>
<td>8</td>
<td>24</td>
<td>24</td>
<td>0</td>
<td>583</td>
<td>34</td>
<td>432</td>
<td>432</td>
<td>0</td>
<td>34938</td>
</tr>
<tr>
<td>9</td>
<td>104</td>
<td>-104</td>
<td>208</td>
<td>-757</td>
<td>35</td>
<td>384</td>
<td>-384</td>
<td>768</td>
<td>-43344</td>
</tr>
<tr>
<td>10</td>
<td>144</td>
<td>144</td>
<td>0</td>
<td>882</td>
<td>36</td>
<td>312</td>
<td>312</td>
<td>0</td>
<td>53747</td>
</tr>
<tr>
<td>11</td>
<td>96</td>
<td>-96</td>
<td>192</td>
<td>-1332</td>
<td>37</td>
<td>304</td>
<td>-304</td>
<td>608</td>
<td>-50654</td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>96</td>
<td>0</td>
<td>1988</td>
<td>38</td>
<td>480</td>
<td>480</td>
<td>0</td>
<td>48020</td>
</tr>
<tr>
<td>13</td>
<td>112</td>
<td>-112</td>
<td>224</td>
<td>-2198</td>
<td>39</td>
<td>448</td>
<td>-448</td>
<td>896</td>
<td>-61544</td>
</tr>
<tr>
<td>14</td>
<td>192</td>
<td>192</td>
<td>0</td>
<td>2408</td>
<td>40</td>
<td>144</td>
<td>144</td>
<td>0</td>
<td>73458</td>
</tr>
<tr>
<td>15</td>
<td>192</td>
<td>-192</td>
<td>384</td>
<td>-3528</td>
<td>41</td>
<td>336</td>
<td>-336</td>
<td>672</td>
<td>-68922</td>
</tr>
<tr>
<td>16</td>
<td>24</td>
<td>24</td>
<td>0</td>
<td>4679</td>
<td>42</td>
<td>768</td>
<td>768</td>
<td>0</td>
<td>67424</td>
</tr>
<tr>
<td>17</td>
<td>144</td>
<td>-144</td>
<td>288</td>
<td>-4914</td>
<td>43</td>
<td>352</td>
<td>-352</td>
<td>704</td>
<td>-79508</td>
</tr>
<tr>
<td>18</td>
<td>312</td>
<td>312</td>
<td>0</td>
<td>5299</td>
<td>44</td>
<td>288</td>
<td>288</td>
<td>0</td>
<td>94572</td>
</tr>
<tr>
<td>19</td>
<td>160</td>
<td>-160</td>
<td>320</td>
<td>-6860</td>
<td>45</td>
<td>624</td>
<td>-624</td>
<td>1248</td>
<td>-95382</td>
</tr>
<tr>
<td>20</td>
<td>144</td>
<td>144</td>
<td>0</td>
<td>8946</td>
<td>46</td>
<td>576</td>
<td>576</td>
<td>0</td>
<td>85176</td>
</tr>
<tr>
<td>21</td>
<td>256</td>
<td>-256</td>
<td>512</td>
<td>-9632</td>
<td>47</td>
<td>384</td>
<td>-384</td>
<td>768</td>
<td>-103824</td>
</tr>
<tr>
<td>22</td>
<td>288</td>
<td>288</td>
<td>0</td>
<td>9324</td>
<td>48</td>
<td>96</td>
<td>96</td>
<td>0</td>
<td>1810412</td>
</tr>
<tr>
<td>23</td>
<td>192</td>
<td>-192</td>
<td>384</td>
<td>-12168</td>
<td>49</td>
<td>456</td>
<td>-456</td>
<td>912</td>
<td>-117993</td>
</tr>
<tr>
<td>24</td>
<td>96</td>
<td>96</td>
<td>0</td>
<td>16324</td>
<td>50</td>
<td>744</td>
<td>744</td>
<td>0</td>
<td>110257</td>
</tr>
<tr>
<td>25</td>
<td>248</td>
<td>-248</td>
<td>496</td>
<td>-15751</td>
<td>51</td>
<td>576</td>
<td>-576</td>
<td>1152</td>
<td>-137592</td>
</tr>
</tbody>
</table>

Therefore, we summarize the above results obtained from (11) to (14) as follows.

Proposition 2.2. Let \(n \) be non-negative integers and let \(\varphi(\frac{1}{2}) - \varphi(\frac{\tau}{2}) := \pi^2 \sum_{n=0}^\infty a_n q^n \), \(\varphi(\frac{1}{2}) - \varphi(\frac{\tau+1}{2}) := \pi^2 \sum_{n=0}^\infty b_n q^n \), \(\varphi(\frac{\tau}{2}) - \varphi(\frac{\tau+1}{2}) := \pi^2 \sum_{n=0}^\infty c_n q^n \) and \(H(q) := \frac{1}{16} \left(\prod_{n=1}^\infty \left(\frac{1-q^n}{1+q^n} \right)^8 - 1 \right) := \sum_{n=0}^\infty h(n) q^n \). The following assertions hold:

(a) \(a_n - b_n = c_n \).
(b) \(a_{2n-1} = -b_{2n-1} \) and \(a_{2n} = b_{2n} \) and \(c_{2n} = 0 \).

(c) \(h(0) = 0 \) and \(h(n) = \sigma_{3,1}(n; 2) - \sigma_{3,0}(n; 2) \) \((n > 0)\).

By (11), (12), (13), (15) and Proposition 2.2, we see the following result.

Corollary 2.3. Let \(p \) be any odd positive integer and \(n > 0 \).

(a) \(a_{2^n} = 24 \) and \(a_{2^np} = 24(p + 1) \).

(b) \(a_p = 8(p + 1) \) and \(c_p = 16(p + 1) \).

Ramanujan’s theta functions \(\varphi(q) \), \(\psi(q) \) and \(f(-q) \) [1, Entry 22, p. 36] are defined, for \(|q| < 1\), by

\[
\varphi(q) := \sum_{n=-\infty}^{\infty} q^{n^2} = \frac{(-q; q^2)_{\infty}(q^2; q^2)_{\infty}}{(q; q^2)_{\infty}(-q^2; q^2)_{\infty}}
\]

\[
\psi(q) := \sum_{n=0}^{\infty} q^{n(n+1)/2} = \frac{(q^2; q^2)_{\infty}}{(q; q^2)_{\infty}}
\]

and

\[
f(-q) := \sum_{n=-\infty}^{\infty} (-1)^n q^{\frac{n(n+1)}{2}} = (q; q)_{\infty}.
\]

Here, the product representations arise from the Jacobi triple product identity.

From (16), (17), (18), Proposition 2.1 and Proposition 2.2, we can deduce the following.

Remark 2.4.

(a) \(e_2 - e_1 = \pi^2 \varphi^4(q) = \pi^2 \sum_{n=0} a_n q^n \).

(b) \(e_2 - e_3 = \pi^2 \varphi^4(-q) = \pi^2 \sum_{n=0} b_n q^n \).

Let us introduce the triangular numbers. It is immediate from the definitions of \(\psi(q) \) and \(\varphi(q) \) in (16) and (17), respectively, that if

\[
\varphi^s(q) := \sum_{n=0}^{\infty} r_s(n) q^n
\]

and

\[
\phi^s(q) := \sum_{n=0}^{\infty} \delta_s(n) q^n,
\]

then \(r_s(n) \) and \(\delta_s(n) \) are the number of representations of \(n \) as a sum of \(s \) square and \(s \) triangular numbers, respectively. Clearly, \(r_s(0) = \delta_s(0) = 1 \). Here, for each nonnegative integer \(n \), the triangular number \(T_n \) is defined by

\[
T_n := \frac{n(n + 1)}{2}.
\]
Proposition 2.5. In [11, Theorem 5.1(5.3)], for each positive integer \(n \), we have
\[
r_4(n) = 16\hat{\sigma}(\frac{n}{2}) + 8\hat{\sigma}(n),
\]
with \(\hat{\sigma}(n) = \sum_{d|n}(-1)^{\frac{n}{d}-1}d^n \).

Combining (11) with Remark 2.4(a) and applying (16) to (15), we can get the following.

Corollary 2.6. If \(r_4(n), r_8(n) \) are defined by (19), then
(a) \[
r_4(n) = \begin{cases} 8\sigma_1(n;2) & n \text{ odd} \\ 24\sigma_1(n;2) & n \text{ even} \end{cases}
\]
(b) \[
r_8(n) = \begin{cases} 16\sigma_3(n;2) & n \text{ odd} \\ 16(\sigma_3(n;2) - \sigma_3(n;2)) & n \text{ even} \end{cases}
\]
which is also described in [11, p. 17].

3. The coefficients of \(\wp'' \)-functions

Formula (1) is appeared in several articles ([2], [6, p. 338], [9], [10], [16, p. 678], [17, p. 106], [19, p. 81], [22, p. 146], [23], [24, p. 115], and [27]). Using (5), (6), (7), and (8), we can obtain
\[
5\sigma_3(M) = \sigma_1,1(M;2) + 12\sum_{k=1}^{M-1}\sigma_1,1(k;2)\sigma_1,1(M-k;2)
\]
\[
+ 4\sum_{k=1}^{M-1}\sigma_1,1(2(k-1);2)\sigma_1,1(2M-2k+1;2)
\]
(21)
(see [14]).

Glaisher [5, p. 300] and Ramanujan [23] proved that
\[
\sigma(1)\sigma(2n-1) + \sigma(3)\sigma(2n-3) + \cdots + \sigma(2n-1)\sigma(1) = \frac{1}{8}[\sigma_3(2n) - \sigma_3(n)].
\]
(22)

From (21) and (22), we find that
\[
5\sum_{k=1}^{M-1}\sigma_1,1(k;2)\sigma_1,1(M-k;2) = \frac{1}{24}[11\sigma_3(M) - \sigma_3(2M) - 2\sigma_1,1(M;2)]
\]
(23)
(see [14]).

In this section, we will find the coefficients of the Weierstrass \(\wp''(z) \)-functions using (23). Recall ([25], p. 63) that we have expressed \(\wp''(\frac{1}{7}, \tau), \wp''(\frac{5}{7}, \tau) \) and \(\wp''(\frac{3}{7}, \tau) \).
We see from (5), (6) and (7) that
\[
\wp''(\frac{\tau}{2}, \tau) = 2(e_1 - e_2)(e_1 - e_3)
\]
\[
= 2\left[-\frac{\pi^2}{3}(1 + 24S_1 + 24S_2) - \frac{2\pi^2}{3}(1 + 24S_2)\right]
\times \left[-\frac{\pi^2}{3}(1 + 24S_1 + 24S_2) + \frac{\pi^2}{3}(1 - 24S_1 + 24S_2)\right]
\]
\[
= 32\pi^4 S_1(1 + 8S_1 + 24S_2)
\]
\[
(24)
\]
\[
= 32\pi^4 \sum_{M=1}^{\infty} \sigma_{1,1}(2M - 1; 2)q^{2M-1}
\]
\[
+ 256\pi^4 \sum_{M,N=1}^{\infty} \sigma_{1,1}(2M - 1; 2)\sigma_{1,1}(2N - 1; 2)q^{2(M+N-1)}
\]
\[
+ 768\pi^4 \sum_{M,N=1}^{\infty} \sigma_{1,1}(2M - 1; 2)\sigma_{1,1}(2N; 2)q^{2(M+N)-1}.
\]

Then, using (23), we replace \(n \) by \(n = 2L - 1 \) to obtain
\[
\sum_{k=1}^{L-1} \sigma_{1,1}(2k - 1)\sigma_{1,1}(2L - 1 - (2k - 1))
\]
\[
= \frac{1}{2} \sum_{k=1}^{2L-2} \sigma_{1,1}(k)\sigma_{1,1}(2L - 1 - k)
\]
\[
= \frac{1}{48}(11\sigma_3(2L - 1) - \sigma_3(4L - 2) - 2\sigma_{1,1}(2L - 1; 2))
\]
\[
= \frac{1}{24}(\sigma_3(2L - 1) - \sigma(2L - 1)).
\]

We observe that \(\sigma_3 \) is multiplicative, that is,
\[
11\sigma_3(2L+1) - \sigma_3(4L+2) = 11\sigma_3(2L+1) - \sigma_3(2L+1) = 2\sigma_3(2L+1).
\]

Comparing (23), (22), (26) with (24), we have
\[
\wp''(\frac{\tau}{2}, \tau) = 32\pi^4 \left\{ \sum_{L=1}^{\infty} \sigma_3(2L - 1)q^{2L-1} + \sum_{K=1}^{\infty} [\sigma_3(2K) - \sigma_3(K)]q^{2K} \right\}
\]
\[
(27)
\]
From (2), (3) and (27) it is easy to see that
\[
\wp''(\frac{\tau}{2}, \tau) = 32\pi^4 q\left(\frac{q^2; q^2}{(q)^8}\right)_{\infty}
\]
\[
= 32\pi^4 \left(\sum_{n=1}^{\infty} \sigma_3(n)q^n - \sum_{n=1}^{\infty} \sigma_3(n)q^{2n}\right).
\]

Summarizing the above results, obtained from (23) to (28) are as follow.
Theorem 3.1. Let \(\varphi''(\frac{1}{2}, \tau) := \pi^4 \sum_{n=0}^\infty d_n q^n \) and let \(2n = 2^l Q \) be an integer with \(Q \) odd.

(a) \(\varphi''(\frac{1}{2}, \tau) = 32 \pi^4 q^{\frac{(\tau^2 - \tau^2)^{16}}{9q^0}} \).
(b) \(d_0 = 0 \).
(c) \(d_{2n-1} = 32 \sigma_3(2n - 1) \).
(d) \(d_{2l}Q = 32 \cdot 8^l \sigma_3(Q) \).

And let us evaluate \(\varphi''(1, \tau) = 2(e_2 - e_1)(e_2 - e_3) \)

\[
\begin{align*}
&= 2 \left[\frac{2\pi^2}{3} (1 + 24S_2) + \frac{\pi^2}{3} (1 + 24S_1 + 24S_2) \right] \\
&\times \left[\frac{2\pi^2}{3} (1 + 24S_2) + \frac{\pi^2}{3} (1 - 24S_1 + 24S_2) \right] \\
&= 2\pi^4 \left[-64 \left(\sum_{M=1}^\infty \sigma_{1,1}(2M - 1; 2)q^{2M-1} \right) \left(\sum_{N=1}^\infty \sigma_{1,1}(2N - 1; 2)q^{2N-1} \right) \\
&+ \left(1 + 24 \sum_{L=1}^\infty \sigma_{1,1}(2L; 2)q^{2L} \right) \left(1 + 24 \sum_{K=1}^\infty \sigma_{1,1}(2K; 2)q^{2K} \right) \right] \\
&= 2\pi^4 + 96\pi^4 \sum_{L=1}^\infty \sigma_{1,1}(2L; 2)q^{2L} \\
&\quad - 128\pi^4 \sum_{M,N=1}^\infty \sigma_{1,1}(2M - 1; 2)\sigma_{1,1}(2N - 1; 2)q^{2(M+N-1)} \\
&\quad + 1152\pi^4 \sum_{K,L=1}^\infty \sigma_{1,1}(L; 2)\sigma_{1,1}(K; 2)q^{2(L+K)}.
\end{align*}
\]

Similarly, we can use the Glaisher’s proof (22) for the term

\[
\sum_{M,N=1}^\infty \sigma_{1,1}(2M - 1; 2)\sigma_{1,1}(2N - 1; 2)
\]

and (23) with \(M = N + 1 \) for the term

\[
\sum_{K,L=1}^\infty \sigma_{1,1}(L; 2)\sigma_{1,1}(K; 2).
\]

At last, we get

\[
\varphi''(\frac{1}{2}, \tau) = 2\pi^4 + \pi^4 \sum_{N=1}^\infty [544\sigma_3(N) - 64\sigma_3(2N)]q^{2N}.
\]

Theorem 3.2. Let \(\varphi''(\frac{1}{2}, \tau) := \pi^4 \sum_{n=0}^\infty e_n q^n \) and let \(2n = 2^l Q \) be an integer with \(Q \) odd.
Let \(Q \) with \(\mathcal{P} \).

Corollary 3.4. Let \(N \) be any non-negative integer.

(a) If \(N \equiv 2 \) (mod 4), then \(e_N < 0 \) and \(e_N \equiv 0 \) (mod 32).
Corollary 3.5. (a) If $N = 2k - 1$, then $d_N = -f_N$.

(b) If $N \equiv 0 \pmod{4}$, then $e_N > 0$ and $e_N \equiv 0 \pmod{32}$, where $N > 1$.

Proof. In (29), if $N = 2k - 1$ with $k \in \mathbb{N}$, then the coefficients of $q^{2(2k-1)}$ becomes like this:

$$e_{4k-2} = 544\sigma_3(2k-1) - 64\sigma_3(2(2k-1))$$

$$= 544\sigma_3(2k-1) - 64\sigma_3(2)\sigma_3(2k-1)$$

$$= -32\sigma_3(2k-1).$$

So, e_{4k-2} always has a negative sign and $e_{4k-2} \equiv 0 \pmod{32}$.

But for $N = 2k$, the coefficients of $q^{2(2k)}$ is $544\sigma_3(2k) - 64\sigma_3(2(2k))$. Let $k = 2^r\sigma Q$ with $r_1 \geq 0$ and Q be odd. Then,

$$544\sigma_3(2k) - 64\sigma_3(2(2k)) = 544\sigma_3(2^{r_1+1}Q) - 64\sigma_3(2^{r_1+2}Q)$$

$$= [544\sigma_3(2^{r_1+1}) - 64\sigma_3(2^{r_1+2})]\sigma_3(Q)$$

$$= 32[-2 \cdot 8^{r_1+2} + 15(8^{r_1+1} + 8^{r_1} + \cdots + 1)]\sigma_3(Q)$$

$$= 32 \cdot \frac{8^{r_1+2} - 15}{7}\sigma_3(Q).$$

Since $r_1 \geq 0$, so $544\sigma_3(2k) - 64\sigma_3(2(2k)) > 0$. And $544\sigma_3(2k) - 64\sigma_3(2(2k)) = 32[-2 \cdot 8^{r_1+2} + 15(8^{r_1+1} + 8^{r_1} + \cdots + 1)]\sigma_3(Q)$ shows that $e_{4k} \equiv 0 \pmod{32}$.

Now, let us investigate the relation of coefficients of $\varphi''(\frac{1}{2}, \tau)$ and $\varphi''(\frac{2^k-1}{2}, \tau)$ in (27) and (30), respectively.

Theorem 3.6. Let $(\varphi(\frac{1}{2}) - \varphi(\frac{x}{2}))^2 := \pi^4 \sum_{n=0}^\infty \alpha_n q^n$, $(\varphi(\frac{1}{4}) - \varphi(\frac{x+1}{4}))^2 := \pi^4 \sum_{n=0}^\infty \beta_n q^n$ and $(\varphi(\frac{2^k-1}{2}) - \varphi(\frac{x}{2}))^2 := \pi^4 \sum_{n=0}^\infty \gamma_n q^n$. Then we get the following.

(a)

$$\alpha_n = \begin{cases} 1 & n = 0 \\ 16\sigma_3(n) & n \text{ odd} \\ 256\sigma_3(\frac{n}{2}) - 16\sigma_3(n) & n \text{ even.} \end{cases}$$

(b)

$$\beta_n = \begin{cases} 1 & n = 0 \\ -16\sigma_3(n) & n \text{ odd} \\ 256\sigma_3(\frac{n}{2}) - 16\sigma_3(n) & n \text{ even.} \end{cases}$$
\[
\gamma_n = \begin{cases}
32\sigma_3(n) - 32\sigma_3(\frac{n}{2}) & \text{n even} \\
0 & \text{otherwise.}
\end{cases}
\]

Proof. (a) It follows from (11) that

\[
(\psi(1) - \psi(\frac{r}{2}))^2 = \pi^2 \left(1 + 8 \sum_{N \text{ odd}} \sigma_1(N;2)q^N + 24 \sum_{N \geq 2 \text{ even}} \sigma_1(N;2)q^N \right)^2
\]

\[
= \pi^4 \left(1 + 8 \sum_{n=1}^{\infty} \sigma_1(2n - 1;2)q^{2n-1} + 24 \sum_{k=1}^{\infty} \sigma_1(2k;2)q^{2k} \right)
\]

\[
N \quad \frac{dN}{N} \quad \frac{\sigma_3(N)}{N} \quad \frac{\sigma_1(N)}{N} \\
0 \quad 0
\]

<table>
<thead>
<tr>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>21</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>23</td>
</tr>
</tbody>
</table>
\[
\times \left(1 + 8 \sum_{m=1}^{\infty} \sigma_{1,1}(2m - 1; 2)q^{2m-1} + 24 \sum_{l=1}^{\infty} \sigma_{1,1}(2l; 2)q^{2l} \right)
\]
\[
= \pi^4 \left[1 + 16 \sum_{n=1}^{\infty} \sigma_{1,1}(2n - 1; 2)q^{2n-1} + 48 \sum_{k=1}^{\infty} \sigma_{1,1}(2k; 2)q^{2k} \\
+ 64 \sum_{n,m=1}^{\infty} \sigma_{1,1}(2n - 1; 2)\sigma_{1,1}(2m - 1; 2)q^{2(n+m-1)} \\
+ 384 \sum_{k,m=1}^{\infty} \sigma_{1,1}(2k; 2)\sigma_{1,1}(2m - 1; 2)q^{2(k+m)-1} \\
+ 576 \sum_{k,l=1}^{\infty} \sigma_{1,1}(2k; 2)\sigma_{1,1}(2l; 2)q^{2(k+l)} \right].
\]

It follows from (22) that
\[
\sum_{n,m=1}^{\infty} \sigma_{1,1}(2n - 1; 2)\sigma_{1,1}(2m - 1; 2)q^{2(n+m-1)} \\
= \sum_{M=1}^{\infty} \sum_{k=1}^{M} \sigma_{1,1}(2k - 1; 2)\sigma_{1,1}(2(M - k) + 1; 2)q^{2M} \\
= \sum_{M=1}^{\infty} \frac{1}{8}[\sigma_3(2M) - \sigma_3(M)]q^{2M},
\]
from (25) that
\[
\sum_{k,m=1}^{\infty} \sigma_{1,1}(2k; 2)\sigma_{1,1}(2m - 1; 2)q^{2(k+m)-1} \\
= \sum_{M=1}^{\infty} \sum_{n=1}^{M} \sigma_{1,1}(2n; 2)\sigma_{1,1}(2(M - n) + 1; 2)q^{2M+1} \\
= \sum_{M=1}^{\infty} \frac{1}{24}[\sigma_3(2M + 1) - \sigma_3(2M + 1)]q^{2M+1},
\]
and from (23) that
\[
\sum_{k,l=1}^{\infty} \sigma_{1,1}(2k; 2)\sigma_{1,1}(2l; 2)q^{2(k+l)} \\
= \sum_{k,l=1}^{\infty} \sigma_{1,1}(k; 2)\sigma_{1,1}(l; 2)q^{2(k+l)} \\
= \sum_{M=1}^{\infty} \sum_{n=1}^{M} \sigma_{1,1}(n; 2)\sigma_{1,1}(M + 1 - n; 2)q^{2(M+1)}
\]
CONGRUENCES OF $\wp(x)$ AND $\wp'(x) = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}$-FUNCTIONS ON DIVISORS

$$\frac{1}{24} \sum_{M=1}^{\infty} [11\sigma_3(M+1) - \sigma_3(2M+1) - 2\sigma_{1,1}(M+1; 2)]q^{2(M+1)},$$

and thus we can obtain the desired result.

(b) In a similar manner like (a).

(c) Using (13) and (22), we find, upon direct calculation, that

$$\left(\wp\left(\frac{\tau+1}{2}\right) - \wp\left(\frac{\tau}{2}\right) \right)^2 = \left(\pi^2 \sum_{N \text{ odd}} 16\sigma_{1,1}(N; 2)q^N \right)^2$$

$$= 256\pi^4 \sum_{n,m=1}^{\infty} \sigma_{1,1}(2n-1; 2)\sigma_{1,1}(2m-1; 2)q^{2(n+m-1)}. \square$$

Thus, let us make a table about $\frac{1}{16}\alpha_N$, $\frac{1}{16}\beta_N$ and $\frac{1}{16}\gamma_N$ for $0 \leq N \leq 51$.

<table>
<thead>
<tr>
<th>N</th>
<th>$\frac{1}{16}\alpha_N$</th>
<th>$\frac{1}{16}\beta_N$</th>
<th>$\frac{1}{16}\gamma_N$</th>
<th>N</th>
<th>$\frac{1}{16}\alpha_N$</th>
<th>$\frac{1}{16}\beta_N$</th>
<th>$\frac{1}{16}\gamma_N$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>26</td>
<td>15386</td>
<td>15386</td>
<td>35168</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>27</td>
<td>20440</td>
<td>-20440</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>7</td>
<td>16</td>
<td>28</td>
<td>24424</td>
<td>24424</td>
<td>44032</td>
</tr>
<tr>
<td>3</td>
<td>28</td>
<td>-28</td>
<td>0</td>
<td>29</td>
<td>24390</td>
<td>-24390</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>71</td>
<td>71</td>
<td>128</td>
<td>30</td>
<td>24696</td>
<td>24696</td>
<td>56448</td>
</tr>
<tr>
<td>5</td>
<td>126</td>
<td>-126</td>
<td>0</td>
<td>31</td>
<td>29792</td>
<td>-29792</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>196</td>
<td>196</td>
<td>448</td>
<td>32</td>
<td>37447</td>
<td>37447</td>
<td>65536</td>
</tr>
<tr>
<td>7</td>
<td>344</td>
<td>-344</td>
<td>0</td>
<td>33</td>
<td>37296</td>
<td>-37296</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>583</td>
<td>583</td>
<td>1024</td>
<td>34</td>
<td>34398</td>
<td>34398</td>
<td>78624</td>
</tr>
<tr>
<td>9</td>
<td>757</td>
<td>-757</td>
<td>0</td>
<td>35</td>
<td>43344</td>
<td>-43344</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>882</td>
<td>882</td>
<td>2016</td>
<td>36</td>
<td>53747</td>
<td>53747</td>
<td>96896</td>
</tr>
<tr>
<td>11</td>
<td>1332</td>
<td>-1332</td>
<td>0</td>
<td>37</td>
<td>50654</td>
<td>-50654</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>1988</td>
<td>1988</td>
<td>3584</td>
<td>38</td>
<td>48020</td>
<td>48020</td>
<td>109760</td>
</tr>
<tr>
<td>13</td>
<td>2198</td>
<td>-2198</td>
<td>0</td>
<td>39</td>
<td>61544</td>
<td>-61544</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>2408</td>
<td>2408</td>
<td>5504</td>
<td>40</td>
<td>87858</td>
<td>87858</td>
<td>129024</td>
</tr>
<tr>
<td>15</td>
<td>3528</td>
<td>-3528</td>
<td>0</td>
<td>41</td>
<td>68922</td>
<td>-68922</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>4679</td>
<td>4679</td>
<td>8192</td>
<td>42</td>
<td>67208</td>
<td>67208</td>
<td>154544</td>
</tr>
<tr>
<td>17</td>
<td>4914</td>
<td>-4914</td>
<td>0</td>
<td>43</td>
<td>79508</td>
<td>-79508</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>5299</td>
<td>5299</td>
<td>12112</td>
<td>44</td>
<td>93612</td>
<td>93612</td>
<td>172416</td>
</tr>
<tr>
<td>19</td>
<td>6860</td>
<td>-6860</td>
<td>0</td>
<td>45</td>
<td>95382</td>
<td>-95382</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>7986</td>
<td>7986</td>
<td>18048</td>
<td>46</td>
<td>85176</td>
<td>85176</td>
<td>194688</td>
</tr>
<tr>
<td>21</td>
<td>9632</td>
<td>-9632</td>
<td>0</td>
<td>47</td>
<td>103824</td>
<td>-103824</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>9324</td>
<td>9324</td>
<td>21312</td>
<td>48</td>
<td>131012</td>
<td>131012</td>
<td>229376</td>
</tr>
<tr>
<td>23</td>
<td>12168</td>
<td>-12168</td>
<td>0</td>
<td>49</td>
<td>117993</td>
<td>-117993</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>16324</td>
<td>16324</td>
<td>28672</td>
<td>50</td>
<td>110257</td>
<td>110257</td>
<td>252016</td>
</tr>
<tr>
<td>25</td>
<td>15751</td>
<td>-15751</td>
<td>0</td>
<td>51</td>
<td>137592</td>
<td>-137592</td>
<td>0</td>
</tr>
</tbody>
</table>

Corollary 3.7. Let N be any non-negative integer. Then
(a) \(d_{2N-1} = 2\alpha_{2N-1}\).

(b) \(f_{2N} = \gamma_{2N}\).

Hahn (see [11]) proved a congruence for the function \(\nu(n)\) which is defined by

\[
(31) \quad \sum_{n=0}^{\infty} \nu(n)q^n := \prod_{n=1}^{\infty} (1 - q^{2n})^8(1 + q^n)^8.
\]

Thus \(\nu(n)\) is the number of partitions of \(n\) into 16 colors, 8 appear at most once (say \(S_1\)), and 8 are even and appear at most once (say \(S_2\)), weighted by the parity of colors from the set \(S_2\).

Proposition 3.8 ([11]). If \(\nu(n)\) is defined by (31), then

\[
\nu(n-1) \equiv \tilde{\sigma}_3(n) \pmod{3}.
\]

Remark 3.9. By (27) we see that

\[
\psi''(\frac{T}{2}, \tau) = 32\pi^4 \left\{ \sum_{L=1}^{\infty} \sigma_3(2L-1)q^{2L-1} + \sum_{K=1}^{\infty} [\sigma_3(2K) - \sigma_3(K)]q^{2K} \right\}
\]

and

\[
\nu(n-1) = \begin{cases}
\sigma_3(n) & \text{if } n \text{ odd}, \\
\sigma_3(n) - \sigma_3(\frac{n}{2}) & \text{otherwise}.
\end{cases}
\]

If \(n\) is odd, then \(\nu(n-1) = \sigma_3(n) = \tilde{\sigma}_3(n)\). If \(2n\) is even, then

\[
\sigma_3(2n) - \sigma_3(n) - \tilde{\sigma}_3(2n) = \sigma_3(2n) - \sigma_3(n) - \sigma_3(2n) + 2^4\sigma_3(n) = 15\sigma_3(n).
\]

Therefore, \(\sigma_3(2n) - \sigma_3(n) = \nu(2n-1) \equiv \tilde{\sigma}_3(2n) \pmod{3}\).

We can reprove Proposition 3.8.

We prove a congruence for the function \(\mu(n)\) [11, 6.3] which is defined by

\[
(32) \quad \sum_{n=0}^{\infty} \mu(n)q^n := \prod_{n=1}^{\infty} (1 - q^n)^8(1 - q^{2n})^8.
\]

It follows that

\[
\mu(n) = \mu_e(n) - \mu_o(n),
\]

where \(\mu_e(n)\) and \(\mu_o(n)\) are the number of 16-colored partitions into an even (respectively, odd) number of distinct parts, where all the parts of the latter eight colors are even.

Next, we can also retrieve \(\mu(3n-1) \equiv 0 \pmod{3}\) shown in [11].

Theorem 3.10. Let \(\sum_{n=0}^{\infty} \mu(n)q^n := \prod_{n=1}^{\infty} (1 - q^n)^8(1 - q^{2n})^8\) in (32). Then

(a) \(\mu(2n-1) \equiv \sigma_1(2n-1) \pmod{6}\).

(b) \(\mu(2n) \equiv (2n+1)[\sigma_1(2n) + \sigma_1(n)] \pmod{6}\).
Proof. By (27) and Theorem 3.6(a), we can obtain:

\[\psi''(\frac{a}{2}) \times (e_2 - e_1)^2 \]

\[= 32\pi^4 \left\{ \sum_{L=1}^{\infty} \sigma_3(2L - 1)q^{2L-1} + \sum_{K=1}^{\infty} [\sigma_3(2K) - \sigma_3(K)]q^{2K} \right\} \]

\[\times \pi^4 \left\{ 1 + 16 \sum_{M=1}^{\infty} \sigma_3(2M - 1)q^{2M-1} + 16 \sum_{M=1}^{\infty} [16\sigma_3(M) - \sigma_3(2M)]q^{2M} \right\} \]

\[= 32\pi^8 \left\{ \sum_{L=1}^{\infty} \sigma_3(2L - 1)q^{2L-1} + 240 \sum_{K,M=1}^{\infty} \sigma_3(2K - 1)\sigma_3(M)q^{2(L+M)-1} \right. \]

\[+ 16 \sum_{L,M=1}^{\infty} \sigma_3(2L - 1)\sigma_3(2M - 1)q^{2(L+M-1)} + \sum_{K=1}^{\infty} [\sigma_3(2K) - \sigma_3(K)]q^{2K} \]

\[+ \sum_{K,M=1}^{\infty} [272\sigma_3(2K)\sigma_3(M) - 16\sigma_3(2K)\sigma_3(2M) - 256\sigma_3(K)\sigma_3(M)]q^{2(M+K)} \right\} \].

(a) Let us pay attention to \(q^{N-1} \) in (33):

\[\sum_{L=1}^{\infty} \sigma_3(2L - 1)q^{2L-1} + 240 \sum_{K,M=1}^{\infty} \sigma_3(2K - 1)\sigma_3(M)q^{2(L+M)-1} \]

\[\equiv \sum_{L=1}^{\infty} \sigma_3(2L - 1)q^{2L-1} \pmod{6}. \]

By the definition of \(\mu(n) \), it means that \(\mu(2n - 1) \equiv \sigma_1(2n - 1) \pmod{6} \).

(b) Now, let us consider \(q^{2N} \) in (33). Since \(\sigma_3(M) \equiv \sigma_1(M) \pmod{6} \), the term with \(q^{2N} \) can be changed like this;

\[S := 16 \sum_{L,M=1}^{\infty} \sigma_3(2L - 1)\sigma_3(2M - 1)q^{2(L+M-1)} + \sum_{K=1}^{\infty} [\sigma_3(2K) - \sigma_3(K)]q^{2K} \]

\[+ \sum_{K,M=1}^{\infty} [272\sigma_3(2K)\sigma_3(M) - 16\sigma_3(2K)\sigma_3(2M) - 256\sigma_3(K)\sigma_3(M)]q^{2(M+K)} \]

\[\equiv 16 \sum_{L,M=1}^{\infty} \sigma_1(2L - 1)\sigma_1(2M - 1)q^{2(L+M-1)} + \sum_{K=1}^{\infty} [\sigma_1(2K) - \sigma_1(K)]q^{2K} \]

\[+ \sum_{K,M=1}^{\infty} [272\sigma_1(2K)\sigma_1(M) - 16\sigma_1(2K)\sigma_1(2M) - 256\sigma_1(K)\sigma_1(M)]q^{2(M+K)} \pmod{6}. \]
Then, by (22)
\[16 \sum_{L,M=1}^{\infty} \sigma_1(2L-1)\sigma_1(2M-1)q^{2(L+M-1)} = \sum_{K=1}^{\infty} 2[\sigma_3(2K) - \sigma_3(K)]q^{2K},\]
and by [12, (4.4)],
\[272 \sum_{K,M=1}^{\infty} \sigma_1(2K)\sigma_1(M)q^{2(M+K)}
= 272 \sum_{K=1}^{\infty} \sum_{l=1}^{K} \sigma_1(l)\sigma_1(2(K-l+1))q^{2(K+1)}
= \frac{34}{3} \sum_{K=1}^{\infty} [2\sigma_3(2(K+1)) - (6K+5)\sigma_1(2(K+1))
+ 8\sigma_3(K+1) - (12K+11)\sigma_1(K+1)]q^{2(K+1)}.
\]
Also by [12, (3.10)]
\[-256 \sum_{K,M=1}^{\infty} \sigma_1(K)\sigma_1(M)q^{2(M+K)}
= -256 \sum_{K=1}^{\infty} \sum_{l=1}^{K} \sigma_1(l)\sigma_1(K+1-l)q^{2(K+1)}
= \sum_{K=1}^{\infty} -\frac{64}{3}[5\sigma_3(K+1) - (6K+5)\sigma_1(K+1)]q^{2(K+1)}.
\]
Lastly, we get
\[-16 \sum_{K,M=1}^{\infty} \sigma_1(2K)\sigma_1(2M)q^{2(M+K)}
= -16 \sum_{K=1}^{\infty} \sum_{n=1}^{K} \sigma_1(2n)\sigma_1(2(K-n+1))q^{2(K+1)}.
\]
Since
\[\sum_{n=1}^{K} \sigma_1(2n)\sigma_1(2(K-n+1))
= \sum_{n=1}^{2K+1} \sigma_1(n)\sigma_1(2(K+1) - n) - \sum_{n=1}^{K+1} \sigma_1(2n-1)\sigma_1(2(K+1) - 2n + 1)
= \frac{1}{12}[5\sigma_3(2(K+1)) - (12K+11)\sigma_1(2(K+1)]
- \frac{1}{8}[\sigma_3(2(K+1)) - \sigma_3(K+1)],\]
we have
\[-16 \sum_{K,M=1}^{\infty} \sigma_1(2K)\sigma_1(2M)q^{2(M+K)} \]
\[= \sum_{K=1}^{\infty} \left\{ \frac{-4}{3}[5\sigma_3(2(K+1)) - 12K\sigma_1(2(K+1)) - 11\sigma_1(2(K+1))] \right. \]
\[+ 2\sigma_3(2(K+1)) - 2\sigma_3(K+1) \right\} q^{2(K+1)}. \]

Again applying \(\sigma_3(M) \equiv \sigma_1(M) \pmod{6} \) to the results of the above calculations, we can ultimately get (35) like this:
\[S \equiv \sum_{K=1}^{\infty} \left[-21\sigma_1(2(K+1)) - 52K\sigma_1(2(K+1)) \right. \]
\[- 39\sigma_1(K+1) + 8K\sigma_1(K+1)\] \(q^{2(K+1)} \pmod{6} \).

Then, we claim that
\[\mu(2n) \equiv (2n+1)[\sigma_1(2n) + \sigma_1(n)] \pmod{6} \]
for \(n = K + 1 \).

\[\square \]

Corollary 3.11. If \(\mu(n) \) is defined by (32), then
\[\mu(3n - 1) \equiv 0 \pmod{6}. \]

Proof. Let us consider the odd and even cases in Theorem 3.10 for \(3n - 1 \).
From (34), \(\mu(6n + 5) \equiv \sigma_3(6n + 5) \equiv \sigma_1(6n + 5) \pmod{6} \). Let \(6n + 5 = p_1^{r_1}p_2^{r_2} \cdots q_r^{r_r} \cdot 2^{s_1} \sigma_1 \cdot 2^{s_2} \cdots 2^{s_s} \), with distinct primes \(p_1 \equiv p_2 \equiv \cdots \equiv p_r \equiv 1 \pmod{6} \) and \(q_1 \equiv q_2 \equiv \cdots \equiv q_r \equiv -1 \pmod{6} \). Because of \(6n + 5 \), we have \(f_1 + f_2 + \cdots + f_r \equiv 1 \pmod{2} \).

Without loss of generality, suppose that \(f_1 \equiv 1 \pmod{2} \). Then,
\[\sigma_1(6n + 5) = \sigma_1(p_1)^{r_1}\sigma_1(p_2)^{r_2} \cdots \sigma_1(q_r)^{r_r}\sigma_1(2^{s_1})\sigma_1(2^{s_2}) \cdots \sigma_1(2^{s_s}) \]
\[\equiv 0 \pmod{6}, \]

since \(1 + q_1 + q_1^2 + \cdots + q_1^{f_1} \equiv 0 \pmod{6} \). Thus, \(\mu(6n + 5) \equiv 0 \pmod{6} \).

On the other hand, from (36) we evaluate that \(\mu(6n + 2) \equiv (6n + 3)[\sigma_1(2(3n+1)) + \sigma_1(3n+1)] \pmod{6} \).
Let \(3n + 1 = 2^rQ \) with \(r \geq 0 \) and odd \(Q \).
Then,
\[\sigma_1(2(3n+1)) + \sigma_1(3n+1) = \sigma_1(2^{r+1}Q) + \sigma_1(2^rQ) = 2(3 \cdot 2^r - 1)\sigma_1(Q). \]
So,
\[\mu(6n + 2) \equiv 6(2n + 1)(3 \cdot 2^r - 1)\sigma_1(Q) \equiv 0 \pmod{6}. \]
Remark 3.12. $\mu(3n - 1) \equiv 0 \pmod{6}$ shown by us induces that $\mu(3n - 1) \equiv 0 \pmod{3}$ which is also the Hahn’s result in [11, Theorem 6.1].

References

[10] , , On the square of the series in which the coefficients are the sums of the divisors of the exponents, Mess. Math. 14 (1884).
CONGRUENCES OF $\wp(x)$ AND $\wp''(x) = \frac{1}{x} \left(\frac{z-1}{z} \right)$-FUNCTIONS ON DIVISORS

Daeyeoul Kim

National Institute for Mathematical Sciences
Yuseong-Daero 1689-gil, Yuseong-gu
Daejeon 305-811, Korea
E-mail address: dayeoul@nims.re.kr

Aeran Kim

Department of Mathematics and Institute of Pure and Applied Mathematics
Chonbuk National University
Chonju 561-756, Korea
E-mail address: aeran_kim@hotmail.com

Hwasin Park

Department of Mathematics and Institute of Pure and Applied Mathematics
Chonbuk National University
Chonju 561-756, Korea
E-mail address: park@jbnu.ac.kr