MELTING OF THE EUCLIDEAN METRIC TO NEGATIVE SCALAR CURVATURE

Jongsu Kim

Abstract. We find a C^∞-continuous path of Riemannian metrics g_t on \mathbb{R}^k, $k \geq 3$, for $0 \leq t \leq \varepsilon$ for some number $\varepsilon > 0$ with the following property: g_0 is the Euclidean metric on \mathbb{R}^k, the scalar curvatures of g_t are strictly decreasing in t in the open unit ball and g_t is isometric to the Euclidean metric in the complement of the ball. Furthermore we extend the discussion to the Fubini-Study metric in a similar way.

1. Introduction

In a remarkable paper [11], Lohkamp has made the following conjecture in Riemannian geometry.

Conjecture. Let (M^k, g_0), $k \geq 3$, be a manifold and $B \subset M$ a ball. Then there is a C^∞-continuous path of Riemannian metrics g_t, $0 \leq t \leq \varepsilon$, on M with

(i) Ricci curvature of g_t is strictly decreasing in t on B.

(ii) $g_t \equiv g_0$ on $M \setminus B$.

If such a path g_t exists, we call it a Ricci-curvature melting of g_0 on B. This conjecture, if true, would certainly imply a scalar-curvature melting, meaning a path g_t as above but with scalar curvature replacing the Ricci curvature in the condition (i). We note that common metric-surgery arguments do not seem to yield a scalar-curvature melting. If one considers the scalar curvatures $s(g_t)$ for a scalar-curvature melting g_t, then $\frac{ds(g_t)}{dt}|_{t=0} \leq 0$ on B. In this way, the scalar-curvature melting is related to the deformation theory of the scalar curvature functional [4, Chapter 4]. A remarkable approach is the theory of local scalar curvature deformation of J. Corvino [6, Theorem 4]. He considered the formal adjoint L^*_g of the linearization L_g of the scalar curvature functional on the space of Riemannian metrics restricted to a domain. According to his work, a scalar-curvature melting of g seems to exist when L^*_g is injective. Years
later, this injectivity condition of L_g^* on domains was shown to be a generic one by Beig, Chruściel and Schoen (see Theorem 6.1 and Theorem 7.4 in [3]). Now the question is how to melt a Riemannian metric which does not satisfy this condition.

In this context, Euclidean metrics arise importantly because they are outstanding ones, not satisfying this condition. In a recent paper [8], we explained the scalar-curvature melting of Euclidean metric in 3 dimension. The purpose of this article is to complete the scalar-curvature melting of Euclidean metrics in any dimension ≥ 3 and then extend the discussion to the Fubini-Study metric in a similar way.

We shall first construct a family of Riemannian metrics on $\mathbb{R}^k, k \geq 3$ which have negative scalar curvatures on a pre-compact (open) set and are Euclidean away from it. In even dimension we already have such a family of metrics [7]. In odd dimension, we use the coordinates $(r_1, \theta_1, \ldots, r_n, \theta_n, z)$ on \mathbb{R}^{2n+1} where (r_i, θ_i) are the polar coordinates on the i-th direct summand of $\mathbb{R}^{2n+1} := \mathbb{R}^2 \times \cdots \times \mathbb{R}^2 \times \mathbb{R}$ and z is the coordinate for the last summand \mathbb{R}. We express the Euclidean metric as $g_0 = \sum_{i=1}^n (dr_i^2 + r_i^2 d\theta_i^2) + dz^2$. We deform it to $g = \sum_{i=1}^n (f_i^2 dr_i^2 + \frac{r_i^2}{f_i^2} d\theta_i^2) + dz^2$ and choose smooth functions f_i so that g has negative scalar curvature on a pre-compact set near origin and is Euclidean away from it.

Then by conformal change of g (also for the even dimensional metrics mentioned above), we spread the negativity inside the pre-compact set over to a larger ball. In the process, we found a natural choice of parameter t to get g_t.

In this way we get a scalar-curvature melting:

Theorem 1.1. There exists a C^∞-continuous path of Riemannian metrics g_t on $\mathbb{R}^k, k \geq 3$ which exists for $0 \leq t \leq \varepsilon$ for some number ε with the following property: g_0 is the Euclidean metric on \mathbb{R}^k, $s(g_t) < s(g_t)$ for $0 \leq t < \tilde{t} \leq \varepsilon$ in the open unit ball and g_t is the Euclidean metric in the complement of the ball.

In Section 2, we construct Riemannian metrics on \mathbb{R}^{2n+1} that have negative scalar curvatures on a pre-compact set and are Euclidean away from it. In Section 3, we demonstrate a C^∞-continuous path of metrics g_t such that the scalar curvature $s(g_t)$ is monotonically decreasing in t. In Section 4, by a conformal deformation we get a genuine scalar-curvature melting on the unit ball in \mathbb{R}^{2n+1}. We also observe that similar argument works for even dimensions. In Section 5 we discuss the Fubini-Study metric in a similar way.

2. Construction of the metric

We will deform the Euclidean metric $g_0 = \sum_{i=1}^n (dr_i^2 + r_i^2 d\theta_i^2) + dz^2$ on $\mathbb{R}^{2n+1} = \mathbb{R}^2 \times \cdots \times \mathbb{R}^2 \times \mathbb{R}$ to a metric of the form

$$
\tilde{g} = \sum_{i=1}^n \left(f_i^2 dr_i^2 + \frac{r_i^2}{f_i^2} d\theta_i^2 \right) + dz^2,
$$

(1)
where f_i's are smooth positive functions on \mathbb{R}^{2n+1} depending only on the variables r_1, \ldots, r_n, z. \tilde{g} is a metric on $\mathbb{R}^{2n+1} \backslash \{(r_1, \theta_1, \ldots, r_n, \theta_n, z) \mid r_1 = 0 \text{ for some } i\}$. Below we shall choose f_i so that \tilde{g} is smooth on \mathbb{R}^{2n+1}. Let $e_{2i-1} = \frac{\partial}{\partial r_i}, e_{2i} = \frac{\partial}{\partial \theta_i}, i = 1, 2, \ldots, n, e_{2n+1} = \frac{\partial}{\partial z}$.

Let ω_i be the dual co-frame fields of e_i: $\omega_{2i-1} = f_idr_i, \omega_{2i} = \frac{\partial}{\partial \theta_i}, \omega_{2n+1} = dz$. We compute the connection 1-forms ω_{ij} with respect to ω_i:

$$\omega_i = \sum_{j=1}^{2n+1} \omega_i \wedge \omega_j, \text{ with } \omega_{ij} = -\omega_{ji};$$

one may compute

$$2\omega_{ijk} = \langle d\omega_k, \omega_i \wedge \omega_j \rangle - \langle d\omega_i, \omega_j \wedge \omega_k \rangle - \langle d\omega_j, \omega_k \wedge \omega_i \rangle,$$

where $\omega_{ij} = \sum_{k=1}^n a_{ijk} \omega_k$. We get

$$d\omega_{2n+1} = 0,$$

$$d\omega_{2i-1} = \frac{f_{2i, 2n+1}}{f_i} \omega_{2n+1} \wedge \omega_{2i-1} + \sum_{j=1}^{n} \frac{f_{i,j}}{f_j} \omega_{2j-1} \wedge \omega_{2i-1} \text{ and}$$

$$d\omega_{2i} = -\frac{f_{2i, 2n+1}}{f_i} \omega_{2n+1} \wedge \omega_{2i} + \sum_{j=1}^{n} \frac{\delta_{ij} f_i - r_j f_{i,j}}{r_j f_{i,j}} \omega_{2j-1} \wedge \omega_{2i}$$

for $i = 1, 2, \ldots, n$.

Here we write $f_{i,j} = \frac{\partial f_i}{\partial r_j}, f_{i,j,k} = \frac{\partial^2 f_i}{\partial r_j \partial r_k}$. Then we can get $\omega_{2i-1} \omega_{2j-1} = -\frac{f_{i,j}}{f_j} \omega_{2i-1} + \frac{f_{j,i}}{f_i} \omega_{2j-1}$, $\omega_{2i-1} \omega_{2j} = \frac{\delta_{ij} f_i - r_j f_{i,j}}{r_j f_{i,j}} \omega_{2j}$. $\omega_{2i} = 0$ for $i, j = 1, 2, \ldots, n$ and $n + 1$.

We use the formula $d\omega_{j} = -\omega_{i,k} \wedge \omega_{k,j} = \sum_{k<i}^{2n+1} R_{i,j,k} \omega_k \wedge \omega_j$ to compute the curvature components:

$$R_{2i-1} \omega_{2j-1} \omega_{2j-2} = -d\omega_{2i-1} \omega_{2j-1} + \omega_{2i-1} \omega_{2j-2} \wedge \omega_{2j-1}$$

$$= -\frac{f_{i,j,k}}{f_j f_k} + \frac{f_{j,i,k}}{f_i f_k} - \frac{f_{i,i,k}}{f_j f_k} + \frac{f_{j,j,k}}{f_i f_k} - \sum_{k=1}^{n} \frac{f_{i,j,k}}{f_j f_k} - \frac{f_{i,2n+1}}{f_i} \frac{f_{j,2n+1}}{f_j},$$

$$R_{2i-1} \omega_{2j} \omega_{2j-1} = -d\omega_{2i-1} \omega_{2j} + \omega_{2i-1} \omega_{2j} \wedge \omega_{2j-1}$$

$$= \frac{f_{i,i}}{f_j f_i} + \frac{f_{i,j}}{r_j f_j f_i} - \sum_{k=1}^{n} \frac{f_{i,j,k}}{f_i f_k f_j} - \frac{f_{i,2n+1}}{f_i} \frac{f_{j,2n+1}}{f_j},$$

$$R_{2i-1} \omega_{2j} \omega_{2j} = -d\omega_{2i-1} \wedge \omega_{2j} + \omega_{2i-1} \omega_{2j} \wedge \omega_{2j}$$

$$= \frac{\delta_{ij} f_{i,j}}{r_j f_j} + \frac{f_{i,j,j}}{f_j f_j} + \frac{f_{i,j,i}}{f_j f_j} - \frac{2 f_{i,j,j}}{f_j f_j} + \sum_{k=1}^{n} \frac{\delta_{ij} f_{i,k}}{r_j f_j f_k} + \sum_{k=1}^{n} \frac{f_{i,j,k}}{f_i f_k f_j},$$

$$+ \frac{f_{i,2n+1}}{f_i} \frac{f_{j,2n+1}}{f_j}. $$
\[R_{2n+1} 2i-1 2i-1 2n+1 = -(f_{i,2n+1}^2)_{2n+1} - (f_{i,2n+1})_i^2, \]
\[R_{2n+1} 2i 2i 2n+1 = (f_{i,2n+1}^2)_{2n+1} - (f_{i,2n+1})_i^2. \]

The scalar curvature is as follows:
\[\frac{s^g}{2} = \sum_{1 \leq s < t} R_{sts} \]
\[= \sum_{1 \leq t} R_{2n+1 t t 2n+1} + \sum_{1 \leq i < j} (R_{2i-1 2j-1 2j-1 2i-1} + R_{2i 2j 2j 2i}) \]
\[+ \sum_{1 \leq i < j} (R_{2i-1 2j 2i-1} + R_{2j-1 2i 2i-1}) + \sum_{i=1}^n R_{2i-1 2i 2i-1} \]
\[= -\sum_{i=1}^n (f_{i,2n+1})_i^2 + \sum_{i=1}^n (f_{i,i}^2)_{i>2} + 3 f_{i,i}^2 \sum_{i=1}^n f_{i,i} - 3 f_{i,i}^2 \sum_{i<j} f_{i,j}^2 f_{j,i}^2 - \sum_{i<j} f_{i,j}^2 + f_{j,i}^2 \]
\[= -\frac{1}{2} \sum_{i=1}^n \left((f_{i,i}^2)_i + \frac{3}{r_i} (f_{i,i}^2)_i \right) - \sum_{i<j} f_{i,j}^2 f_{j,i}^2 - \sum_{i=1}^n (f_{i,2n+1})_i^2. \]

Set \(F_i = f_i^{-2}, i = 1, \ldots, n. \) We shall find the functions \(F_i \) so that they satisfy
\[(2) \quad \sum_{i=1}^n (F_{i,ii} + \frac{3}{r_i} F_{i,i}) = 0. \]

We consider smooth functions \(\beta(z) \) and \(\alpha_j^i(r), i = 1, \ldots, n - 1, j = 1, \ldots, n \) on \(\mathbb{R} \) which satisfy at least
\[\beta(z) = 0 \quad \text{for} \quad z \leq -1, \quad \text{or} \quad z \geq 1, \quad \text{and} \quad \beta(z) > 0 \quad \text{on} \quad -1 < z < 1, \]
\[\alpha_j^i(r) = 0 \quad \text{for} \quad r \leq 0, \quad \text{or} \quad r \geq 1. \]

The functions \(\alpha_j^i \)'s need to be specified more. Let \(k_j^i(r) \) be smooth functions on \(\mathbb{R} \) satisfying
\[
\begin{align*}
\text{a)} & \quad k_j^i(r) = 0 \quad \text{for} \quad r \leq 0, \quad r \geq 1, \\
\text{b)} & \quad |(k_j^i)'(r)|_{C_0} \ll |r^3|_{C_0}, \\
\text{c)} & \quad \int_0^1 \frac{k_j^i(r)}{r^3} \, dr = 0, \\
\text{d)} & \quad 0 < \int_0^c \frac{k_j^i(r)}{r^3} \, dr < 1 \quad \text{for any} \ c \quad \text{with} \ 0 < c < 1.
\end{align*}
\]

Set \(\alpha_j^i(r) = \frac{1}{r^3} \frac{d}{dr} k_j^i(r) \), which will be smooth on \(\mathbb{R} \). Graphs of typical \(\alpha_j^i \) and \(\beta \) are given in Figures 1 and 2 below.
Define the functions F_i, $i = 1, \ldots, n - 1$, and F_n by

$$F_i(r_1, \ldots, r_n, z) = 1 + \beta(z) \cdot \alpha^1(r_1) \cdots \alpha_{i-1}^i(r_i) \cdots \alpha_n^i(r_n) \int_0^{r_i} \left(\frac{1}{y^3} \int_0^y x^3 \alpha_1^i(x) \, dx \right) \, dy,$$

where $\hat{}$ denotes the missing factor in that position,

$$F_n(r_1, \ldots, r_n, z) = 1 - \beta(z) \cdot \sum_{i=1}^{n-1} \alpha_1^i(r_1) \cdots \alpha_{i-1}^i(r_{i-1}) \cdots \alpha_n^i(r_n-1) \int_0^{r_n} \left(\frac{1}{y^3} \int_0^y x^3 \alpha_1^i(x) \, dx \right) \, dy.$$

We consider F_i’s and F_n defined on $\mathbb{R}^{2n+1} = \mathbb{R}^2 \times \cdots \times \mathbb{R}^2 \times \mathbb{R}$. Then they satisfy the equation (2) and

- $F_i, F_n \equiv 1$ if $r_k \leq 0$ or $r_k \geq 1$ for some k, or $|z| > 1$,
- $F_i, F_n > 0$ everywhere.

We set $C = \{(r_1, \theta_1, \ldots, r_n, \theta_n, z) \mid |z| < 1, 0 \leq r_i < 1, 0 \leq \theta_i < 2\pi\}$. We now see that \tilde{g} is Euclidean away from C and that its scalar curvature s_3 is negative inside C except the thin subset $\mathcal{C} := \{(r_1, \theta_1, \ldots, r_n, \theta_n, z) \in C \mid F_{i,j} = 0, F_{i,2n+1} = 0, 1 \leq i \neq j \leq n\}$.

Proposition 2.1. There exist Riemannian metrics on \mathbb{R}^{2n+1}, $n \geq 2$ such that their scalar curvatures are negative on the pre-compact subset $C \setminus \mathcal{C}$ and they are Euclidean away from C.

We need to recall the similar result in even dimensions from Sections 3 and 5 of [7].
Proposition 2.2. There exist Riemannian metrics on \(\mathbb{R}^{2n} \), \(n \geq 2 \) such that their scalar curvatures are negative on a pre-compact subset \(K \) and they are Euclidean away from \(K \).

3. Decreasing property of the scalar curvature of metrics

We are going to show that there is a \(C^\infty \)-continuous path \(\tilde{g}_t \) among the metrics in the previous section such that its scalar curvature \(s(\tilde{g}_t) \) is decreasing in \(C \setminus \Sigma \) and \(\tilde{g}_t \) is Euclidean in the complement of \(C \).

We set

\[
F_i^t(r_1, \ldots, r_n, z) = 1 + t \cdot \beta(z) \cdot \sum_{i=1}^{n-1} \alpha_i^1(r_1) \cdots \alpha_i^i(r_i) \cdot \alpha_i^{i+1}(r_{i+1}) \int_0^{r_i} \frac{1}{y^2} \int_0^y x^3 \alpha_i^j(x) \, dx \, dy,
\]

where \(\hat{\cdot} \) denotes the missing factor in that position,

\[
F_n^t(r_1, \ldots, r_n, z) = 1 - t \cdot \beta(z) \cdot \sum_{i=1}^{n-1} \alpha_n^1(r_1) \cdots \alpha_n^{i-1}(r_{i-1}) \cdot \alpha_n^i(r_n) \int_0^{r_n} \frac{1}{y^2} \int_0^y x^3 \alpha_n^j(x) \, dx \, dy.
\]

Still under the relation \(F_i^t = (f_i^t)^2 \), \(i = 1, \ldots, n \), we let

\[
(3) \quad \tilde{g}_t = dz^2 + \sum_{i=1}^{n} (f_i^t)^2 dr_i^2 + \frac{r_i^2}{(f_i^t)^2} d\theta_i^2.
\]

The scalar curvature is

\[
s_{\tilde{g}_t}(r_1, \ldots, r_n) = -\frac{1}{4} \sum_{i<j} \left(\frac{F_{i,j}^t}{F_i^t} \right)^2 + \frac{1}{4} \sum_{i=1}^{n} \frac{F_{i,2n+1}^t}{F_i^t}.
\]

One can easily check \(\frac{d(s(\tilde{g}_t))}{dt}|_{t=0} = 0 \) and

\[
\frac{d^2(s(\tilde{g}_t))}{dt^2}|_{t=0} = -\frac{1}{4} \sum_{i<j} \left(\frac{d^2(F_{i,j}^t)}{dt^2} \right)^2 \bigg|_{t=0} + \frac{d^2(F_{i,i}^t)}{dt^2} \bigg|_{t=0}
\]
\[
- \frac{1}{4} \sum_{i=1}^{n} \frac{d^2(F_{i,2n+1}^t)}{dt^2} \bigg|_{t=0}
\]
\[
= -\frac{1}{2} \sum_{i<j} \{(F_{i,j})^2 + (F_{j,i})^2\} - \frac{1}{2} \sum_{i=1}^{n} (F_{i,2n+1})^2 \leq 0.
\]

Note that inside \(C \) the set of points with \(\frac{d^2(s(\tilde{g}_t))}{dt^2}|_{t=0} = 0 \) is identical to the set \(\Sigma \). We see that \(s(\tilde{g}_t) \) is strictly decreasing only on \(C \setminus \Sigma \). In order to have the right decreasing property, we need to diffuse the negativity (of scalar curvature) onto a ball containing \(C \setminus \Sigma \).
4. Diffusion of negative scalar curvature onto a ball

Our argument in this section is similar to that in [8, Section 4], so we avoid some details. We use the following functions: $F_{t,m}(\rho) \in C^{\infty}(\mathbb{R}, \mathbb{R}^{\geq 0})$ for $m > 0$, $t \geq 0$ defined by $F_{t,m}(\rho) = m \cdot t^2 \cdot \exp(-\frac{m^2}{\rho})$ on $\mathbb{R}^{\geq 0}$ and $F_{t,m} = 0$ on $\mathbb{R}^{\leq 0}$. Also choose an $H \in C^{\infty}(\mathbb{R}, [0,1])$ with $H = 0$ on $\mathbb{R}^{\geq 1}$, $H = 1$ on $\mathbb{R}^{\leq 0}$ and $H^b_{\rho}(\rho) = H(\frac{1}{c}(\rho - b))$ for $b > 0$, $\epsilon > 0$. We consider the Ricci-curvature melting.

Let $B_r(x)$ be the open ball of radius r with respect to g_0 centered at x. We choose a point p and a number $\epsilon_1 < 0.1$ so that $B_{2\epsilon_1}(p) \subset C \setminus \Xi$. Then $s(\tilde{g}_t) < 0$ on $B_{\epsilon_1}(p)$ when $0 < t < \epsilon$ for some number ϵ.

Let $f_{t,m} \in C^{\infty}(\mathbb{R}^{2n+1}, \mathbb{R}^{\geq 0})$ be $f_{t,m}(q) = F_{t,m}(\rho(q))$, where ρ is the g_0-distance from the above point p to $q \in \mathbb{R}^{2n+1}$ and let $h^b_{\rho} \in C^{\infty}(\mathbb{R}^{2n+1}, \mathbb{R}^{\geq 0})$ be $h^b_{\rho}(q) = H^b_{\rho}(\rho(q))$. We choose $b = 9$ and $\epsilon = \epsilon_1$. We consider the Riemannian metric $e^{2\phi_t} \tilde{g}_t$, where

$$\phi_t(\rho) = f_{t,m}(9 + \epsilon_1 - \rho) \cdot h^b_{\rho}(9 + \epsilon_1 - \rho) = m t^2 e^{-\frac{m^2}{\rho}} h^b_{\rho}(9 + \epsilon_1 - \rho).$$

We consider the scalar curvature $s(e^{2\phi_t} \tilde{g}_t)$. We easily get \(\frac{ds(e^{2\phi_t} \tilde{g}_t)}{dt}|_{t=0} = 0 \). Using the conformal deformation formula \(s(e^{2\phi_t} g_t) = e^{-2\phi_t} (s_{\tilde{g}_t} + 4n \Delta_t \phi_t - 2n(2n-1) \nabla_{\tilde{g}_t} \phi_t^2) \), we calculate as in [8, Section 4] to show that \(\frac{ds(e^{2\phi_t} \tilde{g}_t)}{dt}|_{t=0} < 0 \) on $B_{9+\epsilon_1}(p)$ for small $m > 0$. Note that $e^{2\phi_t} \tilde{g}_t = g_0$ on $\mathbb{R}^{2n+1} \setminus B_{9+\epsilon_1}(p)$.

But due to the boundary $\partial B_{9+\epsilon_1}(p)$, we can not yet conclude the existence of a constant ϵ such that $s(e^{2\phi_t} \tilde{g}_t)$ is strictly decreasing in the ball $B_{9+\epsilon_1}(p)$ for $0 \leq t \leq \epsilon$.

We continue to follow the argument in [8, Section 4] to show that $\frac{ds(e^{2\phi_t} \tilde{g}_t)}{dt}|_{t=0} < 0$ on $B_{9+\epsilon_1}(p) \setminus B_{9}(p)$ when $0 < t < t_0$ for some number $t_0 > 0$. This yields a scalar-curvature melting $g_t = e^{2\phi_t} \tilde{g}_t$ on $B_{9+\epsilon_1}(p)$. By pulling it back by an affine transformation, we can get a scalar-curvature melting on the unit ball.

In even dimensions, we start with the metrics in Proposition 2.2 and proceed similarly as in Section 3 and Section 4. Then we can get a scalar-curvature melting on the unit ball in \mathbb{R}^{2n}, $n \geq 2$. This proves Theorem 1.1.

Remark 4.1. The odd dimensional metric in Proposition 2.1 is in fact a contact metric compatible with the standard contact structure on \mathbb{R}^{2n+1}. We suspect our melting can be done in the space of contact metrics. It is very interesting to find a scalar curvature melting of a general metric on a ball, not to mention a Ricci-curvature melting.

5. Fubini-Study metric

In this section we demonstrate that the arguments for Euclidean metrics can work similarly for the Fubini-Study metric.

We need to discuss in the context of almost Kähler metrics, which are Riemannian metrics g compatible with a symplectic structure ω, i.e., $\omega(X, Y) =$
$g(X, Y)$ for an almost complex structure J, where X, Y are tangent vectors. Here ω and g determine J. One may refer to [2] for some knowledge of almost Kähler geometry needed in this section. In this geometry, for the canonical hermitian connection ∇ determined by J we have the corresponding hermitian scalar curvature s^∇. It proves to be equal to $\frac{1}{2}(s^* + s)$, where s^* is the star-scalar curvature. It is known that $s^* - s = \frac{1}{2}|DJ|^2$, where D is the Levi-Civita connection. So $s^\nabla \geq s$, with equality if and only if (ω, g) is Kähler.

In [9, Subsection 4.1], for a toric symplectic manifold (M^{2n}, ω), i.e., a symplectic manifold equipped with an effective Hamiltonian action of an n-dimensional torus T, M. Lejmi considered ω-compatible T-invariant almost Kähler metrics g which have the local expression

\begin{equation}
(4) \quad g = \sum_{i,j=1}^{n} G_{ij}(z) dz_i \otimes dz_j + H_{ij}(z) dt_i \otimes dt_j,
\end{equation}

where z_1, \ldots, z_n are moment coordinates corresponding to Hamiltonian vector fields generating T action and $H = (H_{ij})$ is a symmetric positive-definite matrix-valued function and $G = (G_{ij})$ is the inverse matrix of H. In z, t coordinates, $\omega = \sum dz_i \wedge dt_i$. Any metric of the form (4) is ω-compatible almost Kähler. He computed that $s^\nabla = \frac{1}{2}(s + s^*) = -\sum_{i,j=1}^{n} H_{ij,ij}$, where $(i, ij) = \frac{\partial^2 (\cdot)}{\partial z_i \partial z_j}$.

Example ([1]). Consider the complex projective space \mathbb{CP}_n with the Fubini-Study metric g_{FS} in homogeneous coordinates $[z_0, z_1, \ldots, z_n]$. We denote the Kähler form by ω_{FS}. The T^n-action on \mathbb{CP}_n given by $(y_1, \ldots, y_n)[z_0, z_1, \ldots, z_n] = [z_0, e^{-y_1}z_1, \ldots, e^{-y_n}z_n]$, is Hamiltonian, with moment map $\mu: \mathbb{CP}_n \to \mathbb{R}^n$ given by $\mu([z_0, z_1, \ldots, z_n]) = \frac{1}{\sqrt{\mu}}(\|z_1\|^2, \ldots, \|z_n\|^2)$.

Set $S_1 := \{ (x_1, \ldots, x_n) \mid \text{each } x_i > 0, \sum_{i=1}^{n} x_i < t \} \subset \mathbb{R}^n$. Then the image of μ is the closure of S_1. g_{FS} can be expressed as (4) with some $H_{ij}^0(z)$.

Proposition 5.1. Given an open set S_c, $0 < c < 1$, there exists a family of T^n-invariant almost-Kähler metrics $(\omega_{FS}, \tilde{g}_t)$ on \mathbb{CP}_n, $0 \leq t < \epsilon_2$ for some number ϵ_2 such that

(i) on $\mathbb{CP}_n - \mu^{-1}(S_c)$: $\tilde{g}_t = g_{FS}$ for $0 \leq t < \epsilon_2$,

(ii) on \mathbb{CP}_n: $\tilde{g}_0 = g_{FS}$, $s^{\nabla_{\tilde{g}_t}} = s^{\nabla_{g_{FS}}}$ and $s(\tilde{g}_t) \leq s(\tilde{g}_0)$ for $0 \leq t < \epsilon_2$,

(iii) $s(\tilde{g}_t) < s(\tilde{g}_0)$ for $0 < t < \epsilon_2$ on some open subset W of $\mu^{-1}(S_c)$.

Proof. Set $H_{ij}^0(z) = H_{ij}^0(\tilde{g}_t) + tU_{ij}(z)$ and we denote the corresponding metric in (4) by \tilde{g}_t. The condition $s^{\nabla_{\tilde{g}_t}} = s^{\nabla_{g_{FS}}}$ is equivalent to $\sum_{i,j=1}^{n} U_{ij}(z) = 0$. For its solution, choose $U = (U_{ij})$ as the diagonal matrix with diagonal entries $U_{ii}(z) = \alpha_1^i(z_1) \cdots \alpha_n^i(z_n) \int_0^{z_i} \left(\int_0^{y_i} \alpha_i^j(x) \, dx \right) \, dy$ for $i = 1, \ldots, n - 1$,
where \(\cdot \) denotes the missing factor in that position,

\[
U_{nn}(z) = -\sum_{i=1}^{n-1} \alpha_i^j(z_1) \cdots \alpha_i^{n-1}(z_{n-1}) \int_0^y (\int_0^{\alpha_i^j(x)} dx) dy,
\]

where \(\alpha_i^j(z_j), i = 1, \ldots, n-1, j = 1, \ldots, n \) are smooth functions on \(\mathbb{R} \) which satisfy at least \(\alpha_i^j(z_j) = 0 \) for \(z_j \leq 0 \), or \(z_j \geq \tilde{c} \) for some \(\tilde{c} > 0 \). This is similar to the solution of the equation (2). Again, one can properly choose \(\tilde{c} \) small and \(\alpha_i^j \) so that \(U_{ij} \) become smooth functions with compact support in \(\mu^{-1}(S_c) \) and that \(g_t, t > 0 \), is an almost Kähler metric which is non-Kähler, i.e., \(\frac{1}{2} |DJ|^2 = s^* - s \neq 0 \) somewhere. Indeed, either by direct computation on a component of \(DJ \) or by an argument using [5, Section 4], one can find \(\{U_{ij}\} \) so that near some chosen point \(\hat{g}_t \) is non-Kähler for any small \(t \).

As \((\omega_{FS}, g_{FS}) \) is Kähler, \(s(g_{FS}) = s^{\nabla_{g_0}} \). But then, \(s^{\nabla_{g_0}} = s^{\nabla_{g_t}} \geq s(\hat{g}_t) \) with equality exactly where \((\omega, \hat{g}_t) \) is Kähler. This proves that \(s(\hat{g}_t) < s(g_{FS}) \) for \(0 < t < \epsilon \) on an open pre-compact subset \(W \) of \(\mu^{-1}(S_c) \). \[\square \]

The metrics \(\hat{g}_t \) play the same role as those in Propositions 2.1 or 2.2.

Theorem 5.2. Suppose we are given a point \(p_0 \in \mathbb{C}P_n \) and a number \(r_0 \) with \(0 < r_0 < \frac{1}{2} \text{diameter}(g_{FS}) \). Then there exists a \(C^\infty \)-continuous path of Riemannian metrics \(g_t \) on \(\mathbb{C}P_n \), which exists for \(0 \leq t < \epsilon \) for some number \(\epsilon \) with the following property: \(g_0 = g_{FS} \), \(s(g_t) < s(g_{FS}) \) for \(0 \leq t < \epsilon \) in the ball \(B_{FS}^{g_{FS}}(p_0) \) of \(g_{FS} \)-radius \(r_0 \) centered at \(p_0 \) and \(g_t \) is isometric to \(g_{FS} \) in the complement of the ball.

Proof. Since \((\mathbb{C}P_n, g_{FS}) \) is homogeneous, we may choose the coordinates and hamiltonian \(T^n \) action so that \(p_0 = \mu^{-1}(0, \ldots, 0) \). We choose \(c \) so that \(\mu^{-1}(S_c) \subset B_{FS}^{g_{FS}}(p_0) \) and get \(\hat{g}_t \) in Proposition 5.1. Choose the smallest natural number \(k \) such that \(\frac{d^k s_{g_t}}{dt^k} \big|_{t=0} \) is not identically zero. This \(k \) exists because at each point \(s_{g_t} \) is a rational function of \(t \). Then \(\frac{d^k s_{g_t}}{dt^k} \big|_{t=0} = 0 \) for \(j = 1, \ldots, k-1 \).

We consider a smooth coordinates system \(y := y_1, \ldots, y_{2n} \) on \(B_{2r_0}^{g_{FS}}(p_0) \), which is a topological ball, such that \(y(0) = p \) and \(B_{2r_0}^{g_{FS}}(p_0) \) becomes a \(y \)-coordinates ball of radius, say \(R \). Let \(g^0 \) be the Euclidean metric \(g^0 = dy_1^2 + \cdots + dy_{2n}^2 \) and \(\rho = \sqrt{\sum_{i=1}^{2n} y_i^2} \).

From now on, \(B_r(\cdot) \) means a ball of \(g^0 \)-radius \(r \) with center at \(\cdot \). For some positive number \(\epsilon < \frac{\rho}{n} \), \(B_{2\epsilon}(p) \) should satisfy \(B_{2\epsilon}(p) \cap \{q \mid \frac{d^k s_{g_t}}{dt^k}(q) \big|_{t=0} = 0\} = \emptyset \). Choosing \(\epsilon \) further small if necessary, we assume that \(B_{R-\epsilon}(p) \supset B_{g_{FS}}^{2r_0}(p_0) \).

Define \(F_{t,m}^d(x) = mt^k e^{-\frac{\rho}{n}} \). We consider \(g_t := e^{2\phi_t} \hat{g}_t \), where \(\phi_t(p) = F_{t,m}^d(b + \epsilon - \rho) \cdot h_b^0(b + \epsilon - \rho) \). We set \(b = R - \epsilon \). \(m \) and \(d \) shall be determined below.
The scalar curvature is as follows; \(s(g_t) = e^{-2\phi_t} B \), where \(B = s_{g_t} + a_n \Delta_{g_t} \phi_t - b_n |\nabla_{g_t} \phi_t|^2 \) for some positive numbers \(a_n, b_n \) depending on \(n \). Then

\[
(5) \quad \frac{ds(g_t)}{dt} = e^{-2\phi_t} \left(-2 \frac{d\phi_t}{dt} B + \frac{ds_{g_t}}{dt} + a_n \frac{d\Delta_{g_t} \phi_t}{dt} - b_n \frac{d|\nabla_{g_t} \phi_t|^2}{dt} \right).
\]

We easily get \(\frac{ds(g_t)}{dt} |_{t=0} = 0 \) for \(j = 1, \ldots, k - 1 \) and

\[
\frac{d^k s(g_t)}{dt^k} |_{t=0} = -2k! m s_{g_0} e^{-\frac{d}{4} \phi} h_\nu^k(\beta + \epsilon - \rho) + \frac{d^k s_{g_t}}{dt^k} |_{t=0} = a_n \frac{d^k \Delta_{g_t} \phi_t}{dt^k} |_{t=0}. \]

On \(B_{b+\tau}(p) - B_{c}(p) \), since \(h_\nu^k(\beta + \epsilon - \rho) = 1 \) we have

\[
\frac{d^k s(g_t)}{dt^k} |_{t=0} \leq -2k! m s_{g_0} e^{-\frac{d}{4} \phi} + a_n \frac{d^k \Delta_{g_t} \phi_t}{dt^k} |_{t=0}
\]

\[
= mk!(-2s_{g_0} e^{-\frac{d}{4} \phi} + a_n \Delta_{g_0} e^{-\frac{d}{4} \phi})
\]

\[
\leq mk!(-2s_{g_0} G - \alpha_1 G'' - \alpha_2 G') < 0, \quad \text{when } d \text{ is large},
\]

where \(G(\rho) = e^{-\frac{d}{4} \phi} \) and \(\alpha_1, \alpha_2 \) are some positive numbers and we used Lemmas 5.3 and 5.4 below. On \(B_{c}(p) \), \(\frac{d^k s(g_t)}{dt^k} |_{t=0} < -c_1 < 0 \) for some number \(c_1 > 0 \), so choose \(m > 0 \) small so that \(-2k! m s_{g_0} e^{-\frac{d}{4} \phi} + \frac{d^k s_{g_t}}{dt^k} |_{t=0} + a_n \frac{d^k \Delta_{g_t} \phi_t}{dt^k} |_{t=0} < 0 \).

In sum, we have \(\frac{ds(g_t)}{dt} |_{t=0} = 0 \) for \(j = 1, \ldots, k - 1 \) and \(\frac{ds(g_t)}{dt} |_{t=0} < 0 \) on \(B_{b+\tau}(p) \) and \(g_t = g_0 \) on \(M - B_{b+\tau}(p) \). On \(B_{\rho}(p) \), there exists \(\epsilon_3 > 0 \) such that \(s(g_t) \) is strictly decreasing for \(0 \leq t \leq \epsilon_3 \).

On \(B_{b+\tau}(p) - B_{\rho}(p) \), \(g_t = g_0 \). From (5), Lemmas 5.3, 5.4 and 5.5, for large \(d \),

\[
e^{2\phi_t} \frac{ds(g_t)}{dt}
\]

\[
= -2 \frac{d\phi_t}{dt} (s_{g_0} + a_n \Delta_{g_0} \phi_t - b_n |\nabla_{g_0} \phi_t|^2) + a_n \frac{d\Delta_{g_0} \phi_t}{dt} - b_n \frac{d|\nabla_{g_0} \phi_t|^2}{dt}
\]

\[
\leq km^{k-1}(-2s_{g_0} G - \alpha_1 G'' - \alpha_2 G') \quad \text{for numbers } \alpha_1, \alpha_2 > 0,
\]

while \(0 < t < \epsilon_4 \) for some \(\epsilon_4 \). This implies that \(s(g_t) \) is strictly decreasing for \(0 \leq t < \epsilon_4 \) on \(B_{b+\tau}(p) - B_{\rho}(p) \). So, \(s(g_t) \) is strictly decreasing for \(0 \leq t < \epsilon = \min\{\epsilon_3, \epsilon_4\} \) on \(B_{b+\tau}(p) \). This proves Theorem 5.2. \(\square \)
For the function $F(t) = e^{-\frac{t}{2}}$ on $\mathbb{R}^{>0}$, one can modify easily Lemma 1.2 in [10] as follows: for $m_0, m_1 \in \mathbb{R}$ and $m_2, b \in \mathbb{R}^{>0}$ there exist numbers $d_0(b) > 0$ and $d_1(m_0, m_1, m_2, b) > 0$ such that $F^{(j)} := \frac{d_1}{m_j} > 0$ on $(0, b)$ for $j = 0, 1, 2, 3$ if $d \geq d_0(b)$ and $m_2 F'' + m_1 F' + m_0 F > 0$ on $(0, b)$ if $d \geq d_1(m_0, m_1, m_2, b)$. Since $G^{(j)}(\rho) = (-1)^j F^{(j)}(b + \epsilon - \rho)$, we get:

Lemma 5.3. For $m_0, m_1 \in \mathbb{R}$ and $m_2, b \in \mathbb{R}^{>0}$, there exists $d_2(m_0, m_1, m_2, b) > 0$ such that $m_2 G'' + m_1 G' + m_0 G > 0$ on $(\epsilon, b + \epsilon)$ if $d \geq d_2(m_0, m_1, m_2, b)$. And $(-1)^j G^{(j)} > 0$ on $(\epsilon, b + \epsilon)$ for $j = 0, 1, 2, 3$ if $d \geq d_0(b)$.

Next, we modify Corollary 2.3 in [10] as follows. Assume that g on a domain $D \subset \mathbb{R}^{n+1}$ fulfill the following two conditions for some $k > 1$: (i) $g_{Euc}(\nu, \nu) \leq k^2 \cdot g(\nu, \nu)$. (ii) The C^3-norm $\|g\|_{C^3_{Euc}}(D) \leq k$. Let $H \in C^\infty(\mathbb{R}, \mathbb{R})$ be a function with $H' \leq 0$, $H'' \geq 0$. Then there are constants $a_1, a_2 > 0$ depending only on n and k such that $(a_1 H'' + a_2 H') \circ \pi \leq -\Delta_g (H \circ \pi)$ on $\pi : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ is the projection. This can be easily verified, following the argument in pp. 660–661 in [10].

We can choose a coordinates system (u_1, \ldots, u_{2n}) with $u_1 = \rho$ on a proper subdomain \tilde{D} of $B_{b+\epsilon}(p) - B_\epsilon(p)$ so that (i) and (ii) holds with $g_{Euc} := d\rho^2 + du_2^2 + \cdots + du_{2n}^2$. Applying the above paragraph to $g_0|_{\tilde{D}}$ and G, we get:

Lemma 5.4. If $d \geq d_0(b)$, there are constants $a_1, a_2 > 0$ such that $\Delta_g G(\rho) \leq -a_1 G'' - a_2 G'$ on $B_{b+\epsilon}(p) - B_\epsilon(p)$.

Putting Lemmas 5.3 and 5.4 together;

Lemma 5.5. $\Delta_g G(\rho) < 0$ on $B_{b+\epsilon}(p) - B_\epsilon(p)$ if d is large.

Remark 5.6. For the Fubini-Study metric, the kernel of L^*_g on \mathbb{CP}_n is trivial. But we do not know if the kernel of L^*_g is trivial when restricted to a ball. In any case, our construction gives a large amount of deformation, compared to the small deformation of Corvino’s, as the latter is based on Implicit Function Theorem.

References

1098 JONGSU KIM

Department of Mathematics
Sogang University
Seoul 121-742, Korea
E-mail address: jskim@sogang.ac.kr