GCR-LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN PRODUCT MANIFOLD

SANGEET KUMAR, RAKESH KUMAR, AND RAKESH KUMAR NAGAICH

Abstract. We introduce GCR-lightlike submanifold of a semi-Riemannian product manifold and give an example. We study geodesic GCR-lightlike submanifolds of a semi-Riemannian product manifold and obtain some necessary and sufficient conditions for a GCR-lightlike submanifold to be a GCR-lightlike product. Finally, we discuss minimal GCR-lightlike submanifolds of a semi-Riemannian product manifold.

1. Introduction

The significant applications of CR-structures in relativity [3, 4] and growing importance of lightlike submanifolds in mathematical physics and moreover availability of limited information on theory of lightlike submanifolds, motivated Duggal and Bejancu [5] to introduce CR-lightlike submanifolds of indefinite Kaehler manifolds. Similar to CR-lightlike submanifolds, semi-invariant lightlike submanifolds of a semi-Riemannian product manifold were introduced by Atçeken and Kiliç in [1]. Since CR-lightlike submanifold does not include the complex and totally real cases therefore Duggal and Sahin [7] introduced Screen Cauchy-Riemann (SCR)-lightlike submanifold of indefinite Kaehler manifolds, which contains complex and screen real sub-cases. The SCR-lightlike submanifolds, analogously, Screen Semi-Invariant lightlike submanifolds, of semi-Riemannian product manifolds were introduced by Khursheed et al. [9] and Kiliç et al. [10], respectively. Since there is no inclusion relation between SCR and CR cases therefore Duggal and Sahin [8] introduced Generalized Cauchy-Riemann (GCR)-lightlike submanifold of indefinite Kaehler manifolds which acts as an umbrella of real hypersurfaces, invariant, screen real and CR lightlike submanifolds and further developed by [11, 12, 13, 14].
Since the geometry of lightlike submanifolds of semi-Riemannian product manifolds is a topic of chief discussion [16, 17, 18] therefore we introduce GCR-lightlike submanifolds of a semi-Riemannian product manifold. We study geodesic GCR-lightlike submanifolds of a semi-Riemannian product manifold and obtain some necessary and sufficient conditions for a GCR-lightlike submanifold to be a GCR-lightlike product. Finally, we discuss minimal GCR-lightlike submanifolds of a semi-Riemannian product manifold.

2. Lightlike submanifolds

Let \((\bar{M}, \bar{g})\) be a real \((m + n)\)-dimensional semi-Riemannian manifold of constant index \(q\) such that \(m, n \geq 1\), \(1 \leq q \leq m + n - 1\) and \((M, g)\) be an \(m\)-dimensional submanifold of \(\bar{M}\) and \(\bar{g}\) be the induced metric of \(\bar{g}\) on \(M\). If \(\bar{g}\) is degenerate on the tangent bundle \(T M\) of \(M\) then \(M\) is called a lightlike submanifold of \(\bar{M}\), for detail see [5]. For a degenerate metric \(g\) on \(M\), \(TM^\bot\) is a degenerate \(n\)-dimensional subspace of \(T \bar{x} M\). Thus both \(T \bar{x} M\) and \(T \bar{x} M^\bot\) are degenerate orthogonal subspaces but no longer complementary. In this case, there exists a subspace \(RadT \bar{x} M = T \bar{x} M \cap T \bar{x} M^\bot\) which is known as radical (null) subspace. If the mapping \(RadTM : x \in M \rightarrow RadT \bar{x} M\), defines a smooth distribution on \(M\) of rank \(r > 0\) then the submanifold \(M\) of \(\bar{M}\) is called an \(r\)-lightlike submanifold and \(RadTM\) is called the radical distribution on \(M\).

Screen distribution \(S(TM)\) is a semi-Riemannian complementary distribution of \(Rad(TM)\) in \(TM\) therefore

\[
TM = RadTM \perp S(TM)
\]

and \((TM^\bot)\) is a complementary vector subbundle to \(RadTM\) in \((TM^\bot)\). Let \(tr(TM)\) and \(ltr(TM)\) be complementary (but not orthogonal) vector bundles to \(TM\) \(|M\) and to \(RadTM\) in \((SM^\bot)|\), respectively. Then we have

\[
(1) \quad TM |_M = TM \oplus tr(TM) = (RadTM \oplus ltr(TM)) \perp S(TM) \perp S(TM^\bot),
\]

\[
(2) \quad tr(TM) = ltr(TM) \perp S(TM^\bot),
\]

\[
(3) \quad TM |_M = TM \oplus tr(TM) = (RadTM \oplus ltr(TM)) \perp S(TM) \perp S(TM^\bot).
\]

Let \(u\) be a local coordinate neighborhood of \(M\) and consider the local quasi-orthonormal fields of frames of \(M\) along \(M\), on \(u\) as \(\{\xi_1, \ldots, \xi_r, W_{r+1}, \ldots, W_n, N_1, \ldots, N_r, X_{r+1}, \ldots, X_m\}\), where \(\{\xi_1, \ldots, \xi_r\}, \{N_1, \ldots, N_r\}\) are local lightlike bases of \(\Gamma(RadTM) |_u\), \(\Gamma(ltr(TM)) |_u\) and \(\{W_{r+1}, \ldots, W_n\}, \{X_{r+1}, \ldots, X_m\}\) are local orthonormal bases of \(\Gamma(S(TM^\bot)) |_u\) and \(\Gamma(S(TM)) |_u\) respectively. For this quasi-orthonormal fields of frames, we have:

Theorem 2.1 ([5]). Let \((M, g, S(TM), S(TM^\bot))\) be an \(r\)-lightlike submanifold of a semi-Riemannian manifold \((M, \bar{g})\). Then there exists a complementary vector bundle \(ltr(TM)\) of \(RadTM\) in \(S(TM^\bot)|_u\) and a basis of \(\Gamma(ltr(TM)) |_u\) consisting of smooth section \(\{N_i\}\) of \(S(TM^\bot)|_u\) where \(u\) is a coordinate neighborhood of \(M\) such that

\[
(4) \quad \bar{g}(N_i, \xi_j) = \delta_{ij}, \quad \bar{g}(N_i, N_j) = 0 \text{ for any } i, j \in \{1, 2, \ldots, r\},
\]
where \(\{ \xi_1, \ldots, \xi_r \} \) is a lightlike basis of \(\Gamma(\text{Rad}(TM)) \).

Let \(\nabla \) be the Levi-Civita connection on \(M \) then according to the decomposition (3), the Gauss and Weingarten formulas are given by

\[
\nabla_X Y = \nabla_X Y + h(X, Y), \quad \nabla_X U = -A_U X + \nabla^*_X U,
\]

for any \(X, Y \in \Gamma(TM) \) and \(U \in \Gamma(\text{tr}(TM)) \), where \(\{ \nabla_X Y, A_U X \} \) and \(\{ h(X, Y), \nabla^*_X U \} \) belong to \(\Gamma(TM) \) and \(\Gamma(\text{tr}(TM)) \), respectively. Here \(\nabla \) is a torsion-free linear connection on \(M \), \(h \) is a symmetric bilinear form on \(\Gamma(TM) \) which is called second fundamental form, \(A_U \) is a linear operator on \(M \) and known as shape operator.

According to (2) considering the projection morphisms \(L \) and \(S \) of \(\text{tr}(TM) \) on \(\text{ltr}(TM) \) and \(\text{S}(TM^\perp) \) respectively, then (5) become

\[
\nabla_X Y = \nabla_X Y + h^l(X, Y) + h^s(X, Y), \quad \nabla_X U = -A_U X + D^l_X U + D^s_X U,
\]

where we put \(h^l(X, Y) = L(h(X, Y)), h^s(X, Y) = S(h(X, Y)), D^l_X U = L(\nabla^*_X U), D^s_X U = S(\nabla^*_X U). \)

As \(h^l \) and \(h^s \) are \(\Gamma(\text{ltr}(TM)) \)-valued and \(\Gamma(\text{S}(TM^\perp)) \)-valued, respectively, therefore they are called the lightlike second fundamental form and the screen second fundamental form on \(M \). In particular

\[
\nabla_X X = -A_N X + \nabla^l_X N + D^s(X, N), \quad \nabla_X W = -A_W X + \nabla^*_X W + D^l(X, W),
\]

where \(X \in \Gamma(TM) \), \(N \in \Gamma(\text{ltr}(TM)) \) and \(W \in \Gamma(\text{S}(TM^\perp)) \). Using (6) and (7) we obtain

\[
\bar{g}(h^s(X, Y), W) + \bar{g}(Y, D^l(X, W)) = g(A_W X, Y),
\]

\[
\bar{g}(h^l(X, Y), \xi) + \bar{g}(Y, h^l(X, \xi)) + \bar{g}(Y, \nabla_X \xi) = 0
\]

for any \(W \in \Gamma(\text{S}(TM^\perp)), \xi \in \Gamma(\text{Rad}(TM)) \). Let \(P \) be the projection morphism of \(TM \) on \(S(TM) \) then using (1), we can induce some new geometric objects on the screen distribution \(S(TM) \) on \(M \) as

\[
\nabla_X PY = \nabla^*_X PY + h^s(X, PY), \quad \nabla_X \xi = -A^*_N X + \nabla^*_X \xi,
\]

for any \(X, Y \in \Gamma(TM) \) and \(\xi \in \Gamma(\text{Rad}(TM)) \), where \(\{ \nabla^*_X PY, A^*_N X \} \) and \(\{ h^s(X, PY), \nabla^*_X \xi \} \) belong to \(\Gamma(S(TM)) \) and \(\Gamma(\text{Rad}(TM)) \), respectively. \(\nabla^*_X \) and \(\nabla^{*l} \) are linear connections on complementary distributions \(S(TM) \) and \(\text{Rad}(TM) \), respectively. \(h^s \) and \(A^* \) are \(\Gamma(\text{Rad}(TM)) \)-valued and \(\Gamma(S(TM)) \)-valued bilinear forms and are called as second fundamental forms of distributions \(S(TM) \) and \(\text{Rad}(TM) \), respectively. Using (6) and (10), we obtain

\[
\bar{g}(h^l(X, PY), \xi) = g(A^*_N X, PY), \quad \bar{g}(h^s(X, PY), N) = g(A_N X, PY)
\]

for any \(X, Y \in \Gamma(TM), \xi \in \Gamma(\text{Rad}(TM)) \) and \(N \in \Gamma(\text{ltr}(TM)) \).
3. Semi-Riemannian product manifolds

Let \((M_1, g_1)\) and \((M_2, g_2)\) be two \(m_1\) and \(m_2\) dimensional semi-Riemannian manifolds with constant indexes \(q_1 > 0\) and \(q_2 > 0\), respectively. Let \(\pi: M_1 \times M_2 \to M_1\) and \(\sigma: M_1 \times M_2 \to M_2\) be the projections which are given by \(\pi(x, y) = x\) and \(\sigma(x, y) = y\) for any \((x, y) \in M_1 \times M_2\). We denote the product manifold by \((\bar{M}, \bar{g}) = (M_1 \times M_2, \bar{g})\), where

\[
\bar{g}(X, Y) = g_1(\pi_* X, \pi_* Y) + g_2(\sigma_* X, \sigma_* Y),
\]

for any \(X, Y \in \Gamma(T\bar{M})\), where \(*\) means the differential mapping. Then we have

\[
\pi_*^2 = \pi_*, \quad \sigma_*^2 = \sigma_*, \quad \pi_* \sigma_* = \sigma_* \pi_* = 0, \quad \pi_* + \sigma_* = I,
\]

where \(I\) is the identity map of \(T(M_1 \times M_2)\). Thus \((M, \bar{g})\) is a \((m_1 + m_2)\)-dimensional semi-Riemannian manifold with constant index \((q_1 + q_2)\). The semi-Riemannian product manifold \(M = M_1 \times M_2\) is characterized by \(M_1\) and \(M_2\) which are totally geodesic submanifolds of \(\bar{M}\). Now if we put \(F = \pi* - \sigma_*\), then we see that \(F^2 = I\) and

\[
\bar{g}(FX, Y) = \bar{g}(X, FY),
\]

for any \(X, Y \in \Gamma(T\bar{M})\), where \(F\) is called an almost product structure on \(M_1 \times M_2\). If we denote the Levi-Civita connection on \(\bar{M}\) by \(\bar{\nabla}\), then it can be seen that

\[
(\bar{\nabla}_X F)Y = 0,
\]

for any \(X, Y \in \Gamma(T\bar{M})\), that is, \(F\) is parallel with respect to \(\bar{\nabla}\).

4. Generalized Cauchy-Riemann lightlike submanifolds

Definition 4.1. Let \((M, g, S(TM))\) be a real lightlike submanifold of a semi-Riemannian product manifold \((\bar{M}, \bar{g})\). Then \(M\) is called a generalized Cauchy-Riemann (GCR)-lightlike submanifold if the following conditions are satisfied

(A) There exist two subbundles \(D_1\) and \(D_2\) of \(\text{Rad}(TM)\), such that

\[
\text{Rad}(TM) = D_1 \oplus D_2, \quad FD_1 = D_1, \quad FD_2 \subset S(TM).
\]

(B) There exist two subbundles \(D_0\) and \(D'\) of \(S(TM)\), such that

\[
S(TM) = \{FD_2 \oplus D'\} \perp D_0, \quad FD_0 = D_0, \quad FD' = L_1 \perp L_2,
\]

where \(D_0\) is a non degenerate distribution on \(M\), \(L_1\) and \(L_2\) are vector subbundles of \(\text{ltr}(TM)\) and \(S(TM)^\perp\), respectively.

Then the tangent bundle \(TM\) of \(M\) is decomposed as \(TM = D \perp D'\) and

\[
D = \text{Rad}(TM) \oplus D_0 \oplus FD_2.\]

\(M\) is called a proper GCR-lightlike submanifold if \(D_1 \neq \{0\}, D_2 \neq \{0\}, D_0 \neq \{0\}\), which has the following features:

1. The condition (A) implies that \(\dim(\text{Rad}(TM)) \geq 3\).
2. The condition (B) implies that \(\dim(D) = 2s \geq 6\), \(\dim(D') \geq 2\) and \(\dim(D_2) = \dim(L_1)\). Thus \(\dim(M) \geq 8\) and \(\dim(\bar{M}) \geq 12\).
3. Any proper \(8\)-dimensional GCR-lightlike submanifold is \(3\)-lightlike.
Example. Let \(R^2_4 = R^2_5 \times R^2_6 \) be a semi-Riemannian product manifold with the product structure \(F(\partial x^i, \partial y^j) = (\partial y^j, \partial x^i) \), where \((x^i, y^j)\) are cartesian coordinates of \(R^2_4 \). Let \(M \) be a submanifold of \(R^2_4 \) given by:

\[
\begin{align*}
 x_1 &= u_1, & x_2 &= u_5, & x_3 &= u_3, & x_4 &= \sqrt{1 - u_2^2}, & x_5 &= u_6, & x_6 &= u_2,
 y_1 &= u_2, & y_2 &= u_3, & y_3 &= u_8, & y_4 &= u_4, & y_5 &= u_7, & y_6 &= u_1.
\end{align*}
\]

Then \(TM \) is spanned by \(Z_1, Z_2, Z_3, Z_4, Z_5, Z_6, Z_7, Z_8 \), where

\[
Z_1 = \partial x_1 + \partial y_6, \quad Z_2 = \partial y_1 + \partial x_6, \quad Z_3 = \partial x_3 + \partial y_2,
\]

\[
Z_4 = -y_4 \partial x_4 + x_4 \partial y_4, \quad Z_5 = \partial x_2, \quad Z_6 = \partial x_5, \quad Z_7 = \partial y_5, \quad Z_8 = \partial y_3.
\]

Clearly, \(M \) is a 3-lightlike submanifold with \(\text{Rad}(TM) = \text{Span}\{Z_1, Z_2, Z_3\} \) and \(FZ_4 = Z_2 \), therefore \(D_1 = \text{Span}\{Z_1, Z_3\} \). Since \(FZ_3 = \partial y_3 + \partial x_2 = Z_8 + Z_7 \in \Gamma(S(TM)) \), therefore \(D_2 = \text{Span}\{Z_3\} \). Moreover \(FZ_6 = Z_7 \) therefore \(D_0 = \text{Span}\{Z_6, Z_7\} \). The lightlike transversal bundle \(ltr(TM) \) is spanned by

\[
\{N_1 = \frac{1}{2}(-\partial x_1 + \partial y_6), N_2 = \frac{1}{2}(-\partial y_1 + \partial x_6), N_3 = \frac{1}{2}(-\partial x_3 + \partial y_2)\}.
\]

Clearly, \(\text{Span}\{N_1, N_2\} \) is invariant with respect to \(F \) and \(FN_3 = -\frac{1}{2}Z_8 + \frac{1}{2}Z_5 \). Hence \(L_1 = \text{Span}\{N_3\} \). By direct calculations, we obtain \(S(TM^\perp) = \text{Span}\{W = -y_4 \partial y_1 + x_4 \partial x_4\} \). Since \(FZ_4 = W \), thus \(L_2 = S(TM^\perp) \). Hence \(D' = \text{Span}\{FN_3, FW = Z_4\} \). Thus, \(M \) is a proper GCR-lightlike submanifold of semi-Riemannian product manifold \(R^2_4 \).

Let \(Q, P_1 \) and \(P_2 \) be the projections on \(D, FL_1 = M_1 \) and \(FL_2 = M_2 \), respectively. Then for any \(X \in \Gamma(TM) \), we have \(X = QX + P_1X + P_2X \), applying \(F \) to both sides, we obtain

\[
FX = fX + wP_1X + wP_2X,
\]

and we can write the equation (14) as

\[
FX = fX + wX,
\]

where \(fX \) and \(wX \) are the tangential and transversal components of \(FX \), respectively. Similarly

\[
FV = BV + CV,
\]

for any \(V \in \Gamma(tr(TM)) \), where \(BV \) and \(CV \) are the sections of \(TM \) and \(tr(TM) \), respectively. Since \(F \) is parallel on \(M \), using (6), (7), (14) and (16), we obtain

\[
(\nabla_X f)Y = A_{wP_1Y}X + A_{wP_2Y}X + Bh(X, Y).
\]

\[
D^s(X, wP_1Y) = -\nabla_X^s wP_2Y + wP_1\nabla_XY - h^s(X, fY) + Ch^s(X, Y).
\]

\[
D^l(X, wP_2Y) = -\nabla_X^l wP_1Y + wP_1\nabla_XY - h^l(X, fY) + Ch^l(X, Y).
\]
Theorem 4.2. Let M be a GCR-lightlike submanifold of a semi-Riemannian product manifold N. Then the induced connection is a metric connection if and only if the following conditions hold

$$\nabla^*_F Y - A^*_FY X \in \Gamma(FD_2 \oplus D_1), \quad \text{when} \quad Y \in \Gamma(D_1),$$

$$\nabla^*_F Y + h^*(X, F Y) \in \Gamma(FD_2 \oplus D_1), \quad \text{when} \quad Y \in \Gamma(D_2),$$

and $Bh(X, F Y) = 0$, when $Y \in \Gamma(\text{Rad}(TM)).$

Proof. Since F is an almost product structure of M therefore we have $\nabla_X Y = \nabla_X F^2 Y$ for any $Y \in \Gamma(\text{Rad}(TM))$ and $X \in \Gamma(TM)$. Then from (13), we obtain $\nabla_X Y = F\nabla_X F^2 Y$ and then using (6) and (16), we obtain

$$\nabla_X Y + h(X, Y) = F(\nabla_X F^2 Y + h(X, F Y)).$$

Since $\text{Rad}(TM) = D_1 \oplus D_2$ therefore using (10), (15) and (16) in (20) and then equating the tangential part for any $Y \in \Gamma(D_1)$, we obtain

$$\nabla_X Y = f(-A^*_FY X + \nabla^*_X F Y) + Bh(X, F Y),$$

and for any $Y \in \Gamma(D_2)$, we obtain

$$\nabla_X Y = f(\nabla^*_X F Y + h^*(X, F Y)) + Bh(X, F Y).$$

Thus from (21), $\nabla_X Y \in \Gamma(\text{Rad}(TM))$, if and only if

$$f(-A^*_FY X + \nabla^*_X F Y) \in \Gamma(FD_2 \oplus D_1) \quad \text{and} \quad Bh(X, F Y) = 0.$$ \hspace{1cm} (23)

From (22), $\nabla_X Y \in \Gamma(\text{Rad}(TM))$, if and only if

$$\nabla^*_X F Y + h^*(X, F Y) \in \Gamma(FD_2 \oplus D_1) \quad \text{and} \quad Bh(X, F Y) = 0.$$ \hspace{1cm} (24)

Thus the assertion follows from (23) and (24). \hspace{1cm} \Box

Theorem 4.3. Let M be a GCR-lightlike submanifold of a semi-Riemannian product manifold N. Then

(i) The distribution D is integrable, if and only if,

$$h(X, F Y) = h(FX, Y), \quad \forall \ X, Y \in \Gamma(D).$$

(ii) The distribution D' is integrable, if and only if,

$$A^*_FZ V = A^*_F V Z, \quad \forall \ Z, V \in \Gamma(D').$$

Proof. From (18) and (19), we obtain $w\nabla_X Y = h(X, F Y) - C(h(X, Y))$ for any $X, Y \in \Gamma(D)$, which implies that $w[X, Y] = h(X, F Y) - h(FX, Y)$, which proves (i).

Next, from (17), we have $f\nabla_Z V = -A^*_WZ - Bh(Z, V)$ for any $Z, V \in \Gamma(D')$, therefore $f[Z, V] = A^*_WZ - A^*_W V Z$, which completes the proof. \hspace{1cm} \Box

Theorem 4.4. Let M be a GCR-lightlike submanifold of a semi-Riemannian product manifold N. Then D defines a totally geodesic foliation in M if and only if $Bh(X, Y) = 0$ for any $X, Y \in \Gamma(D)$.

Proof. Using the definition of GCR-lightlike submanifolds, \(D\)-defines a totally geodesic foliation in \(M\) if and only if, \(\nabla_X Y \in \Gamma(D)\) for any \(X, Y \in \Gamma(D)\), that is, if and only if
\[
g(\nabla_X Y, F \xi) = g(\nabla_X Y, FW) = 0,
\]
for any \(X, Y \in \Gamma(D), \xi \in \Gamma(D_2)\) and \(W \in \Gamma(L_2)\). From (6) and (13), we obtain
\[
(25) \quad g(\nabla_X Y, F \xi) = \bar{g}(\nabla_X FY, \xi) = \bar{g}(h^l(X, FY), \xi), \quad \forall X, Y \in \Gamma(D), \xi \in \Gamma(D_2).
\]
Similarly, using (6) and (13), we obtain
\[
(26) \quad g(\nabla_X Y, FW) = \bar{g}(\nabla_X FY, W) = \bar{g}(h^s(X, FY), W), \quad \forall X, Y \in \Gamma(D), \quad W \in \Gamma(L_2).
\]
It follows from (25) and (26) that \(D\) defines a totally geodesic foliation in \(M\), if and only if, \(h^s(X, FY)\) has no components in \(L_2\) and \(h^l(X, FY)\) has no components in \(L_1\) for any \(X, Y \in \Gamma(D)\), that is, using (16), \(Bh(X, Y) = 0\) for any \(X, Y \in \Gamma(D)\).

Theorem 4.5. Let \(M\) be a GCR-lightlike submanifold of a semi-Riemannian product manifold \(\bar{M}\). Then \(\bar{D}'\)-defines a totally geodesic foliation in \(M\), if and only if, \(A_{wY} X \in \Gamma(D')\) for any \(X, Y \in \Gamma(D')\).

Proof. From (17), we obtain that \(f \nabla_X Y = -A_{wY} X - Bh(X, Y)\) for any \(X, Y \in \Gamma(D').\) If \(\bar{D}'\) defines a totally geodesic foliation in \(M\), then \(A_{wY} X = -Bh(X, Y)\), which implies that \(A_{wY} X \in \Gamma(D')\) for any \(X, Y \in \Gamma(D')\). Conversely, let \(A_{wY} X \in \Gamma(D')\) for any \(X, Y \in \Gamma(D')\), therefore \(f \nabla_X Y = 0\), which implies that \(\nabla_X Y \in \Gamma(D')\). Hence the result follows. \(\square\)

Definition 4.6. A GCR-lightlike submanifold of a semi-Riemannian product manifold is called \(D\) geodesic (respectively, \(\bar{D}'\) geodesic) GCR-lightlike submanifold if its second fundamental form \(h\) satisfies \(h(X, Y) = 0\) for any \(X, Y \in \Gamma(D)\) (respectively, \(X, Y \in \Gamma(D')\)).

Theorem 4.7. Let \(M\) be a GCR-lightlike submanifold of a semi-Riemannian product manifold \(\bar{M}\). Then the distribution \(D\) defines a totally geodesic foliation in \(M\) if and only if \(M\) is \(D\)-geodesic.

Proof. Let \(D\) defines a totally geodesic foliation in \(\bar{M}\) then \(\nabla_X Y \in \Gamma(D)\) for any \(X, Y \in \Gamma(D)\). Then using (6) for any \(\xi \in \Gamma(D_2)\) and \(W \in \Gamma(L_2)\), we obtain
\[
\bar{g}(h^l(X, Y), \xi) = \bar{g}(\nabla_X Y, \xi) = 0, \quad \bar{g}(h^s(X, Y), W) = \bar{g}(\nabla_X Y, W) = 0.
\]
Hence \(h^l(X, Y) = h^s(X, Y) = 0\), which implies that \(M\) is \(D\)-geodesic.

Conversely, let us assume that \(M\) is \(D\)-geodesic. Now using (6) and (13), for any \(X, Y \in \Gamma(D), \xi \in \Gamma(D_2)\) and \(W \in \Gamma(L_2)\), we have
\[
\bar{g}(\nabla_X Y, F \xi) = \bar{g}(\nabla_X FY, \xi) = \bar{g}(h^l(X, FY), \xi) = 0.
\]
and
\[\bar{g}(\nabla_X Y, F W) = \bar{g}(\nabla_X F Y, W) = \bar{g}(h^s(X, F Y), W) = 0. \]
Hence \(\nabla_X Y \in \Gamma(D) \), which completes the proof. \(\square \)

Theorem 4.8. Let \(M \) be a GCR-lightlike submanifold of a semi-Riemannian product manifold \(M \). Then \(M \) is \(D \)-geodesic, if and only if,
\[g(A_W X, Y) = \bar{g}(D(X, W), Y), \]
and
\[\nabla_X^* F \xi \notin \Gamma(D_0 \perp FL_1), \quad A^*_2 X \notin \Gamma(FL_1), \quad h^l(X, \xi') \notin \Gamma(L_1), \]
for any \(X, Y \in \Gamma(D), \xi \in \Gamma(D_2), \xi' \in \Gamma(Rad(TM)) \) and \(W \in \Gamma(L_2) \).

Proof. Using the definition of GCR-lightlike submanifolds, \(M \) is \(D \)-geodesic, if and only if,
\[\bar{g}(h^l(X, Y), \xi) = 0, \]
\[\bar{g}(h^s(X, Y), W) = 0 \]
for any \(X, Y \in \Gamma(D), \xi \in \Gamma(D_2) \) and \(W \in \Gamma(L_2) \). Thus for any \(X, Y \in \Gamma(D) \), first part of assertion follows from (8).

Now, for \(X, Y \in \Gamma(D) \) and \(\xi \in \Gamma(D_2) \), using (6), (10) and (12), we have
\[\bar{g}(h^l(X, Y), \xi) = \bar{g}(\nabla_X Y, \xi) \]
\[= -\bar{g}(F Y, \nabla_X F \xi) \]
\[= -\bar{g}(F Y, \nabla_X F \xi) - \bar{g}(F Y, h^l(X, F \xi)) \]
\[= -\bar{g}(F Y, \nabla_X F \xi) - \bar{g}(F Y, h^l(X, F \xi)). \]
(27)
Since \(Y \in \Gamma(D) \), this implies that \(Y \in \Gamma(D_0), Y \in \Gamma(D_1), Y \in \Gamma(D_2), \) or \(Y \in \Gamma(FD_2) \). If \(Y \in \Gamma(D_0) \) or \(Y \in \Gamma(D_2) \), then we have
\[\bar{g}(F Y, h^l(X, F \xi)) = 0, \]
and if \(Y \in \Gamma(D_1) \) or \(Y \in \Gamma(FD_2) \), then we have
\[\bar{g}(F Y, h^l(X, F \xi)) = g(A^*_2 X, F \xi) + \bar{g}(h^l(X, \xi'), F \xi) \]
for any \(\xi' = F Y \in \Gamma(Rad(TM)) \). Now using (28) and (29) in (27), we obtain
\[\bar{g}(h^l(X, Y), \xi) = -\bar{g}(F Y, \nabla_X F \xi) - g(A^*_2 X, F \xi) - \bar{g}(h^l(X, \xi'), F \xi), \]
which proves the second part of the assertion. \(\square \)

Theorem 4.9. Let \(M \) be a GCR-lightlike submanifold of a semi-Riemannian product manifold \(M \). Then \(M \) is \(D' \)-geodesic, if and only if, \(A_W X \) and \(A^*_2 X \) have no components in \(M_2 \perp FD_2 \), for any \(X \in \Gamma(D'), \xi \in \Gamma(Rad(TM)) \) and \(W \in \Gamma(S(TM^\perp)) \).
Proof. For any $X, Y \in \Gamma(D')$ and $W \in \Gamma(S(TM^\perp))$ using (8), we obtain
\begin{equation}
\bar{g}(h^*(X, Y), W) = g(A_WX, Y),
\end{equation}
and for any $\xi \in \Gamma(Rad(TM))$ using (9) and (10), we obtain
\begin{equation}
\bar{g}(h^l(X, Y), \xi) = g(A^*_\xi X, Y).
\end{equation}
Hence the assertion follows from (30) and (31). \hfill \Box

Definition 4.10. A GCR-lightlike submanifold of a semi-Riemannian product manifold is called mixed-geodesic GCR-lightlike submanifold if its second fundamental form h satisfies $h(X, Y) = 0$ for any $X \in \Gamma(D)$ and $Y \in \Gamma(D')$.

Theorem 4.11. Let M be a GCR-lightlike submanifold of a semi-Riemannian product manifold M. Then M is mixed geodesic, if and only if,

\[
A^*_\xi X \in \Gamma(D_0 \perp FL_1), \quad \text{and} \quad A_WX \in \Gamma(D_0 \perp Rad(TM) \perp FL_1)
\]

for any $X \in \Gamma(D)$, $\xi \in \Gamma(Rad(TM))$ and $W \in \Gamma(S(TM^\perp))$.

Proof. Using (9) and (10), for any $X \in \Gamma(D)$, $Y \in \Gamma(D')$ and $\xi \in \Gamma(Rad(TM))$, we obtain
\begin{equation}
\bar{g}(h^l(X, Y), \xi) = g(A^*_\xi X, Y),
\end{equation}
and for any $W \in \Gamma(S(TM^\perp))$ using (8), we obtain
\begin{equation}
\bar{g}(h^l(X, Y), W) = g(A_WX, Y).
\end{equation}
Hence the result follows from (32) and (33). \hfill \Box

Theorem 4.12. Let M be a mixed geodesic GCR-lightlike submanifold of a semi-Riemannian product manifold M. Then $A^*_\xi X \in \Gamma(FD_2)$ for any $X \in \Gamma(D')$ and $\xi \in \Gamma(D_2)$.

Proof. Let $X \in \Gamma(D')$ and $\xi \in \Gamma(D_2)$ then we have

\[
h(X, F\xi) = \nabla_X F\xi - \nabla_X F\xi = F\nabla_X \xi + Fh(X, \xi) - \nabla_X F\xi.
\]

Since M is mixed geodesic, therefore $F\nabla_X \xi = \nabla_X F\xi$. Using (10) and (15), we get

\[
-fA^*_\xi X - wA^*_\xi X + F\nabla_X \xi = \nabla_X F\xi + h^*(X, F\xi).
\]
equating the transversal components, we have $wA^*_\xi X = 0$. Thus

\[
A^*_\xi X \in \Gamma(FD_2 \perp D_0).
\]
Now, for any $Z \in \Gamma(D_0)$ and $\xi \in \Gamma(D_2)$, we have

\[
\bar{g}(A^*_\xi X, Z) = \bar{g}(\nabla_X \xi + \nabla^*_\xi, Z) = \bar{g}(\nabla_X \xi, Z) = -g(\xi, \nabla_X Z + h(X, Z)) = 0.
\]
If $A^*_\xi X \in \Gamma(D_0)$, then using the non-degeneracy of D_0 for any $Z \in \Gamma(D_0)$, we must have $\bar{g}(A^*_\xi X, Z) \neq 0$. Therefore $A^*_\xi X \notin \Gamma(D_0)$. Hence the assertion is proved. \hfill \Box
Theorem 4.13. Let \(M \) be a mixed geodesic GCR-lightlike submanifold of a semi-Riemannian product manifold \(\bar{M} \). Then the transversal section \(V \in \Gamma(FD') \) is \(D \)-parallel, if and only if, \(\nabla_X FV \in \Gamma(D) \) for any \(X \in \Gamma(D) \).

Proof. Let \(Y \in \Gamma(D') \) such that \(FY = wY = V \in \Gamma(L_1 \perp L_2) \) and \(X \in \Gamma(D) \), then using hypothesis that \(M \) is a mixed geodesic in (17), we have \(f\nabla_X Y = -A_wX = -A_Y X \). Now, \(\nabla_X V = \nabla_X V + A_Y X = \nabla_X FY - f\nabla_X Y \). Since \(\nabla \) is an almost product structure and \(M \) is mixed geodesic therefore we have \(\nabla_X^1 V = w\nabla_X Y \), that is, \(\nabla_X V = w\nabla_X FV \), which proves the theorem. \(\square\)

Theorem 4.14. Let \(M \) be a GCR-lightlike submanifold of a semi-Riemannian product manifold \(M \) such that \(D'(X, V) \in \Gamma(L_2^+) \). Then \(A_{FV} X = F A_V X \) for any \(X \in \Gamma(D) \) and \(V \in \Gamma(L_1^+) \).

Proof. Let \(X \in \Gamma(D) \), \(Y \in \Gamma(D') \) and \(V \in \Gamma(L_1^+) \) then we have

\[
g(A_{FV} X - F A_V X, Y) = g(A_{FV} X, Y) - g(A_V X, FY) = -g(\nabla_X FV, Y) + g(\nabla_X V, FY)
\]

\[
= -g(\nabla_X V, FY) + g(\nabla_X V, FY)
\]

\[
= 0.
\]

(34)

For any \(X \in \Gamma(D) \), \(Z \in \Gamma(D_0) \) and \(V \in \Gamma(L_1^+) \), we have

\[
g(A_{FV} X - F A_V X, Z) = g(A_{FV} X, Z) - g(A_V X, FZ) = -g(\nabla_X FV, Z) + g(\nabla_X V, FZ)
\]

\[
= -g(\nabla_X V, FZ) + g(\nabla_X V, FZ)
\]

\[
= 0.
\]

(35)

For any \(X \in \Gamma(D) \), \(N \in \Gamma(ltr(TM)) \) and \(V \in \Gamma(L_1^+) \), we have

\[
g(A_{FV} X - F A_V X, N) = g(A_{FV} X, N) - g(A_V X, FN) = -g(\nabla_X FV, N) + g(\nabla_X V, FN)
\]

\[
= -g(F\nabla_X V, N) + g(F\nabla_X V, N)
\]

\[
= 0.
\]

(36)

For any \(X \in \Gamma(D) \), \(FN \in \Gamma(FL_1) \) and \(V \in \Gamma(L_1^+) \), we also have

\[
g(A_{FV} X - F A_V X, FN) = g(A_{FV} X, FN) - g(A_V X, N) = -g(\nabla_X FV, FN) + g(\nabla_X V, N)
\]

\[
= -g(F\nabla_X V, FN) + g(\nabla_X V, N)
\]

\[
= -g(\nabla_X V, N) + g(\nabla_X V, N)
\]

\[
= 0.
\]

(37)

Hence the assertion follows from (34)-(37). \(\square\)
5. GCR-Lightlike product

Definition 5.1 ([15]). A GCR-lightlike submanifold of a semi-Riemannian product manifold M is called a GCR-lightlike product if both the distributions D and D' define totally geodesic foliations in M.

Theorem 5.2. Let M be a totally geodesic GCR-lightlike submanifold of a semi-Riemannian product manifold M. Suppose that there exists a transversal vector bundle of M, which is parallel along D' with respect to the Levi-Civita connection on M, that is, $\nabla_X V \in \Gamma(tr(TM))$ for any $V \in \Gamma(tr(TM))$ and $X \in \Gamma(D')$. Then M is a GCR-lightlike product.

Proof. Since M is a totally geodesic GCR-lightlike submanifold, therefore $Bh(X,Y) = 0$ for any $X, Y \in \Gamma(D)$. Therefore, the distribution D defines a totally geodesic foliation in M. Next, since $\nabla_X V \in \Gamma(tr(TM))$ for any $V \in \Gamma(tr(TM))$ and $X \in \Gamma(D')$, therefore using (7), we obtain $A_V X = 0$, then from (17), we get $f\nabla_X Y = 0$ for any $X, Y \in \Gamma(D')$, which implies that $\nabla_X Y \in \Gamma(D')$. Hence the distribution D' defines a totally geodesic foliation in M. Thus M is a GCR-lightlike product.

Definition 5.3. A lightlike submanifold of a semi-Riemannian manifold is said to be an irrotational submanifold if $\nabla_X \xi \in \Gamma(TM)$ for any $X \in \Gamma(TM)$ and $\xi \in \Gamma(Rad(TM))$. Thus M is an irrotational lightlike submanifold, if and only if, $h^s(X, \xi) = 0, h^a(X, \xi) = 0$.

Theorem 5.4. Let M be an irrotational GCR-lightlike submanifold of a semi-Riemannian product manifold M. Then M is a GCR-lightlike product if the following conditions are satisfied:

(A) $\nabla_X U \in \Gamma(S(TM^\bot))$ for any $X \in \Gamma(TM)$ and $U \in \Gamma(tr(TM))$.

(B) $A_V^s Y \in \Gamma(FL_2)$ for any $Y \in \Gamma(D)$.

Proof. Using (7) with (A), we get $A_W X = 0, D^i(X, W) = 0$ and $\nabla_X Y = 0$ for any $X \in \Gamma(TM)$ and $W \in \Gamma(S(TM^\bot))$. Therefore for any $X, Y \in \Gamma(D)$ and $W \in \Gamma(S(TM^\bot))$ and using (8), we obtain $g(h^s(X,Y), W) = 0$, then non-degeneracy of $S(TM^\bot)$ implies that $h^s(X,Y) = 0$. Hence, $Bh^s(X,Y) = 0$. Now, let $X, Y \in \Gamma(D)$ and $\xi \in \Gamma(Rad(TM))$, then using (B), we have $g(h^i(X,Y), \xi) = -g(\nabla_X Y, \xi) = g(A^s_V X, Y) = 0$. Then using (4), we get $h^i(X,Y) = 0$. Hence $Bh^i(X,Y) = 0$. Thus the distribution D defines a totally geodesic foliation in M.

Next, let $X, Y \in \Gamma(D')$, then $FY = wy \in \Gamma(L_1 \perp L_2) \subset tr(TM)$. Using (17), we obtain $f\nabla_X Y = -Bh(X,Y)$, comparing the components along D, we get $f\nabla_X Y = 0$, which implies that $\nabla_X Y \in \Gamma(D')$. Thus the distribution D' defines a totally geodesic foliation in M. Hence M is a GCR-lightlike product.

Theorem 5.5. Let M be a GCR-lightlike submanifold of a semi-Riemannian product manifold M. Then M is a GCR-lightlike product if and only if $(\nabla_X f)Y = 0$ for any $X, Y \in \Gamma(D)$ or $X, Y \in \Gamma(D')$.

Proof. Let \((\nabla_X f)Y = 0\) for any \(X, Y \in \Gamma(D)\) or \(X, Y \in \Gamma(D')\). Let \(X, Y \in \Gamma(D)\), then \(wY = 0\) and (17) gives that \(Bh(X, Y) = 0\). Hence using the Theorem (4.4), the distribution \(D\) defines a totally geodesic foliation in \(M\). Next, let \(X, Y \in \Gamma(D')\). Since \(BV \in \Gamma(D')\) for any \(V \in \Gamma(tr(TM))\), then (17) implies that \(A_{wY}X \in \Gamma(D')\). Hence using Theorem 4.5, the distribution \(D'\) defines a totally geodesic foliation in \(M\). Since both the distributions \(D\) and \(D'\) define totally geodesic foliations in \(M\), hence \(M\) is a GCR-lightlike product.

Conversely, let \(M\) be a GCR-lightlike product, therefore the distributions \(D\) and \(D'\) define totally geodesic foliations in \(M\). Using (13), for any \(X, Y \in \Gamma(D)\), we have \(\nabla_X FY = F\nabla_X Y\), then comparing the transversal components, we obtain \(h(X, FY) = Fh(X, Y)\) and then \((\nabla_X f)Y = \nabla_X fY = f\nabla_X Y = \nabla_X FY - h(X, FY) = F\nabla_X Y + h(X, FY) = 0\), that is \((\nabla_X f)Y = 0\) for any \(X, Y \in \Gamma(D)\). Let \(D'\) defines a totally geodesic foliation in \(M\) and using (13), we have \(\nabla_X FY = F\nabla_X Y\), then comparing the tangential components on both sides, we obtain \(-A_{wY}X = Bh(X, Y)\), then (17) implies that \((\nabla_X f)Y = 0\), which completes the proof. \(\square\)

Definition 5.6 ([6]). A lightlike submanifold \((M, g)\) of a semi-Riemannian manifold \((\bar{M}, g)\) is said to be totally umbilical in \(M\) if there is a smooth transversal vector field \(H \in \Gamma(tr(TM))\) on \(M\), called the transversal curvature vector field of \(M\), such that, for any \(X, Y \in \Gamma(TM)\),

\[
h(X, Y) = Hg(X, Y).
\]

Using (7), it is clear that \(M\) is a totally umbilical, if and only if, on each coordinate neighborhood \(U\) there exist smooth vector fields \(H^1 \in \Gamma(ltr(TM))\) and \(H^\alpha \in \Gamma(S(TM^\perp))\) such that

\[
h^1(X, Y) = H^1g(X, Y), \quad h^\alpha(X, Y) = H^\alpha g(X, Y), \quad D^\alpha(X, W) = 0
\]

for any \(X, Y \in \Gamma(TM)\) and \(W \in \Gamma(S(TM^\perp))\). \(M\) is called totally geodesic if \(H = 0\), that is, if \(h(X, Y) = 0\).

Lemma 5.7. Let \(M\) be a totally umbilical GCR-lightlike submanifold of semi-Riemannian product manifold \(M\). Then the distribution \(D'\) defines a totally geodesic foliation in \(M\).

Proof. Let \(X, Y \in \Gamma(D')\) then (17) implies that \(f\nabla_X Y = -A_{wY}X = Bh(X, Y)\), then for any \(Z \in \Gamma(D_0)\), we have

\[
g(f\nabla_X Y, Z) = -g(A_{wY}X, Z) - g(Bh(X, Y), Z) = \bar{g}(\nabla_X wY, Z) = \bar{g}(\nabla_X FY, Z) = \bar{g}(\nabla_X Y, FZ) = \bar{g}(\nabla_X Y, Z') = -g(Y, \nabla_X Z'),
\]

where \(Z' = FZ \in \Gamma(D_0)\). Since \(X \in \Gamma(D')\) and \(Z \in \Gamma(D_0)\), then from (18) and (19), we have \(wP\nabla_X Z = h(X, fZ) - Ch(X, Z) = Hg(X, fZ) - Chg(X, Z) = 0\), therefore \(wP\nabla_X Z = 0\), which implies that \(\nabla_X Z \in \Gamma(D)\). Thus (40) implies
that $g(f \nabla_X Y, Z) = 0$, then the non-degeneracy of D_0 implies that $f \nabla_X Y = 0$. Hence $\nabla_X Y \in \Gamma(D')$ for any $X, Y \in \Gamma(D')$. Thus the result follows. □

Theorem 5.8. Let M be a totally umbilical GCR-lightlike submanifold of semi-Riemannian product manifold M. Then M is a GCR-lightlike product if and only if $Bh(X, Y) = 0$ for any $X \in \Gamma(TM)$ and $Y \in \Gamma(D)$.

Proof. Let M be a GCR-lightlike product therefore the distributions D and D' define totally geodesic foliations in M. Therefore using Theorem 4.4, we have $Bh(X, Y) = 0$ for any $X, Y \in \Gamma(D)$. Now using the hypothesis for $X \in \Gamma(D')$ and $Y \in \Gamma(D)$, we have $Bh(X, Y) = g(X, Y)BH = 0$. Thus $Bh(X, Y) = 0$ for any $X \in \Gamma(TM)$ and $Y \in \Gamma(D)$.

Conversely, let $Bh(X, Y) = 0$ for any $X \in \Gamma(TM)$ and $Y \in \Gamma(D)$. Now for any $X, Y \in \Gamma(D)$, we have $Bh(X, Y) = 0$, which implies that D defines a totally geodesic foliation in M. Let $X, Y \in \Gamma(D')$, then (17) implies that $A_{wY}X = -f \nabla_X Y - Bh(X, Y)$ and using Lemma 5.7, we obtain $f A_{wY}X + wA_{wY}X = -h(X, Y)$, comparing the tangential components on both sides, we have $f A_{wY}X = 0$, which implies that $A_{wY}X \in \Gamma(D')$. Hence using Theorem 4.5, the distribution D' defines a totally geodesic foliation in M. Hence the result follows. □

Theorem 5.9. Let M be a GCR-lightlike submanifold of a semi-Riemannian product manifold M. Then M is totally geodesic manifold, if and only if, $Rad(TM)$ and $S(TM^\perp)$ are Killing distributions on M.

Proof. For any $X, Y \in \Gamma(TM)$ and $\xi \in \Gamma(Rad(TM))$, consider

$$
\bar{g}(h(X, Y), \xi) = \bar{g}(\nabla_X Y, \xi) = X \bar{g}(Y, \xi) - \bar{g}(\nabla_X \xi, Y) \\
= \bar{g}([\xi, X], Y) - \bar{g}(\nabla_\xi X, Y) \\
= \bar{g}([\xi, X], Y) - \xi \bar{g}(X, Y) + \bar{g}(\nabla_\xi Y, X) \\
= -\xi \bar{g}(X, Y) + \bar{g}([\xi, X], Y) + \bar{g}([\xi, Y], X) - \bar{g}(\nabla_\xi Y, X, \xi) \\
= -(L_\xi \bar{g})(X, Y) - \bar{g}(h(X, Y), \xi),
$$

which implies that

$$
2\bar{g}(h(X, Y), \xi) = -(L_\xi \bar{g})(X, Y)
$$

for any $X, Y \in \Gamma(TM)$ and $\xi \in \Gamma(Rad(TM))$.

Similarly, for any $X, Y \in \Gamma(TM)$ and $W \in \Gamma(S(TM^\perp))$, we have

$$
\bar{g}(h(X, Y), W) = \bar{g}(\nabla_X Y, W) = X \bar{g}(Y, W) - \bar{g}(\nabla_X W, Y) \\
= \bar{g}([W, X], Y) - \bar{g}(\nabla_W X, Y) \\
= \bar{g}([W, X], Y) - W \bar{g}(X, Y) + \bar{g}(\nabla_W Y, X) \\
= -W \bar{g}(X, Y) + \bar{g}([W, X], Y) + \bar{g}([W, Y], X) - \bar{g}(\nabla_Y X, W) \\
= -(L_W \bar{g})(X, Y) - \bar{g}(h(X, Y), W),
$$

(43)
which implies that
\[(44)\quad 2\bar{g}(h(X, Y), W) = -(L_W\bar{g})(X, Y)\]
for any $X, Y \in \Gamma(TM)$ and $W \in \Gamma(S(TM^\perp))$. Thus from (42) and (44), we have $h(X, Y) = 0$, if and only if, $(L_\xi\bar{g})(X, Y) = 0$ and $(L_W\bar{g})(X, Y) = 0$, for any $X, Y \in \Gamma(TM)$, $\xi \in \Gamma(Rad(TM))$ and $W \in \Gamma(S(TM^\perp))$. Thus the result follows. \hfill \Box

Theorem 5.10. Let M be a totally umbilical GCR-lightlike submanifold of a semi-Riemannian product manifold \bar{M}. If the induced connection is a metric connection, then $h^*(X, Y) = 0$ for any $X, Y \in \Gamma(D_0$).

Proof. Let the induced connection ∇ be a metric connection, then from Theorem 2.2 on page 159 of [5], we have $h^l = 0$. Hence using hypothesis in (19), we get $WP_1\nabla X Y = 0$, therefore, $\nabla X Y \in \Gamma(S(TM))$, which implies that $h^*(X, Y) = 0$ for any $X, Y \in \Gamma(D_0)$. Thus the result follows. \hfill \Box

6. Minimal GCR-lightlike submanifolds

Definition 6.1 ([2]). A lightlike submanifold $(M, g, S(TM))$ isometrically immersed in a semi-Riemannian manifold (\bar{M}, \bar{g}) is said to be minimal if $h^s = 0$ on $\text{Rad}(TM)$ and $\text{trace } h = 0$, where trace is written with respect to g restricted to $S(TM)$.

Theorem 6.2. Let M be a totally umbilical GCR-lightlike submanifold of a semi-Riemannian product manifold \bar{M}. Then M is minimal, if and only if, M is totally geodesic.

Proof. Suppose M is minimal then $h^s(X, Y) = 0$ for any $X, Y \in \Gamma(\text{Rad}(TM))$. Since M is totally umbilical therefore $h^l(X, Y) = H^l g(X, Y) = 0$ for any $X, Y \in \Gamma(\text{Rad}(TM))$. Now, choose an orthonormal basis $\{e_1, e_2, \ldots, e_{m-r}\}$ of $S(TM)$ then from (39), we obtain

$$\text{trace } h(e_i, e_i) = \sum_{i=1}^{m-r} \epsilon_i g(e_i, e_i) H^l + \epsilon_i g(e_i, e_i) H^s = (m - r) H^l + (m - r) H^s.$$

Since M is minimal and $\text{ltr}(TM) \cap S(TM^\perp) = \{0\}$, we get $H^l = 0$ and $H^s = 0$. Hence M is totally geodesic. Converse follows directly. \hfill \Box

Theorem 6.3. A totally umbilical proper GCR-lightlike submanifold of a semi-Riemannian product manifold M is minimal, if and only if,

$$\text{trace } A_{W_p} = 0 \quad \text{and} \quad \text{trace } A^*_{\xi_k} = 0 \quad \text{on} \quad D_0 \perp FL_2$$

for $W_p \in \Gamma(S(TM^\perp))$, where $k \in \{1, 2, \ldots, r\}$ and $p \in \{1, 2, \ldots, n - r\}$.
Proof. Using (38), it is clear that $h^s(X,Y) = 0$ on $Rad(TM)$. Using the definition of a GCR-lightlike submanifold, we have

$$
\text{trace } h|_{S(TM)} = \sum_{i=1}^{a} h(Z_i, Z_i) + \sum_{j=1}^{b} h(F\xi_j, F\xi_j) + \sum_{j=1}^{b} h(FN_j, N_j) + \sum_{l=1}^{c} h(FW_l, FW_l),
$$

where $a = \dim(D_0)$, $b = \dim(D_2)$ and $c = \dim(L_2)$. Since M is totally umbilical therefore from (38), we have $h(F\xi_j, F\xi_j) = h(FN_j, N_j) = 0$. Thus above equation becomes

$$
\text{trace } h|_{S(TM)} = \sum_{i=1}^{a} h(Z_i, Z_i) + \sum_{l=1}^{c} h(FW_l, FW_l)
= \sum_{i=1}^{a} \frac{1}{r} \sum_{k=1}^{r} g(h^l(Z_i, Z_i), \xi_k)N_k
+ \sum_{i=1}^{a} \frac{1}{n-r} \sum_{p=1}^{n-r} g(h^s(Z_i, Z_i), W_p)W_p
+ \sum_{l=1}^{c} \frac{1}{r} \sum_{k=1}^{r} g(h^l(FW_l, FW_l), \xi_k)N_k
+ \sum_{l=1}^{c} \frac{1}{n-r} \sum_{p=1}^{n-r} g(h^s(FW_l, FW_l), W_p)W_p,
$$

(45)
where $\{W_1, W_2, \ldots, W_{n-r}\}$ is an orthonormal basis of $S(TM^\perp)$. Using (8) and (11) in (45), we obtain

$$
\text{trace } h|_{S(TM)} = \sum_{i=1}^{a} \frac{1}{r} \sum_{k=1}^{r} g(A^*_k Z_i, Z_i)N_k
+ \sum_{i=1}^{a} \frac{1}{n-r} \sum_{p=1}^{n-r} g(AW_p Z_i, Z_i)W_p
+ \sum_{l=1}^{c} \frac{1}{r} \sum_{k=1}^{r} g(A^*_k FW_l, FW_l)N_k
+ \sum_{l=1}^{c} \frac{1}{n-r} \sum_{p=1}^{n-r} g(AW_p FW_l, FW_l)W_p.
$$

Thus $\text{trace } h|_{S(TM)} = 0$, if and only if, $\text{trace } AW_p = 0$ and $\text{trace } A\xi_k = 0$ on $D_0 \perp FL_2$. Hence the result follows. □
Theorem 6.4. Let M be an irrotational lightlike submanifold of a semi-Riemannian product manifold \bar{M}. Then M is minimal, if and only if,

$\text{trace } A^*_{\xi_k}|_{S(TM)} = 0$ and $\text{trace } A_{W_j}|_{S(TM)} = 0$, where $W_j \in \Gamma(S(TM^\perp))$, $k \in \{1, 2, \ldots, r\}$ and $j \in \{1, 2, \ldots, n-r\}$.

Proof. M is irrotational implies that $h^s(X, \xi) = 0$ for any $X \in \Gamma(TM)$ and $\xi \in \Gamma(\text{Rad}(TM))$, therefore $h^s = 0$ on $\text{Rad}(TM)$. Also

$$\text{trace } h|_{S(TM)} = \sum_{i=1}^{m-r} \epsilon_i (h^l(e_i, e_j) + h^s(e_i, e_j))$$

$$= \sum_{i=1}^{m-r} \epsilon_i \left(\frac{1}{r} \sum_{k=1}^{r} \bar{g}(h^l(e_i, e_i), \xi_k)N_k + \frac{1}{n-r} \sum_{j=1}^{n-r} \bar{g}(h^s(e_i, e_i), W_j)W_j\right)$$

$$= \sum_{i=1}^{m-r} \epsilon_i \left(\frac{1}{r} \sum_{k=1}^{r} \bar{g}(A^*_{\xi_k}e_i, e_i)N_k + \frac{1}{n-r} \sum_{j=1}^{n-r} \bar{g}(A_{W_j}e_i, e_i)W_j\right).$$

Hence theorem follows. \square

Acknowledgment. The authors would like to thank the anonymous referee for his/her valuable suggestions that helped them to improve this paper.

References

Sangeet Kumar
School of Applied Sciences
Chitkara University
Jhansla, Rajpura, Distt. Patiala, India
E-mail address: sp7math@gmail.com

Rakesh Kumar
Department of Basic and Applied Sciences
Punjabi University
Patiala, India
E-mail address: dr_rk37c@yahoo.co.in

Rakesh Kumar Nagaich
Department of Mathematics
Punjabi University
Patiala, India
E-mail address: nagaichrakesh@yahoo.com