 Nil*\textit{-}COHERENT RINGS

YUEMING XIANG AND LUNQUN OUYANG

Abstract. Let R be a ring and $\text{Nil}*(R)$ be the prime radical of R. In this paper, we say that a ring R is left $\text{Nil}*$-coherent if $\text{Nil}*(R)$ is coherent as a left R-module. The concept is introduced as the generalization of left J-coherent rings and semiprime rings. Some properties of $\text{Nil}*$-coherent rings are also studied in terms of N-injective modules and N-flat modules.

1. Introduction

Throughout R is an associative ring with identity and all modules are unitary. $R\text{Mod}(M_R)$ stands for the category of all left (right) R-modules. $\text{Hom}(M, N)$ (resp. $\text{Ext}^n(M, N)$) means $\text{Hom}_R(M, N)$ (resp. $\text{Ext}^n_R(M, N)$), and similarly $M \otimes N$ (resp. $\text{Tor}_n(M, N)$) denotes $M \otimes_R N$ (resp. $\text{Tor}_n^R(M, N)$). The character module M^+ is defined by $M^+ = \text{Hom}_\mathbb{Z}(M, \mathbb{Q}/\mathbb{Z})$. The Jacobson radical of R is denoted by $J(R)$. If X is a subset of R, the right (left) annihilator of X in R is denoted by $r(X)$ ($l(X)$). We will use the usual notations from [1, 8, 9, 13, 14, 22].

We first recall some known notions needed in the sequel.

Let C be the class of R-modules. For an R-module M, $C \in C$ is called a C-cover [8] of M if there is a homomorphism $g : C \to M$ such that the following hold: (1) For any homomorphism $g' : C' \to M$ with $C' \in C$, there exists a homomorphism $f : C' \to C$ with $g' = gf$. (2) If f is an endomorphism of C with $gf = g$, then f must be an automorphism. If (1) holds but (2) may not, $g : C \to M$ is called a C-precover. Dually we have the definition of a C-(pre)envelope. C-covers and C-envelopes may not exist in general, but if they exist, they are unique up to isomorphism. A homomorphism $g : M \to C$ with $C \in C$ is said to a C-envelope with the unique mapping property (see [9]) if for any homomorphism $g' : M \to C'$ with $C' \in C$, there is a unique homomorphism $f : C \to C'$ such that $fg = g'$. Dually, we have the definition of C-cover with the unique mapping property.

Received January 14, 2013; Revised October 7, 2013.
2010 Mathematics Subject Classification. 16N60, 16E10, 16E05.

Key words and phrases. $\text{Nil}*$-coherent ring, strongly $\text{Nil}*$-coherent ring, N-injective module, N-flat module, precover and preenvelope.
Let M be a left R-module. A right C-resolution of M is a complex (need not be exact) $0 \to M \to F^0 \to F^1 \to \cdots$ with each $F^i \in C$. Write

$$L^0 = M, \ L^1 = \text{Coker}(M \to F^0), \ L^i = \text{Coker}(F^{i-2} \to F^{i-1}) \text{ for } i \geq 2.$$

Here $M \to F^0, L^1 \to F^1, L^i \to F^i$ for $i \geq 2$ are C-preenvelopes. The nth cokernel $L^n(n \geq 0)$ is called the nth C-cosyzygy of M.

A left C-resolution of M is a complex $\cdots \to I_1 \to I_0 \to M \to 0$ with each $I_i \in C$. Write

$$K_0 = M, \ K_1 = \text{Ker}(I_0 \to M), \ K_i = \text{Ker}(I_{i-1} \to I_{i-2}) \text{ for } i \geq 2.$$

Here $I_0 \to M, I_1 \to K_1, I_i \to K_i$ for $i \geq 2$ are C-precovers. The nth kernel $K_n(n \geq 0)$ is called the nth C-syzygy of M.

A left C-resolution $\cdots \to I_1 \to I_0 \to M \to 0$ is called minimal if every $I_i \to K_i$ is C-cover for any $i \geq 0$.

Let R be a ring. A left R-module M is coherent if every finitely generated submodule of M is finitely presented. The ring R is said to be left coherent if R is a coherent as a left R-module. Since coherence of rings and modules first appeared in [2], their generalizations have been studied extensively by many authors (see, [3, 4, 7, 9, 11, 15, 17]). A ring R is called left J-coherent [7] if the Jacobson radical $J(R)$ of R is a coherent left R-module. R is said to be left P-coherent [17] (resp. left min-coherent [15]) if every principal (resp. minimal) left ideal of R is finitely presented.

Recall that the prime radical $Nil_*(R)$ [14] $(N(R)$ for short) of R is the intersection of all prime ideals of R. $N(R)$ contains all nilpotent one-side ideal of R. A ring R is semiprime if $N(R) = 0$. We say that a ring R is left Nil_*-coherent if the prime radical $N(R)$ of R is a coherent left R-module, or equivalently, any finitely generated left ideal in $N(R)$ is finitely presented. Nil_*-coherent rings are introduced, in this paper, as the generalization of J-coherent rings and semiprime rings. Some examples of left Nil_*-coherent rings are given, and some properties of left Nil_*-coherent rings are studied. We prove that if R is right perfect, then R is left Nil_*-coherent if and only if R is left coherent. To characterize left Nil_*-coherent rings, we introduce left N-injective modules and right N-flat modules. The class of left N-injective (resp. right N-flat) R-modules is denoted $\mathcal{N}I$ (resp. $\mathcal{N}F$). We also show that if R is left Nil_*-coherent, then every right R-module has an $\mathcal{N}F$-preenvelope and every left R-module has an \mathcal{NI}-cover.

In [8], Enochs and Jenda investigated the global dimension of a left Noetherian ring using the left injective resolutions of left R-modules. Mao recently generalized their results to left coherent rings (see [16]). In the third section of this paper, left strongly Nil_*-coherent rings and the N-injective dimensions are defined. We study the N-injective dimensions of modules and rings in terms of left \mathcal{NI}-resolutions and right $\mathcal{N}F$-resolutions of modules.
2. \textit{Nil}_*-coherent rings

\textbf{Definition 2.1.} A ring \(R \) is said to be left \textit{Nil}_*-coherent if the prime radical \(N(R) \) of \(R \) is coherent left \(R \)-module, or equivalently, every finitely generated left ideal in \(N(R) \) is finitely presented. Similarly, we have the concept of right \textit{Nil}_*-coherent rings.

\textbf{Remark 2.2.} Here give some examples of \textit{Nil}_*-coherent rings.

(1) Obviously, left \(J \)-coherent rings are left \textit{Nil}_*-coherent because \(N(R) \subseteq J(R) \).

(2) A semiprime ring is right and left \textit{Nil}_*-coherent. Moreover, a domain is right and left \textit{Nil}_*-coherent.

The following examples show that \textit{Nil}_*-coherent rings are non-trivial generalizations of \(J \)-coherent rings and semiprime rings.

\textbf{Example 1.} Let \(R \) be a valuation ring of rank \(R > 1 \). Then \([[x]] \), the ring of power series in one variable \(x \), is a commutative domain, and so it is \textit{Nil}_*-coherent. But \([[x]] \) is not a \(J \)-coherent ring by [7, Example 3.16].

\textbf{Example 2.} Let \(R = \left(\frac{\mathbb{Z}}{2} \right) \). Then \(R \) is a coherent ring, and hence it is a \textit{Nil}_*-coherent ring. However, \(R \) is not semiprime because there is a nilpotent ideal \((0 \ 2) \neq 0\).

From the next example, we can see that the definition of \textit{Nil}_*-coherent rings is not left-right symmetric.

\textbf{Example 3.} Let \(L = \mathbb{Q}(x_2, x_3, \ldots) \) be a subfield of \(K = \mathbb{Q}(x_1, x_2, \ldots) \) with \(\mathbb{Q} \) the field of rational numbers, and there exists a field isomorphism \(\varphi : K \to L \). We define a ring by taking \(R = K \times K \) with multiplication

\[
(x, y)(x', y') = (xx', \varphi(x)y' + yy'), \text{ where } x, y, x', y' \in K.
\]

It is easy to see that \(R \) has exactly three right ideals, \((0), R, \text{ and } (0, K) = (0, 1)R \). So \(R \) is right \textit{Nil}_*-coherent. Let \(a = (0, 1) \). Note that \(Ra \subseteq N(R) \) and \(l(a) \) is not finitely generated. Then \(R \) is not left \textit{Nil}_*-coherent.

Similar to [7, Proposition 2.10, Corollary 2.11 and Corollary 2.12], we have the following results.

\textbf{Proposition 2.3.} Let \(\varphi : R \to S \) be a ring homomorphism such that \(S \) is a finitely generated left \(R \)-module and \(N(S) \) is a coherent left \(R \)-module. If \(R \) is a left \textit{Nil}_*-coherent ring, then so is \(S \).

\textit{Proof.} Let \(M \) be a finitely generated submodule of the left \(S \)-module \(N(S) \). By assumption, \(M \) is a finitely generated submodule of the left \(R \)-module \(N(S) \), and hence \(M \) is a finitely presented left \(R \)-module. So \(M \) is a finitely presented left \(S \)-module by [11, Theorem 1]. Therefore, \(S \) is a left \textit{Nil}_*-coherent ring.

\textbf{Corollary 2.4.} Let \(R \) be a left \textit{Nil}_*-coherent ring. Then \(M_n(R) \), the ring of \(n \times n \) matrices over \(R \), is also a left \textit{Nil}_*-coherent ring for every positive integer \(n \).
Proof. By [14, Theorem 10.21], \(N(M_n(R)) = M_n(N(R)) \cong N(R)^{n^2} \). \(N(R)^{n^2} \) is a coherent left \(R \)-module by assumption, so is \(N(M_n(R)) \). Then the result comes from Proposition 2.3.

Corollary 2.5. If \(R \) is a left \(\text{Nil}^*_* \)-coherent ring and a finitely generated left ideal \(I \subseteq N(R) \), then the quotient ring \(R/I \) is also left \(\text{Nil}^*_* \)-coherent.

Proof. We have \(N(R/I) = N(R)/I \) in terms of [14, Exercise 10.20]. Now let \(X \) be a finitely generated submodule of the left \(R \)-module \(N(R/I) \). Then there is a finitely generated left \(R \)-module \(J \) with \(I \subseteq J \subseteq N(R) \) and \(X = J/I \). Since \(R \) is left \(\text{Nil}^*_* \)-coherent, \(J \) is a finitely presented left \(R \)-module, so is \(X \) by [13, Lemma 4.54]. Thus \(N(R/I) \) is a coherent left \(R \)-module. Therefore, \(R/I \) is a left \(\text{Nil}^*_* \)-coherent ring by Proposition 2.3.

Proposition 2.6. A direct product of rings \(R = R_1 \times R_2 \times \cdots \times R_n \) is left \(\text{Nil}^*_* \)-coherent if and only if \(R_i \) is left \(\text{Nil}^*_* \)-coherent for \(i = 1, \ldots, n \).

Proof. Note that \(N(R) = N(R_1) \times N(R_2) \times \cdots \times N(R_n) \). If \(R \) is left \(\text{Nil}^*_* \)-coherent, then \(N(R) \) is coherent left \(R \)-module, so is \(N(R_i) \) for all \(i \). By Proposition 2.3, \(R_i \) is left \(\text{Nil}^*_* \)-coherent.

Conversely, it is enough to prove the assertion for \(n = 2 \). There exists an exact sequence \(0 \to N(R_1) \to N(R) \to N(R_2) \to 0 \). Hence \(N(R_2) \cong N(R)/N(R_1) \) is a coherent \(R_2 \)-module, thus, a coherent \(R \)-module by [9, Theorem 2.4.1]. Similarly, \(N(R_1) \) is a coherent \(R \)-module. By [9, Theorem 2.2.1(2)], \(N(R) \) is a coherent \(R \)-module, and hence \(R \) is left \(\text{Nil}^*_* \)-coherent.

If \(R \) is the direct product of \(R_1 \) and \(R_2 \), where \(R_1 \) is a left \(J \)-coherent ring that is not semiprime and \(R_2 \) is a semiprime ring that is not left \(J \)-coherent, then \(R \) is a left \(\text{Nil}^*_* \)-coherent ring that is neither left \(J \)-coherent nor semiprime.

Let \(M \) be a bimodule over \(R \). The trivial extension of \(R \) and \(M \) is \(R \rtimes M = \{ (a, x) | a \in R, x \in M \} \) with addition defined componentwise and multiplication defined by \((a, x)(b, y) = (ab, ay + xb) \). For convenience, we write \(I \rtimes X = \{ (a, x) | a \in I, x \in X \} \), where \(I \) is a subset of \(R \) and \(X \) is a subset of \(M \). The below result is a generalization of [4, Theorem 12].

Proposition 2.7. A ring \(R \) is left coherent if and only if \(R \rtimes R \) is left \(\text{Nil}^*_* \)-coherent.

Proof. \((\Rightarrow)\). It follows from [4, Theorem 12] and Remark 2.2(1).

\((\Leftarrow)\). Set \(S = R \rtimes R \). We first prove that \(R \) is left \(P \)-coherent. For any \(a \in R, S(0, a) \subseteq N(S) \) and \(l_S(0, a) = l_R(a) \rtimes R \). Since \(S \) is left \(\text{Nil}^*_* \)-coherent, \(l_R(a) \rtimes R \) is a finitely generated left ideal of \(S \). Write \(l_R(a) \rtimes R = S(a_1, b_1) + \cdots + S(a_n, b_n) \) with all \((a_i, b_i) \in S \). It follows that \(l_R(a) = Ra_1 + \cdots + Ra_n \). So \(R \) is left \(P \)-coherent.

Now since \(R \rtimes R \) is left \(\text{Nil}^*_* \)-coherent, \(M_n(R) \rtimes M_n(R) \cong M_n(R \rtimes R) \) is left \(\text{Nil}^*_* \)-coherent (for all \(n > 0 \)) by Corollary 2.4. Thus, \(M_n(R) \) is left \(P \)-coherent, and so \(R \) is left coherent by [17, Proposition 2.4].
Left $\text{Nil}_*\text{-coherent}$ rings are left min-coherent. In fact, if Ra is a minimal left ideal of R, then we have either $(Ra)^2 = 0$, or $Ra = Re$ for some idempotent $e^2 = e \in R$ (see [14, Lemma 10.22]). The following example is constructed to show that min-coherent rings need not be $\text{Nil}_*\text{-coherent}$.

Example 4. Let R be a countable direct product of the polynomial ring $\mathbb{Q}[y, z]$ (see [13, Example 4.61(a)]). Then $R[x]$ is not a coherent ring. Note that $R[x] \cong R[x]$ is not $\text{Nil}_*\text{-coherent}$ by Proposition 2.10. But $(R \times R)[x]$ is min-coherent because both socles are zero.

In order to characterize $\text{Nil}_*\text{-coherent}$ rings, we introduce N-injective modules and N-flat modules as the following.

Definition 2.8. A left R-module M is said to be N-injective if $\text{Ext}^1(R/I, M) = 0$ for every finitely generated left ideal I in $N(R)$. A right R-module F is called N-flat if $\text{Tor}_1(F, R/I) = 0$ for every finitely generated left ideal I in $N(R)$. Usually, we can define right N-injective modules and left N-flat modules.

Remark 2.9. (1) In what follows, $\mathcal{N}T$ (resp. $\mathcal{N}F$) stands for the class of all N-injective left R-modules (resp. N-flat right R-modules). By the definition, it is clear that $\mathcal{N}T$ (resp. $\mathcal{N}F$) is closed under direct sums, direct summands, direct products (resp. direct limits) and extensions.

(2) A right R-module F is N-flat if and only if F^+ is N-injective by the standard isomorphism $\text{Ext}^1(N, F^+) \cong \text{Tor}_1(F, N)^+$ for every finitely generated left ideal I in $N(R)$.

(3) Recall that a left R-module M (resp. right R-module F) is J-injective (resp. J-flat) if $\text{Ext}^1(R/I, M) = 0$ (resp. $\text{Tor}_1(F, R/I) = 0$) for any finitely generated ideal I in $J(R)$ (see [7]). It is easy to see that left J-injective (resp. right J-flat) R-modules are left N-injective (resp. right N-flat). If R is left Artinian, then left J-injective (resp. right J-flat R-modules coincide with left N-injective (resp. right N-flat).

Proposition 2.10. Let R be a ring. Then the following are equivalent:

1. R is a semiprime ring.
2. Every left (or right) R-module is N-injective.
3. Every left (or right) simple R-module is N-injective.
4. Every principle left (or right) ideal in $N(R)$ is N-injective.
5. Every right (or left) R-module is N-flat.
6. Every finitely generated left (or right) ideal in $N(R)$ is a pure submodule of R.

Proof. (1)\Rightarrow(2) is trivial since $N(R) = 0$. (2)\Rightarrow(3) and (2)\Rightarrow(4) are clear.

(2)\Rightarrow(5) holds by Remark 2.9(2).

(3)\Rightarrow(1). Let $a \in N(R)$. If $N(R) + l(a) \neq R$, then we take a maximal left ideal M of R such that $N(R) + l(a) \subseteq M$. Then R/M is N-injective by (3). Note that the homomorphism $f : Ra \rightarrow R/M$ given by $f(xa) = x + M$, $x \in R$ is well-defined. So there exists $c \in R$ such that $f = (c + M)$. Then $1 + M =...
\[f(a) = a(c + M) = ac + M, \] which implies that \(1 - ac \in M \), which yields \(1 \in M \), a contradiction. Therefore \(N(R) + l(a) = R \) and so \(l(a) = R \) because \(N(R) \) is a small ideal of \(R \). So \(a = 0 \). Hence \(N(R) = 0 \).

(5) \(\Rightarrow \) (6). For any finitely generated left ideal \(I \) in \(N(R) \) and any right \(R \)-module \(M \), \(\text{Tor}_1(M, R/I) = 0 \) since \(M \) is \(N \)-flat. Then \(R/I \) is flat, and hence \(I \) is a pure submodule of \(R \).

(6) \(\Rightarrow \) (2). Let \(I \) be a finitely generated left ideal in \(N(R) \). Then \(R/I \) is flat by (6), and so it is projective. Thus every left \(R \)-module is \(N \)-injective.

(4) \(\Rightarrow \) (1). Suppose that \(N(R) \neq 0 \), then there exists an non-zero superfluous submodule \(Ra \) in \(N(R) \). Thus \(\text{Ext}^1(R/Ra, Ra) = 0 \) by (3), and so the exact sequence \(0 \to Ra \to R \to R/Ra \to 0 \) splits. Therefore \(Ra \) is a direct summand of \(R \). Since \(Ra \) is superfluous, \(Ra = 0 \), a contradiction. Hence \(R \) is a semiprime ring.

\[\Box \]

Let \(R = \mathbb{Z} \), the integer ring. By the proposition above, any \(R \)-module is \(N \)-injective and \(N \)-flat. However, \(\mathbb{Z} \) is not injective and \(\mathbb{Z}/2\mathbb{Z} \) is not flat as \(R \)-module.

Similar to [7, Theorem 2.13], [15, Theorem 4.5] and [17, Theorem 2.7], we have the following theorem which characterize \(\text{Nil}^*_N \)-coherent rings in terms of, among others, \(N \)-injective modules, \(N \)-flat modules and \(N \)-flat preenvelope.

Theorem 2.11. Let \(R \) be a ring. Then the following are equivalent:

1. \(R \) is a left \(\text{Nil}^*_N \)-coherent ring.
2. Any direct product of copies of \(R \) is \(N \)-flat.
3. Any direct product of \(N \)-flat right \(R \)-modules is \(N \)-flat.
4. Any direct limit of \(N \)-injective left \(R \)-modules is \(N \)-injective.
5. For any finitely generated left ideal \(I \) in \(N(R) \) and any family \(\{M_i\} \) of right \(R \)-modules, \(\text{Tor}_1(\prod M_i, R/I) \cong \prod \text{Tor}_1(M_i, R/I) \).
6. A left \(R \)-module \(M \) is \(N \)-injective if and only if \(M^+ \) is \(N \)-flat.
7. A right \(R \)-module \(M \) is \(N \)-injective if and only if \(M^{++} \) is \(N \)-injective.
8. A right \(R \)-module \(P \) is \(N \)-flat if and only if \(P^{++} \) is \(N \)-flat.
9. Every right \(R \)-module has an \(NF \)-preenvelope.

Corollary 2.12. The following statements hold for any ring \(R \):

1. \(NI \) and \(NF \) are closed under pure submodules.
2. If \(R \) is left \(\text{Nil}^*_N \)-coherent, then \(NI \) and \(NF \) are closed under pure quotient modules.

Proof. (1). The proof is similar to that of [7, Lemma 2.4].

(2). For a pure exact sequence \(0 \to A \to B \to C \to 0 \) of left \(R \)-modules with \(B \) \(N \)-injective, there is a split exact sequence \(0 \to C^+ \to B^+ \to A^+ \to 0 \). By Theorem 2.11, \(B^+ \) is \(N \)-flat, so is \(C^+ \). Thus \(C \) is \(N \)-injective by Theorem 2.11 again. The \(NF \) case is similar.

The following result will consider the existence of \(NI \)-covers over a left \(\text{Nil}^*_N \)-coherent ring.
Proposition 2.13. Let R be a left Nil_{*}-coherent ring. Then every left R-module has an $N\mathcal{I}$-cover.

Proof. By Corollary 2.12(2), $N\mathcal{I}$ is closed under pure quotient modules. By Remark 2.9(1), $N\mathcal{I}$ is closed under direct sums. Then, in view of [12, Theorem 2.5], every left R-module has an $N\mathcal{I}$-cover. □

Remark 2.14. If R is a left Nil_{*}-coherent ring, then every right R-module has a right $N\mathcal{F}$-resolution by Theorem 2.11, and every right R-module has a left $N\mathcal{I}$-resolution by Proposition 2.13.

In general, an $N\mathcal{I}$-cover need not be an epimorphism and an $N\mathcal{F}$-preenvelope need not be a monomorphism. Now we consider when every left R-module has an epic $N\mathcal{I}$-cover and when every right R-module has a monic $N\mathcal{F}$-preenvelope.

Proposition 2.15. Let R be left Nil_{*}-coherent. Then the following are equivalent:

1. R is N-injective as left R-module.
2. For any left R-module, there is an epimorphic $N\mathcal{I}$-cover.
3. For any right R-module, there is a monomorphic $N\mathcal{F}$-preenvelope.
4. Every (FP)-injective right R-module is N-flat.
5. Every flat left R-module is N-injective.

Proof. (1) ⇒ (3). Let M be any right R-module. Then M has an $N\mathcal{F}$-preenvelope $f: M \rightarrow F$ by Theorem 2.11. Since $(rR)^+ = (rR)^+$ is a cogenerator in the category of right R-modules, there is an exact sequence $0 \rightarrow M \rightarrow \prod (rR)^+$. By Theorem 2.11, $\prod (rR)^+$ is N-flat. So there exists a homomorphism $g: F \rightarrow \prod (rR)^+$ such that $gf = i$. Since i is a monomorphism, so is f.

(3) ⇒ (4). Note that the FP-injective right R-module E embeds in a N-flat right R-module by (3). Thus E is N-flat by Corollary 2.12.

(4) ⇒ (5). For any flat left R-module F, F^+ is injective. Then F^+ is N-flat by assumption, and hence F is N-injective by Theorem 2.11.

(5) ⇒ (2). For any left R-module M, in view of Proposition 2.13, there is an $N\mathcal{I}$-cover $f: C \rightarrow M$. Note that R is also N-injective by hypothesis, so f is an epimorphism.

(2) ⇒ (1). By assumption, R has an epimorphic $N\mathcal{I}$-cover $\varphi: D \rightarrow R$, then we have an exact sequence $0 \rightarrow K \rightarrow D \xrightarrow{\varphi} R \rightarrow 0$ with $K = \text{Ker}\varphi$ and D N-injective. Note that R is projective, so the sequence is split, then R is N-injective as left R-module by Remark 2.9 (1). □

Corollary 2.16. The following are equivalent for a ring R.

1. R is semiprime.
2. R is left N-injective and every finitely generated left ideal in $N(R)$ is projective.

Proof. (1) ⇒ (2) is clear.
(2) ⇒ (1). We firstly prove that every quotient module of a N-injective left R-module is N-injective. Let B be any N-injective left R-module and $A \subseteq B$. For any finitely generated left ideal I in $N(R)$ and a homomorphism $f : I \to B/A$, I is projective, so there is a homomorphism $g : I \to B$ such that $\pi g = f$, where $\pi : B \to B/A$ is the canonical epimorphism. Then there is a homomorphism $h : R \to B$ such that $hi = g$ since B is N-injective, where $i : I \to R$ is an inclusion. Thus, $f = \pi hi$, and hence B/A is N-injective.

Thus, for any left R-module M, there is a monomorphic N-injective cover $\alpha : E \to M$ by [20, Proposition 4]. Since R is left N-injective, then α is epimorphic by Proposition 2.15, whence M is left N-injective. By Proposition 2.10, R is semiprime. □

Remark 2.17. The ring R in Example 2 is left hereditary, and hence every finitely generated left ideal in $N(R)$ is projective. But it is not semiprime, so R is not left N-injective by Corollary 2.16. Thus, there exists a ring whose every left R-module has an $N\mathcal{I}$-cover but need not be an epimorphism and every right R-module has an $N\mathcal{F}$-preenvelope but need not be a monomorphism.

Recall that a ring R is right perfect [18] if $R/J(R)$ is semisimple and $J(R)$ is right T-nilpotent. It was shown that if R is right perfect, then R is left J-coherent if and only if R is left coherent (see [7]). At the end of this section, we extend this result onto left Nil_*-coherent rings.

Proposition 2.18. If R is right perfect, then R is left Nil_*-coherent if and only if R is left coherent.

Proof. (⇒) is clear.

(⇐). We first prove that every N-flat right R-module is flat. Let F be right N-flat. Note that $N(R) \cong \lim\limits_{\to} I_i$, where I_i range over all finitely generated submodules of $N(R)$. Then

$$\text{Tor}_1(F, R/N(R)) = \text{Tor}_1(F, \lim\limits_{\to} R/I_i) = \lim\limits_{\to} \text{Tor}_1(F, R/I_i) = 0.$$ Since $N(R) \subseteq J(R)$ is also right T-nilpotent, F is right flat by [23, Theorem 5.2].

Now let M be any N-injective left R-module. Then M^+ is N-flat by Theorem 2.11, and hence M^+ is flat by the preceding result. Thus M^{++} is FP-injective, whence M is FP-injective because M is a pure submodule of M^{++}. By Theorem 2.11 again, any direct limit of FP-injective left R-modules is FP-injective, which implies R is left coherent. □

3. Strongly Nil_*-coherent rings

A class C of left R-modules is said to be coresolving [19] if $E \in C$ for all injective left R-modules E, if C is closed under extensions, and if given an exact sequence of left R-modules $0 \to A \to B \to C \to 0$, $E \in C$ whenever $A, B \in C$. Dually, we have the definition of resolving.

In the present section, we study the ring that $N\mathcal{I}$ is coresolving.
Lemma 3.1. Let \(R \) be a ring. Then the following are equivalent:

1. \(\mathcal{I} \) is coresolving.
2. \(\text{Ext}^k(R/I, M) = 0 \) for any \(N \)-injective left \(R \)-module \(M \) and any finitely generated left ideal \(I \) in \(N(R) \), \(k \geq 1 \).
3. \(R \) is left \(\text{Nil}_* \)-coherent and \(NF \) is resolving.
4. \(R \) is left \(\text{Nil}_* \)-coherent and \(\text{Tor}_k(N, R/I) = 0 \) for any \(N \)-flat right \(R \)-module \(N \) and any finitely generated left ideal \(I \) in \(N(R) \), \(k \geq 1 \).

Proof. The proof is similar to that of [7, Lemma 3.4]. □

Definition 3.2. We call the ring satisfying the equivalent conditions in Lemma 3.1 left strongly \(\text{Nil}_* \)-coherent. Dually, the notion of right strongly \(\text{Nil}_* \)-coherent rings can be defined.

Example 5. (1) By Proposition 2.10, a semiprime ring is left and right strongly \(\text{Nil}_* \)-coherent.
(2) If a ring \(R \) satisfies the condition that every finitely generated left ideal in \(N(R) \) is projective, then \(R \) is left strongly \(\text{Nil}_* \)-coherent by the proof of Corollary 2.16.
(3) A right perfect and left \(\text{Nil}_* \)-coherent ring is left strongly \(\text{Nil}_* \)-coherent by Proposition 2.18 and Lemma 3.1.

Remark 3.3. We claim that the definition of strongly \(\text{Nil}_* \)-coherent rings is also not left-right symmetric. Indeed, the ring \(R \) in Example 3 is right \(\text{Nil}_* \)-coherent but not left \(\text{Nil}_* \)-coherent. Note that it has only three right ideals, 0, \((0, K) = (0, 1)R\) and \(R \). Thus \(R \) is left prefect by [18, Theorem B.39], and hence \(R \) is right strongly \(\text{Nil}_* \)-coherent ring but not left strongly \(\text{Nil}_* \)-coherent.

Definition 3.4. The left \(N \)-injective dimension of a left \(R \)-module \(M \), denoted by \(l.N - \text{Id}(M) \), is defined as the least nonnegative integer \(n \) such that \(\text{Ext}^{n+1}(R/I, M) = 0 \) for any finitely generated left ideal \(I \) in \(N(R) \). If no such \(n \) exists, then \(l.N - \text{Id}(M) = \infty \). Set \(l.N - \text{Id}(R) = \sup \{ l.N - \text{Id}(M) : M \in R \text{-mod} \} \) and call \(l.N - \text{Id}(R) \) the left \(N \)-injective dimension of \(R \).

By Proposition 2.10, \(l.N - \text{Id}(R) = 0 \) if and only if \(R \) is a semiprime ring. Then the \(N \)-injective dimension of \(R \) can measure how far away a ring is from being a semiprime ring.

Proposition 3.5. Let \(R \) be a left strongly \(\text{Nil}_* \)-coherent ring. Then the following are equivalent for a left \(R \)-module \(M \):

1. \(l.N - \text{Id}(M) \leq n \).
2. \(\text{Ext}^{n+1}(R/I, M) = 0 \) for any finitely generated left ideal \(I \) in \(N(R) \).
3. \(\text{Ext}^{n+k}(R/I, M) = 0 \) for every finitely generated left ideal \(I \) in \(N(R) \), and \(k \geq 1 \).
4. For every exact sequence \(0 \rightarrow M \rightarrow E_0 \rightarrow E_1 \rightarrow \cdots \rightarrow E_{n-1} \rightarrow L_n \rightarrow 0 \) with each \(E_i \) \(N \)-injective, \(L_n \) is \(N \)-injective.

Proof. The proof is similar to that of [7, Lemma 3.6]. □
Lemma 3.8. Let \(N \) be an exact sequence of left \(R \)-modules. Then:

1. \(l.N - \text{Id}(B) \leq \sup\{l.N - \text{Id}(A), l.N - \text{Id}(C)\} \).
2. \(l.N - \text{Id}(A) \leq \sup\{l.N - \text{Id}(B), l.N - \text{Id}(C) + 1\} \).
3. \(l.N - \text{Id}(C) \leq \sup\{l.N - \text{Id}(B), l.N - \text{Id}(A) - 1\} \).

Proof. (1). For any finitely generated left ideal \(I \) in \(N(R) \), we have the following exact sequence

\[
\text{Ext}^n(R/I, A) \rightarrow \text{Ext}^n(R/I, B) \rightarrow \text{Ext}^n(R/I, C)
\]

\[
\rightarrow \text{Ext}^{n+1}(R/I, A) \rightarrow \text{Ext}^{n+1}(R/I, B).
\]

Let \(l.N - \text{Id}(B) = n \). If \(l.N - \text{Id}(C) \leq n - 1 \), by Proposition 3.5, \(\text{Ext}^n(R/I, C) = \text{Ext}^{n+1}(R/I, B) = 0 \). Then \(\text{Ext}^{n+1}(R/I, A) = 0 \), and hence \(l.N - \text{Id}(A) \leq n \) by Proposition 3.5 again. If \(l.N - \text{Id}(A) < n \), then \(\text{Ext}^n(R/I, A) = 0 \), so \(\text{Ext}^n(R/I, B) = 0 \), and hence \(l.N - \text{Id}(B) < n \), contradicting with assumption. Thus \(l.N - \text{Id}(A) = n \), and (1) follows. If \(l.N - \text{Id}(C) \geq n \), it is clear that (1) hold.

Similarly, we can prove (2) and (3). \(\square \)

By Proposition 3.6, we immediately deduce the following corollary.

Corollary 3.7. Let \(R \) be a strongly \(\text{Nil}_n \)-coherent ring and \(0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0 \) be an exact sequence of left \(R \)-modules with \(B \) \(N \)-injective. If \(0 < l.N - \text{Id}(A) < \infty \), then \(l.N - \text{Id}(A) = l.N - \text{Id}(C) + 1 \).

Lemma 3.8. Let \(R \) be a ring and \(M \) a left \(R \)-module. There is an exact sequence \(0 \rightarrow M \rightarrow I \rightarrow N \rightarrow 0 \) with \(I \) \(N \)-injective and \(\text{Ext}^1(N, I') = 0 \) for all \(N \)-injective left \(R \)-modules \(I' \). Moreover, \(\text{Tor}_1(F, N) = 0 \) for all \(N \)-flat right \(R \)-modules \(F \).

Proof. In view of [10, Theorem 4.1.6] and [21, Corollary 3.5], left \(R \)-module \(M \) has a special \(\mathcal{N} \)-preenvelope \(f : M \rightarrow I \), that is, there is an exact sequence \(0 \rightarrow M \rightarrow I \rightarrow N \rightarrow 0 \), where \(I \) is \(N \)-injective and \(\text{Ext}^1(N, I') = 0 \) for all \(N \)-injective left \(R \)-modules \(I' \).

For any \(N \)-flat right \(R \)-module \(F \), \(F^+ \) is \(N \)-injective by Remark 2.9(2). Thus \(\text{Tor}_1(F, N) \simeq \text{Ext}^1(N, F^+) = 0 \), and hence \(\text{Tor}_1(F, N) = 0 \). \(\square \)

Proposition 3.9. Let \(R \) be a left strongly \(\text{Nil}_n \)-coherent ring and \(M \) a left \(R \)-module. Then \(l.N - \text{Id}(M) \leq n(n \geq 0) \) if and only if for every left \(\mathcal{N} \)-resolution \(\cdots \rightarrow I_n \rightarrow I_{n-1} \rightarrow \cdots \rightarrow I_1 \rightarrow I_0 \rightarrow N \rightarrow 0 \) of any right \(R \)-module \(N \), \(\text{Hom}(M, I_n) \rightarrow \text{Hom}(M, K_n) \) is an epimorphism, where \(K_n \) is the \(n \)th \(\mathcal{N} \)-syzygy of \(N \).

Proof. We proceed by induction on \(n \). For \(n \geq 1 \), by Lemma 3.8, there is an exact sequence \(0 \rightarrow M \rightarrow I \rightarrow N \rightarrow 0 \), where \(I \) is \(N \)-injective and \(\text{Ext}^1(N, I') = 0 \) for all \(N \)-injective left \(R \)-modules \(I' \). Then we have the following commutative diagram
\[\begin{align*}
\text{Hom}(I, I_n) & \to \text{Hom}(I, K_n) \to 0 \\
\downarrow & \downarrow \\
\text{Hom}(M, I_n) & \to \text{Hom}(M, K_n) \\
\downarrow & \downarrow \\
0 & \to 0.
\end{align*} \]

Since \(I_n \to K_n \) is an \(\mathcal{NZ} \)-precover of \(K_n \), the first arrow is exact. In addition, the first column is exact since \(\text{Ext}^1(N, I_n) = 0 \). Furthermore, there is a commutative diagram

\[
\begin{array}{ccc}
0 & 0 & 0 \\
\downarrow & \downarrow & \downarrow \\
0 & \text{Hom}(N, K_n) & \text{Hom}(N, I_{n-1}) & \text{Hom}(N, K_{n-1}) \\
\downarrow & \downarrow & \downarrow & \downarrow \\
0 & \text{Hom}(I, K_n) & \text{Hom}(I, I_{n-1}) & \text{Hom}(I, K_{n-1}) & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \text{Hom}(M, K_n) & \text{Hom}(M, I_{n-1}) & \text{Hom}(M, K_{n-1}) & 0.
\end{array} \]

\(l \cdot N - Id(M) \leq n \) if and only if \(l \cdot N - Id(N) \leq n - 1 \) by Corollary 3.7 if and only if \(\text{Hom}(N, I_{n-1}) \to \text{Hom}(N, K_{n-1}) \) is an epimorphism by induction if and only if \(\text{Hom}(I, K_n) \to \text{Hom}(M, K_n) \) is an epimorphism by the second diagram if and only if \(\text{Hom}(M, I_n) \to \text{Hom}(M, K_n) \) is an epimorphism by the first diagram.

For \(n = 0 \), let \(K_0 = M \). Then \(\text{Hom}(M, I_0) \to \text{Hom}(M, M) \) is an epimorphism means \(\text{Hom}(I, M) \to \text{Hom}(M, M) \) is an epimorphism. Thus \(0 \to M \to I \to N \to 0 \) splits, and hence \(M \) is \(N \)-injective. Conversely, if \(M \) is \(N \)-injective, then it is clear that \(\text{Hom}(M, I_0) \to \text{Hom}(M, K_0) \) is an epimorphism. \(\square \)

Let \(\mathcal{C}, \mathcal{D} \) and \(\mathcal{E} \) be categories of modules and \(T : \mathcal{C} \times \mathcal{D} \to \mathcal{E} \) be an additive functor contravariant in the first variable and covariant in the second. Let \(\mathcal{I} \) and \(\mathcal{F} \) be the classes of modules of \(\mathcal{C} \) and \(\mathcal{D} \) respectively. Then \(T \) is said to be right balanced by \(\mathcal{I} \times \mathcal{F} \) if for each module \(M \) of \(\mathcal{C} \), there is a \(T(-, \mathcal{F}) \) exact complex \(\cdots \to I_1 \to I_0 \to M \to 0 \) with each \(I_i \in \mathcal{I} \), and for each module \(N \) of \(\mathcal{D} \), there is a \(T(\mathcal{I}, -) \) exact complex \(0 \to N \to F^0 \to F^1 \to \cdots \) with \(F^i \in \mathcal{F} \). Similarly, we have the definition of left balance. If \(T \) is covariant in both variables, then we would postulate the existence of complexes \(\cdots \to I_1 \to I_0 \to M \to 0 \) and \(\cdots \to F_1 \to F_0 \to N \to 0 \) or \(0 \to M \to F^0 \to F^1 \to \cdots \) and \(0 \to N \to F^0 \to F^1 \to \cdots \) to define the left or right balance functors relative to \(\mathcal{I} \times \mathcal{F} \), respectively.

Lemma 3.10. If \(R \) is left strongly \(\text{Nil}_* \)-coherent, then \(- \otimes - \) on \(\mathcal{M}_R \times_R \mathcal{M} \) is right balanced by \(\mathcal{N} \mathcal{F} \times \mathcal{N} \mathcal{I} \).

Proof. Let \(M \) be any right \(R \)-module. By Remark 2.14, there is a right \(\mathcal{N} \mathcal{F} \)-resolution \(0 \to M \to F^0 \to F^1 \to \cdots \). For any \(N \)-injective left \(R \)-module \(N \),
\(N^+ \) is \(N \)-flat by Theorem 2.11. Thus we have an exact sequence
\[
\cdots \to \text{Hom}(F^1, N^+) \to \text{Hom}(F^0, N^+) \to \text{Hom}(M, N^+) \to 0.
\]
Hence
\[
\cdots \to (N \otimes F^1)^+ \to (N \otimes F^0)^+ \to (N \otimes M)^+ \to 0
\]
is exact. Then \(0 \to N \otimes M \to N \otimes F^0 \to N \otimes F^1 \to \cdots \) is exact. In addition, by Lemma 3.8, the right \(NF \times NI \)-resolution \(0 \to G \to I^0 \to I^1 \to \cdots \) of any left \(R \)-module \(G \) is exact, so the sequence \(0 \to G \otimes F \to I^0 \otimes F \to I^1 \otimes F \to \cdots \) is exact for any \(F \in NF \) by Lemma 3.8 again, as desired. \(\square \)

Remark 3.11. (1) Tor\(^n\)(\(- , - \)) denotes the \(n \)th right derived functor of \(- \otimes - \) with respect to the pair \(NF \times NI \). If \(R \) is a left strongly \(Nil^* \)-coherent ring, for any right \(R \)-module \(M \) and left \(R \)-module \(N \), Tor\(^n\)(\(M, N \)) can be computed using either the right \(NF \)-resolution of \(M \) or the right \(NI \)-resolution of \(N \) by Lemma 3.10.

(2) If \(R \) is a left strongly \(Nil^* \)-coherent ring, by the proof of Lemma 3.8, every left \(R \)-module has a right \(NI \)-resolution. So Hom\((- , - \)) is left balanced on \(R \mathcal{M} \times \mathcal{M} \) by \(NI \times NI \). Let \(\text{Ext}_n(-, -) \) be the \(n \)th left derived functor of Hom\((- , - \)) with respect to the pair \(NI \times NI \). Then, for two left \(R \)-modules \(M \) and \(N \), \(\text{Ext}_n(M, N) \) can be computed using the right \(NI \)-resolution of \(M \) or the left \(NI \)-resolution of \(N \).

We are now in a position to prove the following theorem.

Theorem 3.12. If \(R \) is left strongly \(Nil^* \)-coherent and \(n \geq 0 \), then the following are equivalent:

1. \(l \mathcal{N} - \text{Id}(R) \leq n \).
2. If \(0 \to M \to F^0 \to F^1 \to \cdots \) is a right \(NF \)-resolution of right \(R \)-module \(M \), then the sequence is exact at \(F^k \) for \(k \geq n - 1 \), where \(F^{-1} = M \).
3. For every flat left \(R \)-module \(F \), there is an exact sequence \(0 \to F \to A^0 \to A^1 \to \cdots \to A^n \to 0 \) with each \(A^i \in NI \).
4. For every injective right \(R \)-module \(A \), there is an exact sequence \(0 \to F_n \to \cdots \to F_1 \to F_0 \to A \to 0 \) with each \(F_i \in NF \).
5. If \(\cdots \to I_1 \to I_0 \to M \to 0 \) is a left \(NI \)-resolution of a left \(R \)-module \(M \), then the sequence is exact at \(I_k \) for \(k \geq n - 1 \), where \(I_{-1} = M \).

Proof. (3)\(\Rightarrow \) (1) is trivial.

(1)\(\Rightarrow \) (2). By Remark 3.11 (1), the right derived functor Tor\(^n\)(\(R, M \)) can be computed using either a right \(NF \)-resolution of \(M \) or a right \(NI \)-resolution of \(R \).

If \(n \geq 2 \), we have the exact sequence \(0 \to R \to A^0 \to \cdots \to A^n \to 0 \) with \(A^i \in NI \), so Tor\(^k\)(\(R, M \)) = 0 for \(k \geq n - 1 \). Computing using \(0 \to M \to F^0 \to F^1 \to \cdots \) in (2), we see that the sequence \(\cdots \to R \otimes F^{n-2} \to R \otimes F^{n-1} \to R \otimes F^n \to \cdots \) is exact at \(R \otimes F^k \) for \(k \geq n - 1 \), so \(0 \to M \to F^0 \to F^1 \to \cdots \) is exact at \(F^k \) for \(k \geq n - 1 \).
If \(n = 1 \), \(0 \rightarrow R \rightarrow A^0 \rightarrow A^1 \rightarrow 0 \) is exact, where \(A^i \) is \(N \)-injective. So \(\text{Tor}^1(R, M) = 0 \) as above, \(F^0 \rightarrow F^1 \rightarrow F^2 \) is exact and \(R \otimes M \rightarrow \text{Tor}^0(R, M) \) is epic. Computing the latter morphism using \(0 \rightarrow M \rightarrow F^0 \rightarrow F^1, \) we have \(M \rightarrow F^0 \rightarrow F^1 \rightarrow \cdots \) is exact.

If \(n = 0 \), then \(R \) is \(N \)-injective as a right \(R \)-module. But the balance of \(- \otimes -\) then gives \(0 \rightarrow R \otimes M \rightarrow R \otimes F^0 \rightarrow R \otimes F^1 \rightarrow \cdots \) is exact. Thus \(0 \rightarrow M \rightarrow F^0 \rightarrow F^1 \rightarrow \cdots \) is exact.

(2) \(\Rightarrow\) (3). Let \(0 \rightarrow M \rightarrow F^0 \rightarrow F^1 \rightarrow \cdots \) be a right \(\mathcal{NF} \)-resolution of a finitely presented left \(R \)-module \(M \). By assumption, the sequence is exact at \(F^k \) for \(k \geq n - 1 \). Let \(0 \rightarrow F \rightarrow A^0 \rightarrow A^1 \rightarrow \cdots \) be exact with \(F \) flat and each \(A^i \) \(N \)-injective. If \(n \geq 2 \), we get \(\text{Tor}^k(F, M) = 0 \) for \(k \geq n - 1 \) since \(F \) is flat. Computing using \(0 \rightarrow F \rightarrow A^0 \rightarrow A^1 \rightarrow \cdots \), then \(A^{n-2} \otimes M \rightarrow A^{n-1} \otimes M \rightarrow A^n \otimes M \rightarrow A^{n+1} \otimes M \) is exact. By [8, Lemma 8.4.23], \(K = \text{Ker}(A^n \rightarrow A^{n+1}) \) is a pure submodule of \(A^n \), hence \(K \) is also \(N \)-injective by Corollary 2.12. Then \(0 \rightarrow F \rightarrow A^0 \rightarrow A^1 \rightarrow \cdots \rightarrow A^{n-1} \rightarrow K \rightarrow 0 \) gives the desired exact sequence.

If \(n = 1 \), then \(M \rightarrow F^0 \rightarrow F^1 \rightarrow \cdots \) is exact. Thus \(\text{Tor}^k(F, M) = 0 \) for \(k \geq 1 \) and \(F \otimes M \rightarrow \text{Tor}^0(F, M) \) is epic. So \(F \otimes M \rightarrow A^0 \otimes M \rightarrow A^1 \otimes M \rightarrow A^2 \otimes M \) is exact. By [8, Lemma 8.4.23] again, we get the exact sequence \(0 \rightarrow F \rightarrow A^0 \rightarrow K \rightarrow 0 \) with \(K = \text{Ker}(A^1 \rightarrow A^2) \) \(N \)-injective.

If \(n = 0 \), then \(0 \rightarrow M \rightarrow F^0 \rightarrow F^1 \rightarrow \cdots \) is exact, so \(\text{Tor}^k(F, M) = 0 \) for \(k \geq 0 \) and \(F \otimes M \rightarrow \text{Tor}^0(F, M) \) is an isomorphism. This gives that \(0 \rightarrow F \otimes M \rightarrow A^0 \otimes M \rightarrow A^1 \otimes M \) is exact, which implies \(F \) is a pure submodule of \(A^n \), hence \(F \) is \(N \)-injective.

(5) \(\Rightarrow\) (1). By assumption, \(I_n \rightarrow I_{n-1} \rightarrow I_{n-2} \) is exact at \(I_{n-1} \). Thus \(I_n \rightarrow K_n \) is epic, where \(K_n = \text{Ker}(I_{n-1} \rightarrow I_{n-2}) \). Hence \(\text{Hom}(R, I_n) \rightarrow \text{Hom}(R, K_n) \) is epic. By Proposition 3.9, \(1.N - \text{Id}(R) \leq n \).

(1) \(\Rightarrow\) (5). If \(n \geq 2 \). Let \(0 \rightarrow R \rightarrow A^0 \rightarrow \cdots \rightarrow A^n \rightarrow 0 \) be a right \(\mathcal{NF} \)-resolution of a right \(R \)-module \(M \), then \(\text{Ext}_k(R, M) = 0 \) for \(k \geq n - 1 \). By Remark 3.11 (2), we can compute \(\text{Ext}_k(R, M) = 0 \) using a left \(\mathcal{NF} \)-resolution of \(M \).

(4) \(\Rightarrow\) (5). If \(n = 1 \), then there is an exact sequence \(0 \rightarrow R \rightarrow A^0 \rightarrow A^1 \rightarrow 0 \) with \(A^i \in \mathcal{NF} \). So \(0 \rightarrow \text{Hom}(A^1, M) \rightarrow \text{Hom}(A^0, M) \rightarrow \text{Hom}(R, M) \) is exact. Thus \(\text{Ext}_k(R, M) = 0 \) for \(k \geq 1 \) and \(\text{Ext}_0(R, M) \rightarrow \text{Hom}(R, M) \) is a monomorphism. But computing \(\text{Ext}_0(R, M) \) using a left \(\mathcal{NF} \)-resolution of \(M \), we see that \(I_1 \rightarrow I_0 \rightarrow M \) is exact at \(I_0 \), so \(\cdots \rightarrow I_1 \rightarrow I_0 \rightarrow M \rightarrow 0 \) is exact at \(I_k \) for \(k \geq 0 \).

If \(n = 0 \), then \(R \) is \(N \)-injective as a left \(R \)-module. So every \(\mathcal{NF} \)-precovar is epic, and hence \(\cdots \rightarrow I_1 \rightarrow I_0 \rightarrow M \rightarrow 0 \) is exact.

The proof of (4) \(\Rightarrow\) (5) is dual to that of (2) \(\Rightarrow\) (3).}

Proposition 3.13. Let \(R \) be a left strongly \(Nil_* \)-coherent ring and \(wD(R) < \infty \), where \(wD(R) \) is the weak global dimension of \(R \). Then \(1.N - \text{Id}(R) = 1.N - \text{Id}(R) \leq wD(R) \).
Proof. We first prove the right inequality. By the definitions of left \(N \)-injective dimensions of modules and rings, we have

\[l.N - \text{Id}(R) = \sup \{ l.pd(R/I) \mid I \text{ is finitely generated left ideal in } N(R) \} , \]

where \(l.pd(R/I) \) is the left projective dimension of \(R/I \). Then \(l.N - \text{Id}(R) \leq wD(R) \). We suppose that \(l.N - \text{Id}(R) = n < \infty \).

For the left equality, it suffices to prove \(l.N - \text{Id}(R) \leq l.N - \text{Id}(R) \). Hence assume that \(l.N - \text{Id}(R) = m < \infty \). By the similar proof of [7, Proposition 3.10], it can be proven that \(l.N - \text{Id}(F) \leq m \) for any free left \(R \)-module \(F \). Note that, for any left \(R \)-module \(M \), there exists an exact sequence \(0 \to K_n \to F_{n-1} \to F_{n-2} \to \cdots \to F_0 \to M \to 0 \) with each \(F_i \) free. Then \(l.N - \text{Id}(K_n) = n \) and \(l.N - \text{Id}(F_i) \leq m \). By Proposition 3.5, \(\text{Ext}^{m+1}_R(R/I, M) \cong \text{Ext}^{n+n+1}_R(R/I, K_n) = 0 \) for every finitely generated left ideal \(I \) in \(N(R) \), and hence \(l.N - \text{Id}(M) \leq m \). Therefore, \(l.N - \text{Id}(R) = l.N - \text{Id}(R) \).

Example 6. Let \(\mathbb{F}[x] \) be a polynomial ring over a field \(\mathbb{F} \). Then \(\mathbb{F}[x] \) is semiprime, and hence \(l.N - \text{Id}(R) = l.N - \text{Id}(R) = 0 \). It is easy to verify that \(wD(R) = 1 \).

Lemma 3.14. Let \(R \) be a left strongly \(\text{Nil}_\ast \)-coherent ring and \(M \) a left \(R \)-module. If \(\text{Ext}_R^i(E, M) = 0 \) for all \(N \)-injective left \(R \)-modules \(E \), then \(M \) has an \(\mathcal{N}_I \)-cover \(L \to M \) with \(L \) injective.

Proof. In view of Proposition 2.13, \(M \) has an \(\mathcal{N}_I \)-cover \(f : L \to M \). For the exact sequence \(0 \to L \to E \to L' \to 0 \) with \(E \) injective, \(L' \) is \(N \)-injective. Thus \(\text{Hom}(E, M) \to \text{Hom}(L, M) \to 0 \) is exact since \(\text{Ext}_R^1(L', M) = 0 \), and hence there is \(g \in \text{Hom}(E, M) \) such that \(f = gi \). Then there exists \(h : E \to L \) such that \(g = fh \) since \(f : L \to M \) is an \(\mathcal{N}_I \)-cover of \(M \). So \(f = fhi \), implies \(hi \) is isomorphism. Therefore, \(L \) is injective.

Theorem 3.15. If \(R \) is left strongly \(\text{Nil}_\ast \)-coherent and \(n \geq 1 \), then the following are equivalent:

1. \(l.N - \text{Id}(R) \leq n \).
2. Every \(n \)th \(\mathcal{N}_I \)-syzygy of a left \(R \)-module is \(N \)-injective.
3. Every \((n-1) \)th \(\mathcal{N}_I \)-syzygy of a right \(R \)-module has an \(\mathcal{N}_I \)-cover which is a monomorphism.

 Moreover, if \(n \geq 2 \), then the above conditions are equivalent to:
4. Every \((n-2) \)th \(\mathcal{N}_I \)-syzygy in a minimal left \(\mathcal{N}_I \)-resolution of a left \(R \)-module has an \(\mathcal{N}_I \)-cover with the unique mapping property.

Proof. (1)\(\Rightarrow \) (2). Let \(K_n \) be \(n \)th \(\mathcal{N}_I \)-syzygy of a left \(R \)-module. Then \(l.N - \text{Id}(K_n) \leq n \). So \(\text{Hom}(K_n, K_n) \to \text{Hom}(K_n, K_n) \) is an epimorphism by Proposition 3.9, whence \(K_n \) is \(N \)-injective.

(2)\(\Rightarrow \) (3). Let \(f : I_{n-1} \to K_{n-1} \) be an \(\mathcal{N}_I \)-precovers of the \((n-1)\)th \(\mathcal{N}_I \)-syzygy \(K_{n-1} \), and \(K_n = \text{Ker}(f) \). Then we have the exact sequence \(0 \to K_n \to \).
$I_{n-1} \to \text{im}(f) \to 0$. By assumption, K_n is N-injective, so is im(f). Thus the inclusion im$(f) \to K_{n-1}$ is an \mathcal{N}-\mathcal{T}-cover which is a monomorphism.

(3)\Rightarrow(2). Let $\cdots \to I_n \to I_{n-1} \to \cdots \to I_1 \to I_0 \to N \to 0$ be any left \mathcal{N}-\mathcal{T}-resolution of a left R-module N and \(K_n = \text{Ker}(I_{n-1} \to I_{n-2}) \). Let \(K_{n-1} = \text{Ker}(I_{n-2} \to I_{n-3}) \). Hence \(K_{n-1} \) has a monomorphic \mathcal{N}-\mathcal{T}-cover \(I \to K_{n-1} \) by assumption. Thus \(K_n \oplus I \cong I_{n-1} \) in terms of [8, Lemma 8.6.3]. So K_n is N-injective by Remark 2.9(1).

(2)\Rightarrow(1). Let M be a left R-module. For a left \mathcal{N}-\mathcal{T}-resolution $\cdots \to I_n \to I_{n-1} \to \cdots \to I_1 \to I_0 \to N \to 0$ of a left R-module N, $I_n \to K_n$ is a split epimorphism since K_n is N-injective. Thus $\text{Hom}(M, I_n) \to \text{Hom}(M, K_n)$ is epimorphic, hence $l_N - Id(M) \leq n$ by Proposition 3.9. Then $l_N - l.dim(R) \leq n$.

(3)\Rightarrow(4). Let $\cdots \to I_{n-3} \to I_{n-4} \to \cdots \to I_1 \to I_0 \to M \to 0$ be a minimal \mathcal{N}-\mathcal{T}-resolution of a left R-module M with $K_{n-2} = \text{Ker}(I_{n-3} \to I_{n-4})$. By assumption, $K_{n-1} = \text{Ker}(I_{n-2} \to I_{n-3})$ has a monomorphic \mathcal{N}-\mathcal{T}-cover $i : I_{n-1} \to K_{n-1}$. Note $\text{Ext}^1(I, K_{n-1}) = 0$ for all N-injective right R-modules I by Wakamatsu’s Lemma. Thus I_{n-1} is injective by Lemma 3.14. But K_{n-1} has no nonzero injective submodule by [15, Corollary 1.2.8]. Thus $I_{n-1} = 0$, and hence $\text{Hom}(I, K_{n-1}) = \text{Hom}(I, I_{n-1}) = 0$ for any N-injective left R-module I. So we have the exact sequence $0 \to \text{Hom}(I, I_{n-2}) \to \text{Hom}(I, K_{n-2}) \to 0$ for any N-injective left R-module I, as desired.

(4)\Rightarrow(2). Let $\cdots \to I_n \to I_{n-1} \to \cdots \to I_1 \to I_0 \to M \to 0$ be an \mathcal{N}-\mathcal{T}-resolution of a left R-module M with $K_n = \text{Ker}(I_{n-1} \to I_{n-2})$. By assumption, M has a minimal \mathcal{N}-\mathcal{T}-resolution of the form $0 \to I_{n-2} \to I_{n-3} \to \cdots \to I_1' \to I_0' \to M \to 0$. In view of [8, Corollary 8.6.4], $K_n \oplus I_{n-2} \oplus I_{n-3}' \oplus \cdots \cong I_{n-1} \oplus I_{n-2}' \oplus I_{n-3}' \oplus \cdots$. Thus K_n is N-injective. \(\square \)

Corollary 3.16. If R is left strongly Nil$_+$-coherent, then the following are equivalent:

1. $l.N - l.dim(R) \leq 2$.
2. Every left R-module has an \mathcal{N}-\mathcal{T}-cover with the unique mapping property.

Acknowledgment. The authors are indebted to the referee for his/her various valuable comments leading to the improvement of the paper. This work was supported by the Scientific Research Foundation of Hunan Provincial Education Department(12B101).

References

Yueming Xiang
Department of Mathematics and Applied Mathematics
Huaihua University
Huaihua, 418000, P. R. China
E-mail address: yxm1s9992126.com

Lunqun Ouyang
Department of Mathematics
Hunan University of Science and Technology
Xiangtan, 411201, P. R. China
E-mail address: Ouyanglqtxy@163.com