LOCAL AND GLOBAL EXISTENCE AND BLOW-UP OF SOLUTIONS TO A POLYTROPIC FILTRATION SYSTEM WITH NONLINEAR MEMORY AND NONLINEAR BOUNDARY CONDITIONS

JIAN WANG, MENG-LONG SU, AND ZHONG-BO FANG

Abstract. This paper deals with the behavior of positive solutions to the following nonlocal polytropic filtration system

\[\begin{align*}
 \frac{\partial u}{\partial t} &= \left(|u^{m_1}|^{p_1-1} u^{m_1} \right)_x + u^{l_1} \int_0^a v^{l_2} (\xi, t) d\xi, & (x, t) \in [0, a] \times (0, T), \\
 \frac{\partial v}{\partial t} &= \left(|v^{m_2}|^{p_2-1} v^{m_2} \right)_x + v^{l_2} \int_0^a u^{l_1} (\xi, t) d\xi, & (x, t) \in [0, a] \times (0, T), \\
 u_x |_{x=0} &= 0, & u_x |_{x=a} = u^{q_1 l_1} v^{q_2 l_2} |_{x=a}, & t \in (0, T), \\
 v_x |_{x=0} &= 0, & v_x |_{x=a} = v^{q_1 l_1} u^{q_2 l_2} |_{x=a}, & t \in (0, T), \\
 u(x, 0) &= u_0(x), & v(x, 0) = v_0(x), & x \in [0, a],
\end{align*} \]

with nonlinear boundary conditions \(u_x |_{x=0} = 0 \), \(u_x |_{x=a} = u^{q_1 l_1} v^{q_2 l_2} |_{x=a} \) and the initial data \((u_0, v_0)\), where \(m_1, m_2 \geq 1, p_1, p_2 > 1, l_1, l_2, l_2, q_1, q_2, q_2 > 0 \). Under appropriate hypotheses, the authors establish local theory of the solutions by a regularization method and prove that the solution either exists globally or blows up in finite time by using a comparison principle.

1. Introduction and main results

In this paper, we consider the following system:

\[\begin{align*}
 \frac{\partial u}{\partial t} &= \left(|u^{m_1}|^{p_1-1} u^{m_1} \right)_x + u^{l_1} \int_0^a v^{l_2} (\xi, t) d\xi, & (x, t) \in [0, a] \times (0, T), \\
 \frac{\partial v}{\partial t} &= \left(|v^{m_2}|^{p_2-1} v^{m_2} \right)_x + v^{l_2} \int_0^a u^{l_1} (\xi, t) d\xi, & (x, t) \in [0, a] \times (0, T), \\
 u_x |_{x=0} &= 0, & u_x |_{x=a} = u^{q_1 l_1} v^{q_2 l_2} |_{x=a}, \\
 v_x |_{x=0} &= 0, & v_x |_{x=a} = v^{q_1 l_1} u^{q_2 l_2} |_{x=a}, \\
 u(x, 0) &= u_0(x), & v(x, 0) = v_0(x),
\end{align*} \]

Received November 26, 2010; Revised January 6, 2012.

2010 Mathematics Subject Classification. 35K55, 35K57, 35K60, 35K65.

Key words and phrases. nonlinear boundary value problem, nonlinear memory, polytropic filtration system, global existence, blow-up.

The project is supported by the Fundamental Research Funds for the Central Universities (201113008).
where $T > 0$, t_{l_1}, t_{l_2}, t_{l_2}, q_{l_1}, q_{l_2}, $q_{l_2} > 0$, $m_1, m_2 \geq 1$, $p_1, p_2 > 1$. Let $Q_T = [0, a] \times (0, T]$, $T > 0$, $z_+ = \max\{z, 0\}$. Throughout this paper we assume that:

(i) $u_0(x), v_0(x) \in C^{2+\alpha}([0, a])$ for some $0 < \alpha < 1$, $u_0(x), v_0(x) \geq \delta > 0$;

(ii) $(u_{0x}^{m_1} | | p_1-1 u_{0x}^{m_1})_x, (|v_{0x}^{m_2} | | p_2-1 v_{0x}^{m_2})_x \in L^2([0, a])$ on $[0, a]$;

(iii) $u_0(x), v_0(x)$ satisfy the compatibility conditions:

$$
\begin{align*}
\frac{u_0}{\partial x}(0) &= 0, \quad u_{0x}(a) = u_0^{q_1} v_0^{q_2}(a), \\
\frac{v_0}{\partial x}(0) &= 0, \quad v_{0x}(a) = v_0^{q_1} u_0^{q_2}(a).
\end{align*}
$$

Problems of this form arise in mathematical models such as modeling gas or fluid flow through a porous medium and completely turbulent flow and for the spread of certain biological populations (see [3, 5, 15] and the references therein). In the non-Newtonian fluids theory, the pair (p_1, p_2) is a characteristic quantity of medium. Media with $(p_1, p_2) > (2, 2)$, which means $p_1 > 2$, $p_2 > 2$, are called dilatant fluids and those with $(p_1, p_2) < (2, 2)$ are called pseudo-plastics. If $(p_1, p_2) = (2, 2)$, they are called Newtonian fluids. When $(p_1, p_2) = (2, 2)$ and $(m_1, m_2) = (1, 1)$ the connection with the flow in porous media is by now classical. When $(m_1, m_2) \geq (1, 1)$ and $(p_1, p_2) > (2, 2)$, the system models the non-stationary, polytropic flow of a fluid in a porous medium whose tangential stress has a power dependence on the velocity of the displacement under polytropic conditions (non-Newtonian elastic filtration); it has been intensively studied (see [16, 17, 21] and references therein). The nonlocal growth terms present a more realistic model of a population [6, 10, 14, 18]. The nonlinear boundary conditions in (1.1) can be physically interpreted as a nonlinear radiation law (see [9]).

In recent years, many authors have studied the global existence or blow-up of solutions to some parabolic problems with nonlinear boundary conditions. In [1], G. Acosta and J. D. Rossi considered the global existence of solutions to some parabolic problems with nonlinear boundary conditions. In [1], G. Acosta and J. D. Rossi considered the global existence of solutions to the following problem:

$$
\begin{align*}
\begin{cases}
 u_t &= \Delta u + f(u, v), \quad v_t = \Delta v + g(u, v), \quad \text{in } \Omega \times (0, T), \\
 \frac{\partial u}{\partial n} &= h(u, v), \quad \frac{\partial v}{\partial n} = s(u, v), \quad \text{on } \partial \Omega \times (0, T), \\
 u(x, 0) &= u_0(x), \quad v(x, 0) = v_0(x), \quad \text{in } \Omega.
\end{cases}
\end{align*}
$$

which can be viewed as a heat conduction problem with nonlinear diffusivity, source and a nonlinear radiation law coupling on the boundary of the material body.

In [7], Y. Chen considered the following semilinear parabolic systems with nonlocal source:

$$
\begin{align*}
 u_t &= \Delta u + \int_\Omega u^p(\xi, t) d\xi, \quad v_t = \Delta v + \int_\Omega v^p(\xi, t) d\xi, \quad (x, t) \in \Omega \times (0, T), \\
 \frac{\partial u}{\partial v} &= \frac{\partial v}{\partial v} = 0, \quad (x, t) \in \partial \Omega \times (0, T), \\
 u(x, 0) = u_0(x), \quad v(x, 0) = v_0(x), \quad x \in \Omega.
\end{align*}
$$
She obtained some blowup criteria and a blowup rate.

Recently, in [8], L. Du studied the following problem

\[
\begin{align*}
 u_t &= \Delta u^n + u^p \int_\Omega v^q(\xi,t) d\xi, \\
 v_t &= \Delta v^m + v^{p2} \int_\Omega w^2(\xi,t) d\xi, \quad (x,t) \in \Omega \times (0,T), \\
 u(x,t) &= v(x,t) = 0, \quad (x,t) \in \partial\Omega \times (0,T), \\
 u(x,0) &= u_0(x), \quad v(x,0) = v_0(x), \quad x \in \Omega.
\end{align*}
\]

And he also get the criteria for solution exists globally or blows up in finite time. Moreover, if \(p_1 = 0 \) or \(p_1 > m; \ p_2 = 0 \) or \(p_2 > n; \ q_1 > n, \ q_2 > m \) and satisfy \(q_2 > p_1 - 1 \), \(q_1 > p_2 - 1 \), he also get the blow-up rates under the monotone assumption for initial data.

In [20], X. Wu investigate the behavior of positive solutions to the following system of evolution \(p \)-Laplace equations coupled via nonlocal sources with nonlinear boundary conditions and the initial data

\[
\begin{align*}
 u_t &= (|u_x|^{p_1-1}u_x)_x + \int_0^a u^{m1}(\xi,t) d\xi, \quad (x,t) \in [0,a] \times (0,T), \\
 v_t &= (|v_x|^{p_2-1}v_x)_x + \int_0^a u^{m2}(\xi,t) d\xi, \quad (x,t) \in [0,a] \times (0,T) \\
 u_x |_{x=0} = 0, \quad u_x |_{x=a} = q^{11}v^{11} |_{x=a}, \quad t \in (0,T), \\
 v_x |_{x=0} = 0, \quad v_x |_{x=a} = q^{22}v^{22} |_{x=a}, \quad t \in (0,T), \\
 u(x,0) = u_0(x), \quad v(x,0) = v_0(x), \quad x \in [0,a].
\end{align*}
\]

Under appropriate hypotheses, the authors first prove a local existence result by a regularization method. Then the authors discuss the global existence and blow-up of positive weak solutions by using a comparison principle. And F. Li [13] considered the problem (1.2) with homogeneous Dirichlet boundary conditions and obtained some necessary and sufficient conditions on the global existence of the positive solutions.

In [19], the following problem has been intensively studied by S. Wang:

\[
\begin{align*}
 (|u|^{r_1-1}u)_t &= (|u_x|^{p_1-1}u_x)_x, \quad 0 < x < 1, t > 0, \\
 (|v|^{r_2-1}v)_t &= (|v_x|^{p_2-1}v_x)_x, \quad 0 < x < 1, t > 0, \\
 u_x |_{x=0} = 0, \quad u_x |_{x=1} = \lambda u^{11}v^{12} |_{x=1}, \quad t > 0, \\
 v_x |_{x=0} = 0, \quad v_x |_{x=1} = \lambda u^{21}v^{22} |_{x=1}, \quad t > 0, \\
 u(x,0) = u_0(x), \quad v(x,0) = v_0(x), \quad 0 \leq x \leq 1.
\end{align*}
\]

The author proved a local existence result and obtained some necessary and sufficient conditions on the global existence of all positive (weak) solutions.

Recently, J. Zhou, in [23], considered problem (1.1) with homogeneous Dirichlet boundary conditions and obtained some necessary and sufficient conditions on the global existence of the positive solutions. More results for parabolic equations with nonlinear boundary conditions can be found in [4, 12, 22] and the references therein.
However, to the author’s best knowledge, there is little literature on the study of the global existence and blow-up properties for the system (1.1). This paper extends their results of the references cited above essentially to non-Newton polytropic filtration system (1.1). Therefore, this paper is also an extension of the above results. Due to the nonlinear diffusion terms and doubly degeneration for $u = 0$, $|\nabla u| = 0$ or $v = 0$, $|\nabla v| = 0$, we have some new difficulties to be overcome. Noticing that the system (1.1) includes the Newtonian filtration system ($\left(p_1, p_2 \right) = (2, 2)$) and the non-Newtonian filtration system ($\left(m_1, m_2 \right) = (1, 1)$) formally, so the method for it should be synthetic. In fact, we can use the methods for the above two systems to deal with it. First under appropriate hypotheses, we established local theory of the solutions. The method we used is the so-called ‘test function method’ and some modifications and adaptations of ideas from [19] and [20]. Our proof is based on argument by the different method of regularization, which involves considering the regularized problem firstly and making a priori estimates for the nonnegative approximate solutions by carefully choosing special test functions and a scaling argument, then obtaining the results based on the estimates by a standard limiting process. Then we investigate the global existence or blow-up properties of weak solutions to the problem (1.1) depending on the relations among the parameters $m_1, m_2, p_1, p_2, l_{11}, l_{12}, l_{21}, l_{22}, q_{12}, q_{21}, q_{22}$. Note that (1.1) has nonlinear and nonlocal sources $u^{l_{11}} \int_0^a u^{l_{22}}(\xi, t)d\xi$, $v^{l_{22}} \int_0^a u^{l_{22}}(\xi, t)d\xi$ and nonlinear boundary sources $u^{q_{12}} v^{q_{21}}, u^{q_{21}} v^{q_{22}}$, which make the behavior of the solution different from that of homogeneous Neumann or Dirichlet boundary value problems. However, it is difficult to use the same methods as that in [23] to get the desired result. To overcome these difficulties, we used some modification of the technique in [19] so that we can handle the nonlinearities. Roughly speaking, the proof consists of several steps. First, we establish the comparison principle for system (1.1) by choosing suitable test function and Gronwall’s inequality. Then, we use some functions to control the nonlocal sources and prove, with the technique in [19], that the control for the nonlocal sources is suitable. Finally we also need to consider the effect of these nonlinear terms in the proof of the global existence (blow-up) property of solutions to (1.1). In this paper we will give some necessary and sufficient conditions on the global existence of positive weak solutions to (1.1). These results extend the results of [19, 20] to the general case with nonlocal sources and nonlinear boundary sources.

The main results of this paper are the following theorems:

Theorem 1.1. All positive weak solutions of (1.1) exist globally if and only if

\[
\begin{align*}
l_{11} \leq 1, \quad l_{22} \leq 1, \quad q_{11} \leq \frac{1}{p_1} + 1 - m_1, \quad q_{22} \leq \frac{1}{p_2} + 1 - m_2, \\
l_{12}l_{21} \leq (1 - l_{11})(1 - l_{22}), \quad l_{12}q_{21} \leq [1 - l_{11}][\frac{1}{p_2} + 1 - m_2 - q_{22}],
\end{align*}
\]
l_{21}q_{12} \leq \left[\frac{1}{p_1} + 1 - m_1 - q_{11} \right] \left[1 - l_{22} \right] \quad \text{and} \\
q_{12}q_{21} \leq \left[\frac{1}{p_1} + 1 - m_1 - q_{11} \right] \left[\frac{1}{p_2} + 1 - m_2 - q_{22} \right].

\textbf{Note.} The system of inequalities in Theorem 1.1 is very large, so we give an example. Let $p_1 = p_2 = \frac{4}{7}$, $m_1 = m_2 = \frac{1}{8}$, $q_{11} = q_{22} = \frac{1}{7}$, $l_{11} = l_{22} = \frac{1}{7}$, $l_{12} = l_{21} = \frac{1}{8}$, $q_{12} = q_{21} = \frac{1}{8}$. Then we can obviously prove that the above inequalities hold.

\textbf{Theorem 1.2.} All positive weak solutions of (1.1) blow up in finite time if one of the following inequalities holds:

\textbf{(B)}

\begin{enumerate}
\item[(i)] $l_{11} > 1$ or $l_{22} > 1$ or $q_{11} > \frac{1}{p_1} + 1 - m_1$ or $q_{22} > \frac{1}{p_2} + 1 - m_2$;
\item[(ii)] $q_{11} \leq \frac{1}{p_1} + 1 - m_1$, $q_{22} \leq \frac{1}{p_2} + 1 - m_2$ and $q_{12}q_{21} > \left[\frac{1}{p_1} + 1 - m_1 - q_{11} \right] \left[\frac{1}{p_2} + 1 - m_2 - q_{22} \right]$;
\item[(iii)] $l_{11} \leq 1$, $l_{22} \leq 1$ and $l_{12}l_{21} > (1 - l_{11})(1 - l_{22})$;
\item[(iv)] $l_{11} \leq 1$, $q_{22} \leq \frac{1}{p_2} + 1 - m_2$ and $l_{12}q_{21} > [1 - l_{11}] \left[\frac{1}{p_2} + 1 - m_2 - q_{22} \right]$;
\item[(v)] $l_{22} \leq 1$, $q_{11} \leq \frac{1}{p_1} + 1 - m_1$ and $l_{21}q_{12} > \left[\frac{1}{p_1} + 1 - m_1 - q_{11} \right] [1 - l_{22}]$.
\end{enumerate}

The outline of this paper is as follows: In the next section, we will give the proof of a weak comparison principle and a simple fact without proof. In Section 3, we will prove the local existence results by a regularization method. In Section 4, we will discuss the global existence and blow-up property of solutions to (1.1) by constructing various upper and lower solutions.

\section{2. Preliminaries}

In this paper, we use the following definition of the weak solutions.

\textbf{Definition 2.1.} A pair of functions $(u, v) \in C(Q_T) \times C(Q_T)$ is called a supersolution (subsolution) of problem (1.1) in Q_T if all of the following hold:

\begin{enumerate}
\item[(i)] $u, v \in L^\infty(0, T; W^{1, \infty}(0, a)) \cap W^{1, 2}(0, T; L^2(0, a))$, $(u(x, 0), v(x, 0)) \geq (u_0(x), v_0(x))$;
\item[(ii)] For any nonnegative functions $\varphi_1(x, t), \varphi_2(x, t) \in L^1(0, T; W^{1, 2}(0, a)) \cap L^2(Q_T)$,
\end{enumerate}

\begin{equation}
\iint_{Q_T} u_t(x, t)\varphi_1(x, t)dxdt + \iint_{Q_T} |u^{m_1}|_2(x, t)^{p_1-1} (u^{m_1})_2(x, t)\varphi_1(x, t)dxdt
\end{equation}
\begin{align*}
\geq \int_0^T u^{q_{11}} v^{q_{12}}(a, t) \varphi_1(a, t) dt + \int_{Q_T} (u^{q_{11}} \int_0^a v^{q_{12}}(\xi, t) d\xi) \varphi_1(x, t) dx dt,
\int_{Q_T} v_t(x, t) \varphi_2(x, t) dx dt + \int_{Q_T} |(v^{m_2})_x(x, t)|^{p_2-1}(v^{m_2})_x(x, t) \varphi_{2x}(x, t) dx dt
\geq \int_0^T u^{q_{21}} v^{q_{22}}(a, t) \varphi_1(a, t) dt + \int_{Q_T} (v^{q_{22}} \int_0^a u^{q_{21}}(\xi, t) d\xi) \varphi_1(x, t) dx dt.
\end{align*}

(\textcolor{blue}{u, v}) is called a weak solution of (1.1) if it is both a supersolution and a subsolution.

Definition 2.2. We say the solution (u, v) of the problem (1.1) blows up in finite time if there exists a positive constant T < +\infty such that
\[
\lim_{t \to T^-} \sup_{x \in [0, a]} (\|u(\cdot, t)\|_{L^\infty} + \|v(\cdot, t)\|_{L^\infty}) = +\infty.
\]

We say the solution (u, v) exists globally if
\[
\sup_{t \in (0, +\infty)} (\|u(\cdot, t)\|_{L^\infty} + \|v(\cdot, t)\|_{L^\infty}) < +\infty.
\]

We first give a weak comparison principle.

Proposition 2.1 (Comparison principle). Let (u, v) be a weak solution of (1.1), (\textcolor{blue}{\overline{u}, \overline{v}}) and (\overline{\overline{u}, \overline{v}}) a subsolution and a supersolution of (1.1) in Q_T, respectively, with nonlinear boundary flux \lambda u^{q_{11}} v^{q_{12}}, \lambda u^{q_{21}} v^{q_{22}}, \overline{\lambda} u^{q_{11}} v^{q_{12}}, \overline{\lambda} u^{q_{21}} v^{q_{22}} and nonlocal terms \textcolor{blue}{u^{q_{11}} \int_0^a v^{q_{12}}(\xi, t) d\xi}, \textcolor{blue}{u^{q_{21}} \int_0^a v^{q_{22}}(\xi, t) d\xi}, \overline{u^{q_{11}}} \int_0^a \overline{v^{q_{12}}(\xi, t) d\xi}, \overline{u^{q_{21}}} \int_0^a \overline{v^{q_{22}}(\xi, t) d\xi}, \overline{\overline{u^{q_{11}}}} \int_0^a \overline{v^{q_{12}}(\xi, t) d\xi}, \overline{\overline{u^{q_{21}}}} \int_0^a \overline{v^{q_{22}}(\xi, t) d\xi} where 0 < \lambda < 1 < \overline{\lambda}. Then \textcolor{blue}{(u, v) \leq (u, v)} and there exists a positive constant \delta, such that either
\begin{align}
\int_0^a v^{q_{12}} dx &\geq \delta, \quad \int_0^a u^{q_{22}} dx \geq \delta, \quad \textcolor{blue}{u, v} \geq \delta
\text{or}
\int_0^a \overline{v^{q_{12}}} dx &\geq \delta, \quad \int_0^a \overline{u^{q_{22}}} dx \geq \delta, \quad \overline{u, v} \geq \delta.
\end{align}

Proof. Similarly to the proof of Proposition 2.1 in [19]. For small \delta > 0, let
\[
H_\delta(z) = \min(1, \max(\frac{z}{\delta}, 0))
\]
and set \(\varphi_1 = H_\delta(u^{m_1} - u^{m_1}) \), then according to the definitions of solution and lower solution we have

\[
\int_Q (H_\delta(u^{m_1} - u^{m_1}))_x |(u^{m_1})_x|^{p_1-1}(u^{m_1})_x - |(u^{m_1})_x|^{p_1-1}(u^{m_1})_x| \, dxdt \\
\leq \int_0^t H_\delta(u^{m_1} - u^{m_1}) |(\lambda u^{q_1}v^{q_1} - \lambda u^{q_1}v^{q_1})| x = a dt \\
+ \int_{Q_t} H_\delta(u^{m_1} - u^{m_1}) \left(\frac{u^{l_{11}}}{t_{12}} - (t_{12} - t_{11}) \int_0^1 u^{l_{12}} \right) dxdt.
\]

Define

\[
\chi(x) = \begin{cases}
1, & x \geq 0, \\
0, & x < 0.
\end{cases}
\]

As in [2], by letting \(\delta \to 0 \), noticing

\[
\int_Q (H_\delta(u^{m_1} - u^{m_1}))_x |(u^{m_1})_x|^{p_1-1}(u^{m_1})_x - |(u^{m_1})_x|^{p_1-1}(u^{m_1})_x| \, dxdt \geq 0
\]

and \(\chi(u^{m_1} > u^{m_1}) = \chi[\bar{u} > u] \), we get

\[
\int_{Q_t} (\bar{u} - u) \chi[\bar{u} > u] \, dxdt \\
\leq \int_0^t f_1(x, t) \chi[\bar{u} > u] \, dxdt \\
+ \int_{Q_t} \chi[\bar{u} > u] \lambda \int_0^1 G(x, t)(\bar{u}(x, t) - v(x, t)) \, dx \\
+ \int_{Q_t} \chi[\bar{u} > u] \Phi(x, t)(\bar{u} - u) \int_0^1 v^{l_{12}}(\xi, t) \, d\xi \, dxdt,
\]

where

\[
f_1(x, t) = u^{p_1 q_1} [(\lambda u^{q_1})^{p_1} - (\lambda u^{q_1})^{p_1}] + \lambda^{p_1} u^{p_1 q_1} p_1 q_1 \gamma_1^{p_1 q_1 - 1}(u^{q_1} - v),
\]

\[
G(x, t) = \int_0^1 l_{12}[\xi + (1 - \xi) v]^{l_{12} - 1} \, d\xi, \quad \Phi(x, t) = \int_0^1 l_{11}[\xi u + (1 - \xi) u]^{l_{11} - 1} \, d\xi
\]

for some \(\theta_1 > 0 \) lying between \(\bar{v}(a, t) \) and \(v(a, t) \).

Since \((0, 0) < (\delta, \delta) < (\bar{u}(x, 0), \bar{u}(x, 0)) \leq (u(x, 0), v(x, 0)), 0 \leq x \leq a, \Delta < 1, \)

by the continuity of \(u, \bar{u}, u, v, \) there exists a time \(\tau > 0 \) such that \(f_1(a, t) \leq 0 \)

for all \(t \in [0, \tau] \). Since \((u, \bar{u}) \) and \((u, v) \) are bounded in \(Q_t \), it follows from

\[
m_1, m_2, p_1, p_2 > 1, \quad l_{12}, l_{11} \geq 1 \]

that \(G(x, t), \Phi(x, t) \) are bounded nonnegative functions. Now, if \(l_{12}, l_{11} < 1 \), we have \(G(x, t) \leq \delta^{l_{12} - 1}, \Phi(x, t) \leq \delta^{l_{11} - 1} \) by the
assumptions (2.3) or (2.4). It follows that
\[
\int_0^a (\underline{u} - u)_+ dx
\leq c_1 \int_{Q_T} (u - u)_+ dx dt + c_2 \int_{Q_T} G(x,t)[\underline{u}(x,t) - v(x,t)]_+ dx dt,
\]
where \(\omega_+ = \max\{\omega, 0\}\) and \(c_1, c_2\) are bounded constants. Similarly, we can prove
\[
\int_0^a (\underline{v} - v)_+ dx
\leq c_3 \int_{Q_T} (v - v)_+ dx dt + c_4 \int_{Q_T} F(x,t)[\underline{u}(x,t) - u(x,t)]_+ dx dt,
\]
where \(c_3, c_4\) are bounded constants, and
\[
F(x,t) = \int_1^0 l_{21}[\xi u + (1 - \xi)u]^{l_{21}-1} d\xi
\]
is a bounded nonnegative function. Now (2.7), (2.8) combined with the Gronwall’s inequality show that \((\underline{u}, \underline{v})\) \(\leq (u, v)\) on \(Q_T\).

At the end of this section, we describe a simple fact without proof.

Fact 2.1. Suppose that positive constants \(A_i, B_i, C_i, D_i, i = 1, 2\) satisfy \(A_1/C_1 \leq D_1/B_1, A_2/C_2 \leq D_2/B_2\) and that either \(A_2/C_2 \in [A_1/C_1, D_1/B_1]\) or \(A_1/C_1 \in [A_2/C_2, D_2/B_2]\) holds. Then there exist positive constants \(K\) and \(L\) such that
\[
\max(A_1/C_1, A_2/C_2) \leq K/L \leq \min(D_1/B_1, D_2/B_2).
\]

3. Local existence

In this section, we study local existence of solutions to problem (1.1).

Theorem 3.1. Assume (A). Then there exists a time \(T > 0\) such that (1.1) has a unique weak solution \((u, v)\) on \(\overline{Q}_T\) satisfying \((u, v) \geq (\delta, \delta) > (0, 0)\) for some positive constant \(\delta\).
The proof of this theorem basically follows line by line the proof of Theorem 1 in [19]. However the nonlocal term causes some difficulties, we will give the outline of the proof by pointing out the differences. Consider the following approximating problems for problem (1.1):

\begin{equation}
\begin{aligned}
&u_{xt} = \left[\left[(u_{m_1}^x)_{x} + \varepsilon\right]^{\frac{m_1-1}{2}} \phi_1(u_{x}),
\right. \\
&v_{xt} = \left[\left[(v_{m_2}^x)_{x} + \varepsilon\right]^{\frac{m_2-1}{2}} \phi_2(v_{x}),
\right. \\
&u_{x}|_{x=0} = 0, \\
v_{x}|_{x=0} = 0,
\end{aligned}
\end{equation}

for any $w, z \in R$.

First, we claim that there exist a small constant $\tau_1 > 0$ and a positive constant C independent of ε such that

\[
\|u_{m_1}^{w_1}\|_\infty, \|v_{m_2}^{w_1}\|_\infty \leq C \text{ on } Q_{\tau_1}.
\]

Proof. Choose bounded functions: $a_{ix}(z) \in C^\infty(R), 0 < \rho_\varepsilon \leq a_{ix}^1(z) \leq \rho_\varepsilon^{-1}$ on R for some $0 < \rho_\varepsilon < 1$ and

\[
a_{ix}(z) = (|z|^2 + \varepsilon)^{\frac{m_i-1}{2}} z \quad \text{for } |z| \leq K + L + 1, \quad i = 1, 2,
\]

where $K = \|(u_{0}^{m_1})_{x}(x)\|_\infty + \|(v_{0}^{m_2})_{x}(x)\|_\infty$. Then consider the following problem:

\begin{equation}
\begin{aligned}
&u_{xt} = [a_{ix}((u_{m_1}^{x})_{x})_{x} + F_1(u_{x}, v_{x})], \\
v_{xt} = [a_{ix}((v_{m_2}^{x})_{x})_{x} + F_2(u_{x}, v_{x})], \\
&u_{x}|_{x=0} = 0, \\
v_{x}|_{x=0} = 0,
\end{aligned}
\end{equation}

for (3.2), standard parabolic theory (see [11]) shows that there is a pair of unique smooth solutions (u_{x}, v_{x}) in the class $H^{2+\beta, 1+\beta/2}(Q_T)$ for some $\beta \in L^\infty$.
Therefore, comparison principle holds for (3.2). Therefore,
\[u_\varepsilon(x, t), v_\varepsilon(x, t) \geq \delta > 0, \quad u_{\varepsilon t}(x, t), v_{\varepsilon t}(x, t) \geq 0, \quad (x, t) \in \overline{Q}_T \]
and for some constant \(c \in \mathbb{R} \),
\[0 < c \leq (F_1)_1(w, z), (F_1)_2(w, z), (F_2)_1(w, z), (F_2)_2(w, z) \leq c^{-1}. \]

Similarly to the proof of Proposition 3.1 in [19], the maximum principle yields that there exists a \(\tau_1 > 0 \) such that
\[\|w\|_\infty \leq \max(\|w_0^{m_1}\|_\infty, \|w_0^{m_2}\|_\infty, L), \]
\[\|z\|_\infty \leq \max(\|z_0^{m_1}\|_\infty, \|z_0^{m_2}\|_\infty, L). \]

Therefore we have
\[\|(w_\varepsilon^{m_1})_x\|_\infty, \|(w_\varepsilon^{m_2})_x\|_\infty \leq K + L + 1 \quad \text{on } \overline{Q}_{\tau_1}. \]

Thus \((u_\varepsilon, v_\varepsilon)\) is a solution of (3.1) in \(\overline{Q}_{\tau_1} \). Setting \(C = K + L + 1 \), we draw our conclusion. \(\square \)

Next, we prove the following energy estimates.

Proposition 3.2. There exists a \(\tau_2 \in (0, T) \) such that
\[u_\varepsilon(x, t), v_\varepsilon(x, t) \leq M + 1 \quad \text{on } \overline{Q}_{\tau_2}. \]

Proof. We may assume that \(T \in [0, 1) \). Let \(h \geq M \). Multiplying (3.1) by \((u_\varepsilon - h)_+\) and noting that \(0 < l \leq G_1, F_1 \leq L \), it is easy to see that
\[\int_0^a (u_\varepsilon(x, t) - h)_+^2 dx + \int_0^T \int_{Q_T} |u_{\varepsilon x}|^{p_1 - 1} |(u_\varepsilon - h)_+^2 |x dx dt \]
\[\leq c \int_0^T (u_\varepsilon - h)_+^2 |x = a| dt + c \int_0^T \int_{Q_T} (u_\varepsilon - h)_+^2 dx dt \]
for some positive constant \(c \) independent of \(\varepsilon \). Then similarly to the proof of Proposition 3.1 in [19], there exists a \(\tau_2 > 0 \), independent of \(\varepsilon \), such that
\[u_\varepsilon \leq M + 1 \quad \text{on } \overline{Q}_{\tau_2}. \]
Similarly, we have
\[v_\varepsilon \leq M + 1 \quad \text{on } \overline{Q}_{\tau_2}. \]
This completes the proof of Proposition 3.2. □

Proposition 3.3. There exists a constant \(C > 0 \), independent of \(\varepsilon \), such that
\[
\iint_{Q_T} (u_{\varepsilon t}^2 + v_{\varepsilon t}^2) \, dx \, dt \leq C < +\infty,
\]
where \(T = \min\{\tau_1, \tau_2\} \).

Proof. Differentiate the first equation of (3.1) with respect to \(t \) and multiply both sides of the equation by \(u_{\varepsilon t} \), integrate over \(Q_T \) to get
\[
\frac{1}{2} \int_0^a u_{\varepsilon t}^2(x, t) \, dx + \iint_{Q_T} \left((u_{\varepsilon}^{m_1})_x^2 + \varepsilon \right)^{\frac{m_1 - 1}{2}} \left[p_1(u_{\varepsilon}^{m_1})_x^2 + \varepsilon \right] u_{\varepsilon}^{m_1 - 1} u_{\varepsilon x}^2 \, dx \, dt
\]
\[
= \frac{1}{2} \int_0^a u_{\varepsilon t}^2(x, 0) \, dx
\]
\[
- \iint_{Q_T} (u_{\varepsilon}^{m_1})_x^2 + \varepsilon \right)^{\frac{m_1 - 1}{2}} \left[p_1(u_{\varepsilon}^{m_1})_x^2 + \varepsilon \right] u_{\varepsilon}^{m_1 - 1} u_{\varepsilon x} u_{\varepsilon t} \, dx \, dt
\]
\[
+ \int_0^T \left[(u_{\varepsilon}^{m_1})_x^2 + \varepsilon \right)^{\frac{m_1 - 1}{2}} (u_{\varepsilon}^{m_1})_x \, u_{\varepsilon t}(a, t) \, dt
\]
\[
+ \iint_{Q_T} [(F_1)'(u_{\varepsilon}, v_{\varepsilon}) u_{\varepsilon t}^2 + (F_1)''(u_{\varepsilon}, v_{\varepsilon}) v_{\varepsilon} u_{\varepsilon t}] \, dx \, dt.
\]

Using Hölder’s inequality, we have
\[
\int_0^a u_{\varepsilon t}^2(x, t) \, dx + \iint_{Q_T} (u_{\varepsilon}^{m_1})_x^2 + \varepsilon \right)^{\frac{m_1 - 1}{2}} \left[p_1(u_{\varepsilon}^{m_1})_x^2 + \varepsilon \right] u_{\varepsilon}^{m_1 - 1} u_{\varepsilon x}^2 \, dx \, dt
\]
\[
= m_1(m_1 - 1)^2 \iint_{Q_T} (u_{\varepsilon}^{m_1})_x^2 + \varepsilon \right)^{\frac{m_1 - 1}{2}} \left[p_1(u_{\varepsilon}^{m_1})_x^2 + \varepsilon \right] u_{\varepsilon}^{m_1 - 3} u_{\varepsilon x} u_{\varepsilon t}^2 \, dx \, dt
\]
\[
+ \int_0^a u_{\varepsilon t}^2(x, 0) \, dx + 2 \int_0^T \left[(u_{\varepsilon}^{m_1})_x^2 + \varepsilon \right)^{\frac{m_1 - 1}{2}} (u_{\varepsilon}^{m_1})_x \, u_{\varepsilon t}(a, t) \, dt
\]
\[
+ 2 \iint_{Q_T} [(F_1)'(u_{\varepsilon}, v_{\varepsilon}) u_{\varepsilon t}^2 + (F_1)''(u_{\varepsilon}, v_{\varepsilon}) v_{\varepsilon} u_{\varepsilon t}] \, dx \, dt.
\]

Using \(u_{\varepsilon}(x, t), v_{\varepsilon}(x, t) \geq \delta \) and the boundary conditions in (3.1), we know that there exists \(x_0 \in [0, a] \) such that
\[
u_{\varepsilon x}(x, t) \geq \frac{\delta^{g_{11}g_{12}}}{2},
\]
\[
v_{\varepsilon x}(x, t) \geq \frac{\delta^{g_{12}g_{22}}}{2}, \quad (x, t) \in [x_0, a] \times [0, T].
\]

Hence, we have
\[
\iint_{Q_T} (u_{\varepsilon}^{m_1})_x^2 + \varepsilon \right)^{\frac{m_1 - 1}{2}} \left[p_1(u_{\varepsilon}^{m_1})_x^2 + \varepsilon \right] u_{\varepsilon}^{m_1 - 1} u_{\varepsilon x}^2 \, dx \, dt \geq c \int_0^T \int_{x_0}^a u_{\varepsilon x}^2 \, dx \, dt.
\]
for some positive constant \(c \) independent of \(\varepsilon \).

Then, (3.4), together with (3.5), gives

\[
\int_0^a u_{x_t}^2(x, t)dx + c \int_0^T \int_{x_0}^a u_{xt}^2 dxdt \\
= c \int_{Q_T} (u_{x_t})^2 dxdt + \int_0^a u_{x_t}^2(x, 0)dx + c \int_0^T [u_{x_t}^2 + v_{x_t}^2](a, t)dt \\
+ 2 \int_{Q_T} ([F_1]^1_{x}(u, v_x)u_{x_t}^2 + (F_2)^2_{x}(u, v_x)v_{x_t}u_{x_t}]dxdt
\]

with the help of the boundary conditions and Young’s inequality.

Similarly, we have

\[
\int_0^a v_{x_t}^2(x, t)dx + c \int_0^T \int_{x_0}^a v_{xt}^2 dxdt \\
= c \int_{Q_T} (v_{x_t})^2 dxdt + \int_0^a v_{x_t}^2(x, 0)dx + c \int_0^T [u_{x_t}^2 + v_{x_t}^2](a, t)dt \\
+ 2 \int_{Q_T} ([F_2]^2_{x}(u, v_x)u_{x_t}v_{x_t} + (F_2)^2_{x}(u, v_x)v_{x_t}^2]dxdt.
\]

Using Sobolev’s inequalities, we have

\[
c \int_0^T [u_{x_t}^2 + v_{x_t}^2](a, t)dt \\
\leq \tau_1 \int_0^T \int_{x_0}^a (u_{x}^2 + v_{x}^2) dxdt + c(\tau_1) \int_0^T \int_{x_0}^a (u_{x}^2 + v_{x}^2) dxdt
\]

for any positive constant \(\tau_1 \) independent of \(\varepsilon \). Noticing (3.3) and using Young’s inequality again, we obtain

\[
\int_{Q_T} (F_1)^1_{x}(u, v_x)u_{x_t}^2 + (F_2)^2_{x}(u, v_x)v_{x_t}u_{x_t}]dxdt \leq c \int_{Q_T} (u_{x_t}^2 + v_{x_t}^2)dxdt,
\]

\[
\int_{Q_T} (F_2)^2_{x}(u, v_x)u_{x_t}v_{x_t} + (F_2)^2_{x}(u, v_x)v_{x_t}^2]dxdt \leq c \int_{Q_T} (u_{x_t}^2 + v_{x_t}^2)dxdt.
\]

Combining (3.6)-(3.9), we have

\[
\int_0^a (u_{x_t}^2 + v_{x_t}^2)(x, t)dx \leq \int_0^a (u_{x}^2 + v_{x}^2)(x, 0)dx + C \int \int_{Q_T} (u_{x}^2 + v_{x}^2)dxdt.
\]

By the Gronwall’s Lemma, we obtain the desired results.

Therefore, by compactness arguments and the standard monotonicity argument, it follows that (up to extraction of a subsequence):

\[
(u_{x}, v_{x}) \to (u, v) \quad \text{a.e. for } (x, t) \in Q_T,
(u_{x}, v_{x}) \to (u_x, v_x) \quad \text{weakly star in } L^\infty(Q_T),
(u_{x}, v_{x}, u, v) \to (u_t, v_t) \quad \text{weakly in } L^2(Q_T),
\]
\[a_1((u'^{m_1})_x) \rightarrow w_1 \] weakly star in \(L^\infty(Q_T) \),
\[a_2((u'^{m_2})_x) \rightarrow w_2 \] weakly star in \(L^\infty(Q_T) \).

We show that \(w_1 = |(u'^{m_1})_x|^{p_1-1}(u'^{m_1})_x \), \(w_2 = |(u'^{m_2})_x|^{p_2-1}(u'^{m_2})_x \).

From Proposition 3.2, we have
\[
\lim_{n \to \infty} \int_{Q_T} \psi |(u'^{m_1})_x|^{p_1-1}(u'^{m_1})_x(u'^{m_1} - u^{m_1})_x dxdt = 0,
\]
where \(\psi \in C_0^1(Q_T), \psi \geq 0 \).

Then similarly to the proof of Theorem 1 in [17], we have
\[
\int_{Q_T} \psi (w_1 - |(u'^{m_1})_x|^{p_1-1}(u'^{m_1})_x) dxdt = 0.
\]
Thus \(w_1 = |(u'^{m_1})_x|^{p_1-1}(u'^{m_1})_x \). Similarly, \(w_2 = |(v'^{m_2})_x|^{p_2-1}(v'^{m_2})_x \).

The proof of Theorem 3.1 is completed by a standard limiting process.

The uniqueness of the solution is obvious. In fact, assume that \((u_1, v_1) \), \((u_2, v_2) \) are two nonnegative solutions of (1.1), using Proposition 2.1 repeatedly, we can get \(u_1 = u_2, v_1 = v_2 \) a.e. in \(Q_T \). \(\square \)

4. Proof of the theorems

In this section we will discuss the global existence of solutions to problem (1.1).

We will divide the proof of Theorem 1.1 and Theorem 1.2 into six lemmas. Throughout this section we denote
\[\tau_i = \frac{p_i}{p_i + 1}, \quad i = 1, 2, \]
and choose \(\underline{\lambda}, \lambda \) satisfying \(\underline{\lambda} > 1 > \lambda > 0 \).

Lemma 4.1. For \(l_{11} > 1 \) or \(l_{22} > 1 \) or \(q_{11} > \frac{1}{p_1} + 1 - m_1 \) or \(q_{22} > \frac{1}{p_2} + 1 - m_2 \), the solution \((u, v) \) of (1.1) blows up in finite time.

Proof. Without loss of generality, assume \(l_{11} > 1 \). Consider the single equation
\[
\begin{align*}
\tau_1 &= \frac{p_1}{p_1 + 1}, & \lambda > 1, \\
\tau_2 &= \frac{p_2}{p_2 + 1}, & \lambda > 1, \\
\end{align*}
\]
and choose \(\underline{\lambda}, \lambda \) satisfying \(\underline{\lambda} > 1 > \lambda > 0 \).

Lemma 4.2. For \(q_{11} \leq \frac{1}{p_1} + 1 - m_1, \) \(q_{22} \leq \frac{1}{p_2} + 1 - m_2 \) and \(q_{12}q_{21} > \left(\frac{1}{p_1} + 1 - m_1 - q_{11} \right) \left(\frac{1}{p_2} + 1 - m_2 - q_{22} \right) \), the solution \((u, v) \) of (1.1) blows up in finite time.
Proof. Notice that the solutions of (1.3) are just subsolutions of (1.1). The blow-up result for the solutions of (1.3) (see [19]) yields the blow-up of solutions to (1.1). □

Lemma 4.3. For $l_{11} \leq l_{22} \leq 1$ and $l_{12} q_{21} > (1 - l_{11}) (1 - l_{22})$, the solution (u, v) of (1.1) blows up in finite time.

Proof. We choose $k_i > 0, i = 1, 2$ such that

$$-k_1 l_{11} - k_2 l_{12} + k_1 + 1 \leq 0,$$
$$-k_1 l_{21} - k_2 l_{22} + k_2 + 1 \leq 0.$$

Denote $w_i = (c - bt)^{-k_i}$ and

$$c = \max \{\delta^{-\frac{1}{m_1}}, \delta^{-\frac{1}{m_2}}\}, b = \min \left\{ \frac{ae^{-k_1 l_{11} - k_2 l_{12} + k_1 + 1}}{k_1}, \frac{ae^{-k_1 l_{21} - k_2 l_{22} + k_2 + 1}}{k_2} \right\}.$$

A routine calculation yields:

$$w_{11} \equiv k_1 b (c - bt)^{-k_1 - 1} \leq a (c - bt)^{-k_1 l_{11} - k_2 l_{12}} = w_1^{11} \int_0^a w_1^{12}(\xi, t) d\xi.$$

$$w_1(x, 0) \leq c^{-k_1} \leq \min u_0(x) \leq u_0(x).$$

Similarly, we have

$$w_{22} \leq w_2^{22} \int_0^a w_2^{12}(\xi, t) d\xi, \quad w_2(x, 0) \leq v_0(x).$$

Hence, by the comparison principle we have that $(u, v) \geq (w_1, w_2)$. Therefore, (u, v) blows up in finite time. The proof is completed. □

Lemma 4.4. For $l_{11} \leq 1, q_{22} \leq \frac{1}{p_2} + 1 - m_2$ and $l_{12} q_{21} > [1 - l_{11}][\frac{1}{p_2} + 1 - m_2 - q_{22}]$, the solution (u, v) of (1.1) blows up in finite time.

Proof. It is easy to prove that by Fact 2.1 there exist positive constants $k_1, k_2 > 0, \beta_1 > m_1, \beta_2 > m_2$ satisfying

$$k_1 \beta_1 (1 - l_{11}) + 1 - k_2 \beta_2 l_{12} = 0,$$
$$k_2 \beta_2 p_2 - k_2 p_2 - k_2 \beta_2 m_2 - 1 \geq 0,$$
$$k_1 \beta_1 - k_1 - k_1 \beta_1 q_{11} - k_2 \beta_2 q_{12} \leq 0,$$
$$k_2 \beta_2 - k_2 - k_2 \beta_2 q_{22} - k_1 \beta_1 q_{21} m_1 \leq 0.$$

Set

$$w_1 = [d(1 + x \frac{a}{m_1}) + (c - bt)^{-(k_1 \beta_1)/m_1}]^{\beta_1/m_1} = [S_1]^{\beta_1/m_1},$$
$$w_2 = [d(1 + x \frac{a}{m_2}) + (c - bt)^{-(k_2 \beta_2)/m_2}]^{\beta_2/m_2} = [S_2]^{\beta_2/m_2},$$

where $S_1 \leq \min u_0(x) \leq S_2.$
where \(b, c, d > 0 \) satisfy
\[
c \geq \max \{ 2 \pi \delta^{-\frac{m_1}{m_1 - 1}}, 2 \pi \delta^{-\frac{m_2}{m_2 - 1}} \},
\]
\[
d \leq \min \left\{ \frac{1}{1 + a^{\frac{k_1}{7}}}, \frac{1}{1 + a^{\frac{1}{7}}} \right\}
\]
\[
\Delta \left(\frac{\beta_1}{m_1} \right) \frac{1}{a^{\frac{k_1}{7}}} \left(\frac{2^{\beta_1/m_1 - 1}}{2^{\beta_2/m_2 - 1}} \right)^{-1} c k_1 b_1/m_1 - k_1 - k_2 \beta_2 q_11/m_1 - k_2 \beta_2 q_{12}/m_2,
\]
\[
\Delta \left(\frac{\beta_2}{m_2} \right) \frac{1}{a^{\frac{k_1}{7}}} \left(\frac{2^{\beta_2/m_2 - 1}}{2^{\beta_1/m_1 - 1}} \right)^{-1} c k_2 b_2/m_2 - k_2 - k_2 \beta_2 q_{22}/m_2 - k_1 \beta_2 q_1/m_1,\]
\[
b \leq \min \left\{ \frac{\Lambda}{a(k_1 \beta_1/m_1)^{-1}2^{1 - \beta_1}}, \frac{1}{m_2} b \beta_2 \right\} \frac{2^{\beta_1/m_1 - 1} - 1}{2^{\beta_2/m_2 - 1} - 1} c^{(-k_2 \beta_2 p_2 - k_2 p_2 - k_2 \frac{2^{\beta_2/m_2 - 1}}{2^{\beta_1/m_1 - 1}})}.
\]

Computing directly, we obtain
\[
w_{1t} = \frac{\beta_1}{m_1} [S_1]^{\frac{1}{m_1}} b_1 c(b - bt)^{-k_1 - 1},
\]
\[
(w_{1t})_x = \beta_1 [S_1]^{\frac{1}{m_1}} d^{\frac{1}{7}} \frac{1}{a^{\frac{1}{7}}} [S_1]^{\frac{1}{m_1}} [S_2]^{\frac{1}{m_2}} (\xi, t) d[\xi]
\]
\[
\left(\left((w_{1t}^{m_1})_x \right)^{p_1} \right)_x + w_{1t}^{\frac{n_1}{11}} \int_0^a w_{1t}^{\frac{n_2}{12}} (\xi, t) d[\xi] \geq a(c - bt)^{-k_1 (\frac{1}{m_1} - 1) - k_1 - 1}
\]
\[
\geq \beta_1 k_1 b_2 \beta_2 \frac{a^{\frac{1}{7}}}{m_1}^{\frac{1}{m_1}} (c - bt)^{-k_1 (\frac{1}{m_1} - 1) - k_1 - 1}
\]
\[
= w_{1t}
\]
and
\[
\left(\left((w_{2t}^{m_2})_x \right)^{p_2} \right)_x + \Delta \int_0^a w_{2t}^{n_2} \geq (\beta_2 d^{\frac{1}{7}}) \frac{1}{a^{\frac{1}{7}}} \left[[S_2]^{p_2 (\beta_2 - 1)} \right]_x \geq (\beta_2 d^{\frac{1}{7}}) \frac{1}{a^{\frac{1}{7}}} [S_2]^{p_2 (\beta_2 - 1)} \geq \beta_2 \frac{2^{\beta_1/m_1 - 1} - 1}{2^{\beta_2/m_2 - 1} - 1} (c - bt)^{-k_2 (\frac{2^{\beta_2/m_2 - 1}}{2^{\beta_1/m_1 - 1}}) - k_2 - 1} \geq w_{2t}.
\]

Then we have
\[
w_{1t} \leq \left(\left((w_{1t}^{m_1})_x \right)^{p_1} \right)_x + w_{1t}^{\frac{1}{11}} \int_0^a w_{1t}^{\frac{n_2}{12}} (\xi, t) d[\xi],
\]
\[
(4.1) \quad w_{2t} \leq \left(\left((w_{2t}^{m_2})_x \right)^{p_2} \right)_x + w_{2t}^{\frac{1}{22}} \int_0^a w_{1t}^{\frac{1}{21}} (\xi, t) d[\xi].
\]
Lemma 4.6. For $w_{1x}(a,t) = \frac{\beta}{m_1} d_1 \frac{1}{\tau_1} \lambda_1 |S_1|^{\beta_1/m_1-1} \leq \frac{\beta}{m_1} d_1 \frac{1}{\tau_1} 2^{\beta_1/m_1-1} \frac{1}{\tau_1} (c-bt)^{-k_1(\beta_1/m_1-1)} \leq \Delta w^p_{11} w^q_{12}.

Similarly, we have
\begin{equation}
(4.2) \quad w_{2x}(a,t) \leq \Delta w^p_{11} w^q_{12}.
\end{equation}

Under the assumptions of a, b, k_i and β_i, we have that for $x \in [0,1]$,
\begin{equation}
(4.3) \quad w_1(x,0) \leq (d(1+a^{\frac{1}{q_1}}) + c^{-k_1})^{\beta_1/m_1} \leq \delta \leq u_0(x),
\end{equation}
\begin{equation}
(4.4) \quad w_2(x,0) \leq (d(1+a^{\frac{1}{q_2}}) + c^{-k_2})^{\beta_2/m_2} \leq \delta \leq v_0(x).
\end{equation}
From (4.3)-(4.7) and the comparison principle, it follows that $(u, v) \geq (w_1, w_2)$.

This shows that (u, v) blows up in finite time.

\textbf{Lemma 4.5.} For $l_{22} \leq 1$, $q_{11} \leq \frac{1}{p_1} + 1 - m_1$ and $l_{21} q_{12} > \frac{1}{p_1} + 1 - m_1 - q_{11}[1 - l_{22}]$, the solution (u,v) of (1.1) blows up in finite time.

\textbf{Proof.} The proof is similar to that of Lemma 4.4.

\textbf{Lemma 4.6.} For $l_{11} \leq 1$, $l_{22} \leq 1$, $q_{11} \leq \frac{1}{p_1} + 1 - m_1$, $q_{22} \leq \frac{1}{p_2} + 1 - m_2$, $l_{12} l_{21} \leq (1 - l_{11})(1 - l_{22})$, $l_{12} q_{21} \leq [1 - l_{11}] \frac{1}{p_2} + 1 - m_2 - q_{22}$, $l_{21} q_{12} \leq \frac{1}{p_1} + 1 - m_1 - q_{11}[1 - l_{22}]$ and $q_{12} q_{21} \leq \frac{1}{p_1} + 1 - m_1 - q_{11}[1 - l_{22}]$, the solution (u,v) of (1.1) exists globally.

\textbf{Proof.} First, it is easy to prove that by Fact 2.1 and (B) there exist $l_1, l_2 > 1$ such that
\begin{equation}
(4.5) \quad \frac{p_1}{m_1 p_1 - 1} \frac{(\frac{1}{p_1} + 1 - m_1 - q_{11})}{l_1} - \frac{q_{21} p_1}{m_2 p_2 - 1} \frac{1}{l_2} \geq 0, \\
\frac{p_2}{m_2 p_2 - 1} \frac{(\frac{1}{p_2} + 1 - m_2 - q_{22})}{l_2} - \frac{q_{21} p_1}{m_2 p_2 - 1} \frac{1}{l_1} \geq 0, \\
\frac{p_1}{m_1 p_1 - 1} \frac{(1 - l_{11})}{l_1} - \frac{p_2}{m_2 p_2 - 1} \frac{l_{12}}{l_2} \geq 0, \\
\frac{p_2}{m_2 p_2 - 1} \frac{(1 - l_{22})}{l_2} - \frac{q_{21} p_1}{m_2 p_2 - 1} \frac{1}{l_1} \geq 0.
\end{equation}

Denote $w_i = [d_i(1 + x^{\frac{1}{q_i}}) + e^{d_i(t+1)}]^{\frac{p_i}{m_i p_i - 1}} = [S_i]^{\frac{p_i}{m_i p_i - 1}}$, $i = 1, 2$, where $l_i > 0$ satisfy (4.5) and
\begin{align*}
d_1 &= \frac{m_1 p_1 - 1}{p_1} \tau_1 \lambda_1 - \frac{1}{\tau_1} 2^{\frac{m_2 p_2 - 1}{p_2}} \tau_2 \lambda_2, \\
d_2 &= \frac{m_2 p_2 - 1}{p_2} \tau_2 \lambda_2 - \frac{1}{\tau_2} 2^{\frac{m_1 p_1 - 1}{p_1}} \tau_1 \lambda_1, \\
l &\geq \max\{\ln(d_1(1 + x^{\frac{1}{q_1}}))/l_1, \ln(d_2(1 + a^{\frac{1}{q_2}}))/l_2, \}.
\end{align*}

\begin{align*}
\left(\frac{p_1}{m_1 p_1 - 1} \right)_{l_1}^{p_1} - 4 m_1 p_1 d_1^{p_1} &/ l_1^{q_1} (1 + \frac{d_1 p_1 a^{\frac{1}{q_1}}}{(m_1 p_1 - 1) \tau_1}),
\end{align*}
By the choices of d_1, d_2 and l we have

$$S_1 \leq 2e^{\mu(t+1)}, \quad S_2 \leq 2e^{\mu(t+1)}.$$

By direct computations and (4.6) we have, for $(x, t) \in (0, a) \times [0, +\infty)$,

$$w_{1t} = \frac{p_1 l_1}{m_1 p_1 - 1} S_1^{\frac{n}{m_1 p_1 - 1} - 1} e^{\mu(t+1)},$$

$$(w_{1}^{m_1})_x = \left(\frac{m_1 p_1 d_1}{(m_1 p_1 - 1) \tau_1} \right)^{p_1} \left(\int S_1^{\frac{n}{m_1 p_1 - 1} - 1} x^{\frac{1}{m_1 p_1 - 1}} - \int S_1^{\frac{n}{m_1 p_1 - 1} - 1} x^{\frac{1}{m_1 p_1 - 1}} \right),$$

$$\left((w_{1}^{m_1})_x \right)^{p_1} = \left(\frac{m_1 p_1 d_1}{(m_1 p_1 - 1) \tau_1} \right)^{p_1} \left(\int S_1^{\frac{n}{m_1 p_1 - 1} - 1} (S_1 + \frac{p_1 d_1}{(m_1 p_1 - 1) \tau_1}) \right),$$

$$\leq \left(\frac{m_1 p_1 d_1}{(m_1 p_1 - 1) \tau_1} \right)^{p_1} \left(S_1 + \frac{p_1 d_1}{(m_1 p_1 - 1) \tau_1} \right) \leq \frac{1}{2} \frac{p_1 l_1}{m_1 p_1 - 1} S_1^{\frac{n}{m_1 p_1 - 1} - 1} e^{\mu(t+1)}$$

$$= \frac{1}{2} w_{1t},$$

$$w_{11}^t \int_0^a w_{21}^{l_2} (\xi, t) d\xi = [S_1]^{\frac{n}{m_1 p_1 - 1} - 1} \int_0^a [S_2]^{\frac{n}{m_2 p_2 - 1} - 1} d\xi$$

$$\leq [S_1]^{\frac{n}{m_1 p_1 - 1} - 1} 2ae^{\mu(t+1)} [2e^{\mu(t+1)}]^{\frac{n}{m_2 p_2 - 1}} \leq \frac{1}{2} \frac{p_1 l_1}{2 m_1 p_1 - 1} S_1^{\frac{n}{m_1 p_1 - 1} - 1} e^{\mu(t+1)}$$

$$= \frac{1}{2} w_{1t},$$

i.e.,

$$(4.7) \quad w_{1t} \geq \left((w_{1}^{m_1})_x \right)^{p_1} + w_{11}^t \int_0^a w_{21}^{l_2} (\xi, t) d\xi.$$

Similarly, we have

$$(4.8) \quad w_{2t} \geq \left((w_{2}^{m_2})_x \right)^{p_2} + w_{22}^t \int_0^a w_{12}^{l_1} (\xi, t) d\xi.$$.
And

$$w_{1x}|_{x=0} = 0, \quad w_{2x}|_{x=0} = 0,$$

$$w_{1x} = \frac{p_1 d_1}{(m_1 p_1 - 1) \tau_1} S_1^{-\frac{p_1}{m_1 p_1 - 1}} \frac{a}{\tau_1} - 1$$

$$\geq w_{11}^q w_{22}^q \frac{p_1 d_1}{(m_1 p_1 - 1) \tau_1} S_1^{-\frac{p_1}{m_1 p_1 - 1}} \frac{a}{\tau_1} - 1$$

$$\geq \frac{w_{11}^q w_{22}^q}{m_1 p_1 - 1} \frac{p_1 d_1}{(m_1 p_1 - 1) \tau_1} S_1^{-\frac{p_1}{m_1 p_1 - 1}} \frac{a}{\tau_1} - 1$$

$$(4.9) \quad \lambda w_{11}^q w_{22}^q, \quad x = a, \quad t > 0.$$

Similarly, we have

$$(4.10) \quad w_{2x} \geq \lambda w_{11}^q w_{22}^q, \quad x = a, \quad t > 0.$$

For $x \in [0, a]$, we have

$$(4.11) \quad w_1(x, 0) = \frac{d_1 (1 + x \tau_1)}{m_1 p_1 - 1} \exp \left\{ \frac{p_1}{m_1 p_1 - 1} \frac{a}{\tau_1} - 1 \right\} \geq \max u_0(x) = u_0(x),$$

$$(4.12) \quad w_2(x, 0) = \frac{d_2 (1 + x \tau_2)}{m_2 p_2 - 1} \exp \left\{ \frac{p_2}{m_2 p_2 - 1} \frac{a}{\tau_2} - 1 \right\} \geq \max v_0(x) = v_0(x).$$

From (4.7)-(4.11), we see that (w_1, w_2) is a supersolution of (1.1) with $\bar{\lambda}$, which means that solutions of (1.1) exists globally.

Acknowledgements. The authors express their deepest thanks to the reviewers and the editor for their careful reading and valuable suggestions.

References

Jian Wang
Department of Mathematics
Ocean University of China
266100 Qingdao, P. R. China
E-mail address: pdejwang@163.com