RECURRENT JACOBI OPERATOR OF REAL HYPERSURFACES IN COMPLEX TWO-PLANE GRASSMANNIANS

Imsoon Jeong, Juan de Dios Pérez, and Young Jin Suh

Abstract. In this paper we give a non-existence theorem for Hopf hypersurfaces in the complex two-plane Grassmannian $G_2(C^{m+2})$ with recurrent normal Jacobi operator \bar{R}_N.

1. Introduction

Let (\bar{M}, \bar{g}) be a Riemannian manifold. The Jacobi operator \bar{R}_X, for any tangent vector field X at $x \in \bar{M}$, is defined by

$$(\bar{R}_X Y)(x) = (\bar{R}(Y, X) X)(x)$$

for any $Y \in T_x \bar{M}$. It becomes a self adjoint endomorphism of the tangent bundle TM of \bar{M}, where \bar{R} denotes the curvature tensor of (\bar{M}, \bar{g}). That is, the Jacobi operator satisfies $\bar{R}_X \in \text{End}(T_x \bar{M})$ and is symmetric in the sense of $\bar{g}(\bar{R}_X Y, Z) = \bar{g}(\bar{R}_X Z, Y)$ for any vector fields Y and Z on \bar{M}.

Let M be a hypersurface in a Riemannian manifold \bar{M}. Now by putting a unit normal vector N into the curvature tensor \bar{R} of \bar{M}, the normal Jacobi operator \bar{R}_N is defined by

$$\bar{R}_N X = \bar{R}(X, N) N$$

for any tangent vector field X on M in \bar{M}.

Related to the commuting problem with the shape operator for real hypersurfaces M in quaternionic projective space \mathbb{HP}^m or in quaternionic hyperbolic space \mathbb{H}^m, Berndt [1] has introduced the notion of normal Jacobi operator $\bar{R}_N \in \text{End}(T_x M)$, $x \in M$, where \bar{R} denotes the curvature tensor of the ambient spaces \mathbb{HP}^m or \mathbb{H}^m. He [1] showed that the curvature adaptedness, when

Received November 11, 2011.
2010 Mathematics Subject Classification. 53C40, 53C15.
Key words and phrases. real hypersurfaces, complex two-plane Grassmannians, recurrent normal Jacobi operator, distribution, Hopf hypersurfaces.
This work is supported by grant Proj. No. NRF-2011-220-C00002 from National Research Foundation of Korea. The first author is supported by Proj. No. BSRP-2012-0004248, the second by MEC-FEDER Grant MTM 2010-18099 and the third by BSRP-2012-R1A2A2A-01043023 and KNU, 2012.
the normal Jacobi operator commutes with the shape operator A, is equivalent to the fact that the distributions \mathcal{D} and $\mathcal{D}^\perp = \text{Span}\{\xi_1, \xi_2, \xi_3\}$ are invariant under the shape operator A of M, where $T_x M = \mathcal{D} \oplus \mathcal{D}^\perp$, $x \in M$. Here, $\{J_\nu \mid \nu = 1, 2, 3\}$ is a canonical local basis of quaternionic Kähler structure J and $\xi_\nu = -J_\nu N$, $\nu = 1, 2, 3$. Moreover, he gave a complete classification of curvature adapted real hypersurfaces in quaternionic projective space \mathbb{HP}^m and in quaternionic hyperbolic space \mathbb{HH}^m, respectively.

We say that the normal Jacobi operator \bar{R}_N is parallel on M if the covariant derivative of the normal Jacobi operator \bar{R}_N identically vanishes, that is, $\nabla_X \bar{R}_N = 0$ for any vector field X on M.

Parallelness of the normal Jacobi operator means that the normal Jacobi operator \bar{R}_N is parallel on a real hypersurface M in ambient space \mathbb{C}. This means that the eigenspaces of the normal Jacobi operator are parallel along any curve γ in M. Here the eigenspaces of the normal Jacobi operator \bar{R}_N are said to be parallel along any curve γ if they are invariant with respect to any parallel displacement along the curve γ.

The complex two-plane Grassmannian $G_2(\mathbb{C}^{m+2})$ which consists of all complex two-dimensional linear subspaces in \mathbb{C}^{m+2} has a remarkable geometric structure. It is known to be the unique compact irreducible Riemannian symmetric space equipped with both a Kähler structure J and a quaternionic Kähler structure \bar{J} not containing J (See [2]). From these two structures J and \bar{J}, we have geometric conditions naturally induced on a real hypersurface M in $G_2(\mathbb{C}^{m+2})$: That $[\xi] = \text{Span} \{\xi\}$ or $\mathcal{D}^\perp = \text{Span} \{\xi_1, \xi_2, \xi_3\}$ is invariant under the shape operator. From these two conditions, Berndt and Suh [3] have proved the following:

Theorem A. Let M be a connected real hypersurface in $G_2(\mathbb{C}^{m+2})$, $m \geq 3$. Then both $[\xi]$ and \mathcal{D}^\perp are invariant under the shape operator of M if and only if

(A) M is an open part of a tube around a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$, or

(B) m is even, say $m = 2n$, and M is an open part of a tube around a totally geodesic \mathbb{HP}^n in $G_2(\mathbb{C}^{m+2})$.

The structure vector field ξ of a real hypersurface M in $G_2(\mathbb{C}^{m+2})$ is said to be a Reeb vector field. If the Reeb vector field ξ of a real hypersurface M in $G_2(\mathbb{C}^{m+2})$ is invariant under the shape operator, M is said to be a Hopf hypersurface. In such a case the integral curves of the Reeb vector field ξ are geodesics (See [4]). Moreover, the flow generated by the integral curves of the structure vector field ξ for Hopf hypersurfaces in $G_2(\mathbb{C}^{m+2})$ is said to be a geodesic Reeb flow.

In paper [9], Jeong, Kim and Suh considered the notion of parallel normal Jacobi operator, that is, $\nabla_X \bar{R}_N = 0$ for any vector field X on M in $G_2(\mathbb{C}^{m+2})$, where ∇ denotes the induced connection from the Levi-Civita connection ∇ of $G_2(\mathbb{C}^{m+2})$. They proved a non-existence theorem for Hopf hypersurfaces...
in complex two-plane Grassmannian $G_2(\mathbb{C}^{m+2})$, $m \geq 3$, with parallel normal Jacobi operator as follows:

Theorem B. There does not exist any connected Hopf hypersurface in $G_2(\mathbb{C}^{m+2})$, $m \geq 3$, with parallel normal Jacobi operator.

On the other hand, in [10] Jeong, Lee and Suh have considered a Lie parallelness of the normal Jacobi operator, that is, $\mathcal{L}_X R_N = 0$, where \mathcal{L}_X denotes the Lie derivative along any direction X on M in $G_2(\mathbb{C}^{m+2})$, and asserted the following:

Theorem C. There does not exist any Hopf hypersurface in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$ with Lie parallel normal Jacobi operator if the integral curves of \mathcal{D} and \mathcal{D}^\perp components of the Reeb vector field are totally geodesics.

The purpose of this paper is to study a generalized condition weaker than parallel normal Jacobi operator for real hypersurfaces in $G_2(\mathbb{C}^{m+2})$.

Let T be a tensor field of type (1,1) on M. T is said to be recurrent if there exists a certain 1-form ω on M such that for any vector fields X, Y tangent to M, $(\nabla_X T)(Y) = \omega(X) T(Y)$. This notion generalizes the fact of T being parallel (see [13]).

Hamada [5], [6] investigated real hypersurfaces M in complex projective space $\mathbb{C}P^m$ with recurrent shape operator. This means that the eigenspaces of the shape operator are parallel along any curve γ in M. That is, they are invariant with respect to parallel translation along γ. He proved that there does not exist real hypersurface in complex projective space $\mathbb{C}P^m$ with recurrent shape operator. In [7] he also proved that there does not exist any real hypersurface M in complex projective space $\mathbb{C}P^m$ with recurrent Ricci tensor if the structure vector field ξ is principal.

For a real hypersurface in complex projective space $\mathbb{C}P^m$, P´erez and Santos [15] introduced a new notion of \mathcal{D}-recurrent, which is weaker than the structure Jacobi operator being recurrent. Here, the structure Jacobi operator R_ξ is said to be \mathcal{D}-recurrent if it satisfies

$$(\nabla_X R_\xi)(Y) = \omega(X) R_\xi(Y),$$

where ω and \mathcal{D} respectively denote an 1-form on M and the orthogonal complement of the Reeb vector field ξ in TM, and any vector fields $X \in \mathcal{D}, Y \in TM$. Namely, they proved the following:

Theorem D. Let M be a real hypersurface of $\mathbb{C}P^m$, $m \geq 3$. Then its structure Jacobi operator is \mathcal{D}-recurrent if and only if it is a minimal ruled real hypersurface.

Related to the shape operator, in paper due to [12], first they have applied Hamada’s results to hypersurfaces in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$ and next obtained a non-existence property for Hopf hypersurfaces in $G_2(\mathbb{C}^{m+2})$ with recurrent shape operator.
Motivated by such a recurrent shape operator, and in order to make a generalization of Theorem B, in this paper we introduce a new notion of recurrent Jacobi operator; that is, the recurrent normal Jacobi operator for a real hypersurface M in complex two-plane Grassmannians $G_2(C^{m+2})$. A hypersurface M in $G_2(C^{m+2})$ with recurrent normal Jacobi operator is defined by

$$(\nabla_X R_N)(Y) = \omega(X)R_N(Y),$$

where ω denotes an 1-form on M and any vector fields X, Y tangent to M (see Kobayashi and Nomizu [13] page 305). Consequently, we prove the following:

Theorem 1.1. There does not exist any Hopf hypersurface in complex two-plane Grassmannians $G_2(C^{m+2})$ with recurrent normal Jacobi operator.

2. Riemannian geometry of $G_2(C^{m+2})$

In this section we summarize basic material about $G_2(C^{m+2})$, for details refer to [2], [3] and [4].

By $G_2(C^{m+2})$ we denote the set of all complex two-dimensional linear subspaces in C^{m+2}. The special unitary group $G = SU(m + 2)$ acts transitively on $G_2(C^{m+2})$ with stabilizer isomorphic to $K = SU(2) \times U(m) \subset G$. The space $G_2(C^{m+2})$ can be identified with the homogeneous space G/K, which we equip with the unique analytic structure for which the natural action of G on $G_2(C^{m+2})$ becomes analytic. Denote by \mathfrak{g} and \mathfrak{k} the Lie algebra of G and K, respectively, and by \mathfrak{m} the orthogonal complement of \mathfrak{k} in \mathfrak{g} with respect to the Cartan-Killing form B of \mathfrak{g}. Then $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$ is an $Ad(K)$-invariant reductive decomposition of \mathfrak{g}.

We put $o = eK$ and identify $T_oG_2(C^{m+2})$ with \mathfrak{m} in the usual manner. Since B is negative definite on \mathfrak{g}, negative B restricted to $\mathfrak{m} \times \mathfrak{m}$ yields a positive definite inner product on \mathfrak{m}. By $Ad(K)$-invariance of B this inner product can be extended to a G-invariant Riemannian metric g on $G_2(C^{m+2})$.

In this way $G_2(C^{m+2})$ becomes a Riemannian homogeneous space, even a Riemannian symmetric space. For computational reasons we normalize g such that the maximum sectional curvature of $(G_2(C^{m+2}), g)$ is eight.

When $m = 1$, $G_2(C^4)$ is isometric to the two-dimensional complex projective space CP^2 with constant holomorphic sectional curvature eight. When $m = 2$, we note that the isomorphism $Spin(6) \simeq SU(4)$ yields an isometry between $G_2(C^4)$ and the real Grassmann manifold $G^+_2(R^6)$ of oriented two-dimensional linear subspaces of R^6. In this paper, we will assume $m \geq 3$.

The Lie algebra \mathfrak{k} has the direct sum decomposition $\mathfrak{k} = su(m) \oplus su(2) \oplus \mathfrak{r}$, where \mathfrak{r} is the center of \mathfrak{k}. Viewing \mathfrak{k} as the holonomy algebra of $G_2(C^{m+2})$, the center \mathfrak{r} induces a Kähler structure J and the $su(2)$-part a quaternionic Kähler structure \mathfrak{j} on $G_2(C^{m+2})$.

If J_1 is any almost Hermitian structure in \mathfrak{j}, then $JJ_1 = J_1J$, and JJ_1 is a symmetric endomorphism with $(JJ_1)^2 = I$ and $tr(JJ_1) = 0$.

A canonical local basis J_1, J_2, J_3 of \mathfrak{J} consists of three local almost Hermitian structures J_ν in \mathfrak{J} such that $J_\nu J_{\nu+1} = J_{\nu+2} = -J_{\nu+1} J_\nu$, where the index is taken modulo three. Since \mathfrak{J} is parallel with respect to the Riemannian connection ∇ of $(G_2(\mathbb{C}^{m+2}), g)$, there exist for any canonical local basis J_1, J_2, J_3 of \mathfrak{J} three local one-forms q_1, q_2, q_3 such that

$$\nabla_X J_\nu = q_{\nu+2}(X) J_{\nu+1} - q_{\nu+1}(X) J_{\nu+2}$$

for all vector fields X on $G_2(\mathbb{C}^{m+2})$.

The Riemannian curvature tensor \tilde{R} of $G_2(\mathbb{C}^{m+2})$ is locally given by

$$\tilde{R}(X, Y) Z = g(Y, Z) X - g(X, Z) Y + g(JY, Z) JX - g(JX, Z) JY - 2g(JX, Y) JZ - \sum_{\nu=1}^{3} \left(g(J_\nu Y, Z) J_{\nu} X - g(J_\nu X, Z) J_\nu Y \right)$$

$$- 2g(J_\nu X, Y) J_\nu Z + \sum_{\nu=1}^{3} \left(g(J_\nu JY, Z) J_\nu JX - g(J_\nu JX, Z) J_\nu JY \right)$$

for any vector fields X, Y and Z on $G_2(\mathbb{C}^{m+2})$, where J_1, J_2, J_3 is any canonical local basis of \mathfrak{J} [2].

3. Some fundamental formulas

In this section we derive some basic formulae from the Codazzi equation for a real hypersurface in $G_2(\mathbb{C}^{m+2})$ (See [2], [3] and [4]).

Let M be a real hypersurface of $G_2(\mathbb{C}^{m+2})$. The induced Riemannian metric on M will also be denoted by g, and ∇ denotes the Riemannian connection of (M, g). Let N be a local unit normal field of M and A the shape operator of M with respect to N. The Kähler structure J of $G_2(\mathbb{C}^{m+2})$ induces on M an almost contact metric structure (ϕ, ξ, η, g). Furthermore, let J_1, J_2, J_3 be a canonical local basis of \mathfrak{J}. Then each J_ν induces an almost contact metric structure $(\phi_\nu, \xi_\nu, \eta_\nu, g)$ on M. Using the above expression for \tilde{R}, the Codazzi equation becomes

$$(\nabla_X A) Y - (\nabla_Y A) X = \eta(X) \phi Y - \eta(Y) \phi X - 2g(\phi X, Y) \xi + \sum_{\nu=1}^{3} \left\{ \eta_\nu(X) \phi_\nu Y - \eta_\nu(Y) \phi_\nu X - 2g(\phi_\nu X, Y) \xi_\nu \right\}$$

$$+ \sum_{\nu=1}^{3} \left\{ \eta_\nu(\phi X) \phi_\nu Y - \eta_\nu(\phi Y) \phi_\nu X \right\}$$

$$+ \sum_{\nu=1}^{3} \left\{ \eta(X) \eta_\nu(\phi Y) - \eta(Y) \eta_\nu(\phi X) \right\} \xi_\nu.$$
The following identities can be proved in a straightforward method and will be used frequently in subsequent calculations:

\[
\begin{align*}
\phi_{\nu+1} \xi_{\nu} &= -\xi_{\nu+2}, \\
\phi_{\nu} \xi_{\nu+2} &= \xi_{\nu+1}, \\
\eta_{\nu}(\phi_{\nu} X) &= \eta(\phi_{\nu} X), \\
\phi_{\nu} \phi_{\nu+1} X &= \phi_{\nu+2} X + \eta_{\nu+1}(X) \xi_{\nu}, \\
\phi_{\nu+1} \phi_{\nu} X &= -\phi_{\nu+2} X + \eta_{\nu}(X) \xi_{\nu+1}.
\end{align*}
\]

(3.1)

Now let us put

\[
(3.2) \quad JX = \phi X + \eta(X) N, \quad J_{\nu} X = \phi_{\nu} X + \eta_{\nu}(X) N
\]

for any vector field \(X \) tangent to a real hypersurface \(M \) in \(G_2(\mathbb{C}^{m+2}) \), where \(N \) denotes a normal vector field of \(M \) in \(G_2(\mathbb{C}^{m+2}) \). Then from this and the formulas (2.1) and (3.1) we have that

\[
(3.3) \quad (\nabla_X \phi) Y = \eta(Y) AX - g(AX, Y) \xi, \quad \nabla_X \xi = \phi AX,
\]

(3.4)

\[
(\nabla_X \phi_{\nu}) Y = -q_{\nu+1}(X) \phi_{\nu+2} Y + q_{\nu+2}(X) \phi_{\nu+1} Y + \eta_{\nu}(Y) AX
\]

(3.5)

Moreover, from \(JJ_{\nu} = J_{\nu} J \), \(\nu = 1, 2, 3 \), it follows that

\[
(3.6) \quad \phi \phi_{\nu} X = \phi_{\nu} \phi X + \eta_{\nu}(X) \xi - \eta(X) \xi_{\nu}.
\]

4. Recurrent normal Jacobi operator

From (2.2) the normal Jacobi operator \(\bar{R}_N \) of \(M \) is given by

\[
\bar{R}_N(X) = \bar{R}(X, N) N
\]

\[
= X + 3\eta(X) \xi + 3 \sum_{\nu=1}^{3} \eta_{\nu}(X) \xi_{\nu} \\
- \sum_{\nu=1}^{3} \left\{ \eta_{\nu}(\xi_{\nu})(\phi_{\nu} \phi X - \eta(X) \xi_{\nu}) - \eta_{\nu}(\phi_{\nu} \phi \xi) \right\}.
\]

Now let us consider the covariant derivative of the normal Jacobi operator \(\bar{R}_N \) along the direction \(X \) (see [9]). It is given by

\[
(\nabla_X \bar{R}_N) Y = 3g(\phi AX, Y) \xi + 3\eta(Y) \phi
\]

\[
+ 3 \sum_{\nu=1}^{3} \left\{ g(\phi_{\nu} AX, Y) \xi_{\nu} + \eta_{\nu}(Y) \phi_{\nu} AX \right\}
\]

\[
- \sum_{\nu=1}^{3} \left[2\eta_{\nu}(\phi AX) \phi_{\nu} \xi + \eta(\phi_{\nu} \phi Y - \eta(Y) \xi_{\nu}) - g(\phi_{\nu} AX, \phi Y) \phi_{\nu} \xi
\]

\[- \eta(Y) \eta_{\nu}(AX) \phi_{\nu} \xi - \eta_{\nu}(\phi Y)(\phi_{\nu} \phi AX - g(AX, \xi) \xi_{\nu}) \right].
\]
From this, together with formulas given in Section 3, a real hypersurface \(M \) in \(G_2(\mathbb{C}^{m+2}) \) with recurrent normal Jacobi operator satisfies the following

\[
3g(\phi AX, Y)\xi + 3\eta(Y)\phi AX + 3\sum_{\nu=1}^{3} \left\{ g(\phi_\nu AX, Y)\xi_\nu + \eta_\nu(Y)\phi_\nu AX \right\} \\
- \sum_{\nu=1}^{3} \left[2\eta_\nu(\phi AX)(\phi_\nu \phi Y - \eta(Y)\xi_\nu) - g(\phi_\nu AX, \phi Y)\phi_\nu \xi \right] \\
(4.1) - \eta(Y)\eta_\nu(AX)\phi_\nu \xi - \eta_\nu(\phi Y)(\phi_\nu \phi AX - g(AX, \xi)\xi_\nu) \\
= \omega(X) \left[Y + 3\eta(Y)\xi + 3\sum_{\nu=1}^{3} \eta_\nu(Y)\xi_\nu \\
- \sum_{\nu=1}^{3} \left\{ \eta_\nu(\phi_\nu \phi Y - \eta(Y)\xi_\nu) - \eta_\nu(\phi Y)\phi_\nu \xi \right\} \right].
\]

In order to prove our Main Theorem in the introduction, we give the following.

Lemma 4.1. Let \(M \) be a Hopf hypersurface in \(G_2(\mathbb{C}^{m+2}) \) with recurrent normal Jacobi operator. Then the Reeb vector field \(\xi \) belongs to either the distribution \(D \) or the distribution \(D^\perp \).

Proof. From (4.1), we take \(X = Y = \xi \) and suppose that \(M \) is Hopf, that is, \(A\xi = \alpha \xi \) for a certain function \(\alpha \). Then this yields

\[
\alpha \sum_{\nu=1}^{3} \eta_\nu(\xi)\phi_\nu \xi = \omega(\xi)(\xi + \sum_{\nu=1}^{3} \eta_\nu(\xi)\xi_\nu).
\]

Taking its scalar product with \(\xi \) we get \(\omega(\xi) = 0 \). As \(\omega(\xi) = 0 \), (4.2) yields

\[
\alpha \sum_{\nu=1}^{3} \eta_\nu(\xi)\phi_\nu \xi = 0.
\]

From this, we consider the case that the function \(\alpha \) is non-vanishing. Now let us put \(\xi = \eta(X_0)X_0 + \eta(\xi_1)\xi_1 \) for some unit \(X_0 \in D \) and non-vanishing functions \(\eta(X_0) \) and \(\eta(\xi_1) \).

Then (4.3) yields

\[
0 = \eta(\xi_1)\phi_1 \xi = \eta(X_0)\eta(\xi_1)\phi_1 X_0.
\]

This gives a contradiction with \(\eta(\xi_1) \neq 0 \) and \(\eta(X_0) \neq 0 \). So we get \(\eta(\xi_1) = 0 \) or \(\eta(X_0) = 0 \), which means \(\xi \in D \) or \(\xi \in D^\perp \).

When the function \(\alpha \) vanishes, we can differentiate \(A\xi = 0 \). Then by a theorem due to Berndt and Suh [4] we know that

\[
\sum_{\nu=1}^{3} \eta_\nu(\xi)\phi_\nu \xi = 0.
\]

This also gives \(\xi \in D \) or \(\xi \in D^\perp \). \(\square \)
5. Recurrent normal Jacobi operator with $\xi \in \mathcal{D}$

In paper [14], Lee and Suh gave a characterization of real hypersurfaces of type B in $G_2(\mathbb{C}^{m+2})$ in terms of the Reeb vector field $\xi \in \mathcal{D}$. Now we introduce the following:

Proposition 5.1. Let M be a connected orientable Hopf hypersurface in $G_2(\mathbb{C}^{m+2})$. If the Reeb vector field ξ belongs to the distribution \mathcal{D}, then the distribution \mathcal{D} is invariant under the shape operator A of M, that is, $g(AD, \mathcal{D}^\perp) = 0$.

Then by Proposition 5.1 and Theorem A in the introduction, we know naturally that a Hopf hypersurface M in $G_2(\mathbb{C}^{m+2})$ with recurrent normal Jacobi operator and $\xi \in \mathcal{D}$ is a tube over a totally geodesic quaternionic projective space \mathbb{HP}^n, $m = 2n$.

Now let us check if a real hypersurface of type (B) in $G_2(\mathbb{C}^{m+2})$, that is, a tube over a totally geodesic \mathbb{HP}^n, satisfies the notion of recurrent normal Jacobi operator. Corresponding to such a real hypersurface of type (B), we introduce a proposition due to Berndt and Suh [3] as follows:

Proposition 5.2. Let M be a connected real hypersurface of $G_2(\mathbb{C}^{m+2})$. Suppose that $AD \subset \mathcal{D}$, $A\xi = \alpha \xi$, and ξ is tangent to \mathcal{D}. Then the quaternionic dimension m of $G_2(\mathbb{C}^{m+2})$ is even, say $m = 2n$, and M has five distinct constant principal curvatures

$$\alpha = -2 \tan(2r), \quad \beta = 2 \cot(2r), \quad \gamma = 0, \quad \lambda = \cot(r), \quad \mu = -\tan(r)$$

with some $r \in (0, \pi/4)$. The corresponding multiplicities are

$$m(\alpha) = 1, \quad m(\beta) = 3 = m(\gamma), \quad m(\lambda) = 4n - 4 = m(\mu)$$

and the corresponding eigenspaces are

$$T_\alpha = \mathbb{R}\xi, \quad T_\beta = J\mathbb{J}\xi, \quad T_\gamma = \mathbb{J}\xi, \quad T_\lambda, \quad T_\mu,$$

where

$$T_\lambda \oplus T_\mu = (\mathbb{HC}\xi)^\perp, \quad JT_\lambda = T_\lambda, \quad JT_\mu = T_\mu, \quad JT_\lambda = T_\mu.$$

Now let us suppose M is of type (B) with recurrent normal Jacobi operator \bar{R}_N. From (4.1), by putting $X = \xi_2$ and $Y = \xi$ we have

$$\omega(\xi_2)\xi - \beta \phi_2 \xi = 0.$$

Then it follows that $\omega(\xi_2) = 0$ and $\beta = 0$. Since β is not zero, this makes a contradiction. Thus we conclude the following:

Theorem 5.1. There does not exist any Hopf hypersurface in $G_2(\mathbb{C}^{m+2})$, $m \geq 3$, with recurrent normal Jacobi operator if the Reeb vector ξ belongs to the distribution \mathcal{D}.

6. Recurrent normal Jacobi operator with $\xi \in \mathcal{D}^\perp$

In this section, we consider the case that $\xi \in \mathcal{D}^\perp$. Then the unit normal vector field N is a singular tangent vector of $G_2(C^{m+2})$ of type $JN \in \mathfrak{J}N$. So there exists an almost Hermitian structure $J_1 \in \mathfrak{J}$ such that $JN = J_1N$. Then we have

$$\xi = \xi_1, \ \phi_1 \xi_2 = -\xi_3, \ \phi_3 \xi_2 = \xi_2, \ \phi \mathcal{D} \subset \mathcal{D}.$$

Then, by putting $X = \xi_\mu$ and $Y = \xi$ in (4.1), we get

$$3\phi A\xi_\mu + 5\sum_{\nu=1}^3 \eta_\nu (\phi A\xi_\mu) \xi_\nu + 3\phi_1 A\xi_\mu + \sum_{\nu=1}^3 \eta_\nu (A\xi_\mu) \phi_\nu \xi = 8 \omega(\xi_\mu) \xi.$$

From this, by taking its scalar product with Reeb vector field ξ we get $\omega(\xi_\mu) = 0$. As $\omega(\xi_\mu) = 0$, we have

$$0 = (\nabla_{\xi_\mu} \hat{R}_N)X$$

$$= 3g(\phi A\xi_\mu, X) \xi + 3\eta(X)\phi A\xi_\mu$$

$$+ 3\sum_{\nu=1}^3 \left\{ g(\phi_\nu A\xi_\mu, X) \xi_\nu + \eta_\nu (X)\phi_\nu A\xi_\mu \right\}$$

$$- 3\sum_{\nu=1}^3 \left[2\eta_\nu (\phi A\xi_\mu) (\phi_\nu \phi X - \eta(X) \xi_\nu) - g(\phi_\nu A\xi_\mu, \phi X) \phi_\nu \xi \right.$$

$$- \eta(X)\eta_\nu (A\xi_\mu) \phi_\nu \xi - \eta_\nu (\phi X) (\phi_\nu \phi A\xi_\mu - g(A\xi_\mu, \xi_\nu) \phi_\nu \xi) \left. \right]$$

for any $X \in TM$. From this, by putting $X = \xi$ and using $\xi = \xi_1$, we have

$$0 = 3\phi A\xi_\mu + 5\sum_{\nu=1}^3 \eta_\nu (\phi A\xi_\mu) \xi_\nu + 3\phi_1 A\xi_\mu + \sum_{\nu=1}^3 \eta_\nu (A\xi_\mu) \phi_\nu \xi.$$

From this, taking its inner product with $X \in \mathcal{D}$ and using $g(\phi_\nu, X, \xi) = 0$, we obtain

$$0 = 3g(\phi A\xi_\mu, X) + 3g(\phi_1 A\xi_\mu, X).$$

(6.1)

On the other hand, by using (3.4) we know that

$$\phi A\xi_\mu = \nabla_{\xi_\mu} \xi_1 = \nabla_{\xi_\mu} \xi_1 = \eta_1 (\xi_\mu) \xi_2 - \eta_2 (\xi_\mu) \xi_3 + \phi_1 A\xi_\mu.$$

From this, taking its inner product with $X \in \mathcal{D}$, we have

$$g(\phi A\xi_\mu, X) = g(\phi_1 A\xi_\mu, X).$$

Substituting this formula into (6.1) gives

$$0 = g(\phi A\xi_\mu, X).$$

From this, let us replace X by ϕX. Then it follows that

$$0 = g(\phi A\xi_\mu, \phi X) = -g(A\xi_\mu, \phi^2 X) = g(AX, \xi_\mu)$$

for any vector field $X \in \mathcal{D}$, $\mu = 1, 2, 3$.

Then we obtain the following:
Lemma 6.1. Let M be a Hopf hypersurface in $G_2(\mathbb{C}^{m+2})$, $m \geq 3$, with recurrent normal Jacobi operator and $\xi \in D^\perp$. Then $g(\mathcal{AD}, D^\perp) = 0$.

From this together with Theorem A in the introduction we know that any real hypersurface in $G_2(\mathbb{C}^{m+2})$ with recurrent normal Jacobi operator \bar{R}_N and $\xi \in D^\perp$ is congruent to a tube over a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$.

Now let us check if real hypersurfaces of type (A) satisfy the condition of recurrent normal Jacobi operator. Then we recall a proposition given by Berndt and Suh [3] as follows:

Proposition 6.1. Let M be a connected real hypersurface of $G_2(\mathbb{C}^{m+2})$. Suppose that $A\xi \subset D$, $A\xi = \alpha \xi$, and ξ is tangent to D^\perp. Let $J_1 \in J$ be the almost Hermitian structure such that $JN = J_1N$. Then M has three (if $r = \pi/2\sqrt{8}$) or four (otherwise) distinct constant principal curvatures

$$\alpha = \sqrt{8}\cot(\sqrt{8}r), \quad \beta = \sqrt{2}\cot(\sqrt{2}r), \quad \lambda = -\sqrt{2}\tan(\sqrt{2}r), \quad \mu = 0$$

with some $r \in (0, \pi/\sqrt{8})$. The corresponding multiplicities are

$$m(\alpha) = 1, \quad m(\beta) = 2, \quad m(\lambda) = 2m - 2 = m(\mu),$$

and as corresponding eigenspaces we have

$$T_\alpha = \mathbb{R}\xi = \mathbb{R}JN = \mathbb{R}\xi_1,$$
$$T_\beta = \mathbb{C}\xi = \mathbb{C}^\perp N = \mathbb{R}\xi_2 \oplus \mathbb{R}\xi_3,$$
$$T_\lambda = \{X | X \perp \mathbb{H}\xi, JX = J_1X\},$$
$$T_\mu = \{X | X \perp \mathbb{H}\xi, JX = -J_1X\},$$

where $\mathbb{R}\xi$, $\mathbb{C}\xi$ and $\mathbb{H}\xi$ respectively denotes real, complex and quaternionic span of the structure vector ξ and $\mathbb{C}^\perp \xi$ denotes the orthogonal complement of $\mathbb{C}\xi$ in $\mathbb{H}\xi$.

Now let us suppose M is of type (A) with recurrent normal Jacobi operator R_N and $\xi \in D^\perp$. From (4.1), by putting $X = \xi_2$ and $Y = \xi$ we have

$$8\omega(\xi_2)\xi - 6\beta\xi_1 = 0.$$

Then it follows that $\omega(\xi_2) = 0$ and $\beta = 0$. Since β is not zero, this gives a contradiction. Thus we conclude the following:

Theorem 6.1. There does not exist any Hopf hypersurface in $G_2(\mathbb{C}^{m+2})$, $m \geq 3$, with recurrent normal Jacobi operator if the Reeb vector ξ belongs to the distribution D^\perp.

Accordingly, by Lemma 4.1 together with Theorems 5.1 and 6.1 we give a complete proof of our Theorem 1.1 mentioned in the introduction.
References

Imsoon Jeong
Department of Mathematics
Kyungpook National University
Taegu 702-701, Korea
E-mail address: imsoon.jeong@gmail.com

Juan de Dios Pérez
Departamento de Geometría y Topología
Facultad de Ciencias
Universidad de Granada
18071-Granada, Spain
E-mail address: jdperez@ugr.es
Young Jin Suh
Department of Mathematics
Kyungpook National University
Targu 702-701, Korea
E-mail address: yjsuh@knu.ac.kr