GENERATING SETS OF STRICTLY ORDER-PRESERVING TRANSFORMATION SEMIGROUPS ON A FINITE SET

HAYRULLAH AYIK AND LEYLA BUGAY

Abstract. Let \(O_n \) and \(PO_n \) denote the order-preserving transformation and the partial order-preserving transformation semigroups on the set \(X_n = \{1, \ldots, n\} \), respectively. Then the strictly partial order-preserving transformation semigroup \(SPO_n \) on the set \(X_n \), under its natural order, is defined by \(SPO_n = PO_n \setminus O_n \). In this paper we find necessary and sufficient conditions for any subset of \(SPO(n, r) \) to be a (minimal) generating set of \(SPO(n, r) \) for \(2 \leq r \leq n - 1 \).

1. Introduction

The partial transformation semigroup \(P_X \) and the full transformation semigroup \(T_X \) on a set \(X \), the semigroups analogue of the symmetric group \(S_X \), have been much studied over the last fifty years, for both finite and infinite \(X \). Here we are concerned solely with the case where \(X = X_n = \{1, \ldots, n\} \), and we write respectively \(P_n, T_n \) and \(S_n \) rather than \(P_{X_n}, T_{X_n} \) and \(S_{X_n} \). Among recent contributions are [1, 2, 6, 10, 11]. The domain, image, height and kernel of \(\alpha \in P_n \) are defined by

\[
\text{dom} (\alpha) = \{ x \in X_n : \text{there exists } y \in X_n \text{ such that } x\alpha = y \},
\]

\[
\text{im} (\alpha) = \{ y \in X_n : \text{there exists } x \in X_n \text{ such that } x\alpha = y \},
\]

\[
h (\alpha) = |\text{im} (\alpha)|,
\]

\[
\ker (\alpha) = \{ (x, y) \in X_n \times X_n : (x, y) \in \text{dom} (\alpha) \text{ and } x\alpha = y\alpha \text{ or } x, y \notin \text{dom} (\alpha) \}.
\]

respectively. Notice that \(\ker (\alpha) \) is an equivalence relation on \(X_n \) and the equivalence classes of \(\ker (\alpha) \) are all of the pre-image sets of elements in \(\text{im} (\alpha) \) together with \(X_n \setminus \text{dom} (\alpha) \). Then, the set \(\text{kp} (\alpha) = \{ y\alpha^{-1} : y \in \text{im} (\alpha) \} \) is called the kernel partition of \(\alpha \) and the ordered pair \(\text{ks} (\alpha) = (\text{kp} (\alpha), X_n \setminus \text{dom} (\alpha)) \)

Received August 14, 2013.
2010 Mathematics Subject Classification. 20M20.
Key words and phrases. (partial/strictly partial) order-preserving transformation semigroup, idempotents, (minimal) generating set, rank.

©2014 Korean Mathematical Society

1055
is called the kernel structure of α. For any $\alpha, \beta \in P_n$ notice that

$$ks(\alpha) = ks(\beta) \iff kp(\alpha) = kp(\beta) \iff \ker(\alpha) = \ker(\beta) \text{ and } \dom(\alpha) = \dom(\beta).$$

Moreover, for any α, β in P_n it is well known that $\dom(\alpha \beta) \subseteq \dom(\alpha)$, $\ker(\alpha) \subseteq \ker(\alpha \beta)$, and that $\alpha \in P_n$ is an idempotent if and only if $x\alpha = x$ for all $x \in \im(\alpha)$. We denote the set of all idempotents in any subset U of any semigroup by $E(U)$. (See [3, 7] for other terms in semigroup theory which are not explained here.)

The order-preserving transformation semigroup O_n and the partial order-preserving transformation semigroup PO_n on X_n, under its natural order, are defined by

$$O_n = \{ \alpha \in T_n \setminus S_n : x \leq y \Rightarrow x\alpha \leq y\alpha \ (\forall x, y \in X_n) \},$$

$$PO_n = O_n \cup \{ \alpha \in T_n \setminus T_n : x \leq y \Rightarrow x\alpha \leq y\alpha \ (\forall x, y \in \dom(\alpha)) \},$$

respectively. Since $\dom(\alpha \beta) \subseteq \dom(\alpha)$, for all $\alpha, \beta \in PO_n$, $SPO_n = PO_n \setminus O_n$ is a subsemigroup of PO_n, which is called the strongly partial order-preserving transformation semigroup on X_n, and

$$SPO(n, r) = \{ \alpha \in SPO_n : |\im(\alpha)| \leq r \}$$

is (under usual composition) a subsemigroup of SPO_n for $1 \leq r \leq n - 1$. Notice that $SPO(n, n - 1) = SPO_n$.

Let $A = \{ A_1, \ldots, A_k \}$ be a partition of a set $Y \subseteq X_n$. Then A is called an ordered partition, and we write $A = (A_1, \ldots, A_k)$, if $x < y$ for all $x \in A_i$ and $y \in A_{i+1}$ (1 ≤ i ≤ $k - 1$) (the idea of ordering a family of sets appeared on p335 of [8]). Moreover, a set $\{a_1, \ldots, a_k\}$, such that $|\{a_1, \ldots, a_k\} \cap A_i| = 1$ for each 1 ≤ i ≤ k, is called a transversal (or a cross-section) of A. For $\alpha \in PO_n$ with height k, we have the order on the kernel classes A_1, \ldots, A_k of $kp(\alpha)$ as defined above and $\ker(\alpha) = \bigcup_{i=1}^{k+1} (A_i \times A_i)$, where $\emptyset \neq A_{k+1} = X_n \setminus \dom(\alpha)$. Without loss of generality, if (A_1, \ldots, A_k) is an ordered partition of $\dom(\alpha)$, then $A_1 \alpha < \cdots < A_k \alpha$, and moreover, α can be written in the following tabular forms:

$$\alpha = \begin{pmatrix} A_1 & A_2 & \cdots & A_k & A_{k+1} \\ A_1 \alpha & A_2 \alpha & \cdots & A_k \alpha & - \end{pmatrix} \quad \text{or} \quad \alpha = \begin{pmatrix} A_1 & A_2 & \cdots & A_k \\ A_1 \alpha & A_2 \alpha & \cdots & A_k \alpha \end{pmatrix}.$$

For any α, β in $SPO(n, r)$, it is easy to show by using the definitions of the Green's equivalences that

$$(\alpha, \beta) \in \mathcal{L} \iff \im(\alpha) = \im(\beta), \quad (\alpha, \beta) \in \mathcal{R} \iff ks(\alpha) = ks(\beta),$$

$$(\alpha, \beta) \in \mathcal{D} \iff h(\alpha) = h(\beta) \quad \text{and} \quad (\alpha, \beta) \in \mathcal{H} \iff \alpha = \beta$$

(see for the definitions of the Green's equivalences [7, pages 45–47]). For each r such that $1 \leq r \leq n - 1$, we denote Green's D-class of all elements in $SPO(n, r)$ of height k by D_k for $1 \leq k \leq r$.

Let \(II = (V(II), \overrightarrow{E}(II)) \) be a digraph. For two vertices \(u, v \in V(II) \) we say \(u \) is connected to \(v \) in \(II \) if there exists a directed path from \(u \) to \(v \), that is, either \((u, v) \in \overrightarrow{E}(II)\) or \((u, w_1), \ldots, (w_i, w_{i+1}), \ldots, (w_n, v) \in \overrightarrow{E}(II)\) for some \(w_1, \ldots, w_n \in V(II) \). Moreover, we say \(II \) is strongly connected if, for any two vertices \(u, v \in V(II) \), \(u \) is connected to \(v \) in \(II \). Let \(X \) be a non-empty subset of Green’s \(D \)-class \(D_r \) of \(SPO(n, r) \) for \(2 \leq r \leq n - 1 \). Then we define a digraph \(\Gamma_X \) as follows:

- the vertex set of \(\Gamma_X \), denoted by \(V = V(\Gamma_X) \), is \(X \); and
- the directed edge set of \(\Gamma_X \), denoted by \(\overrightarrow{E} = \overrightarrow{E}(\Gamma_X) \), is

\[
\overrightarrow{E} = \{(\alpha, \beta) \in V \times V : \alpha \beta \in D_r\}.
\]

Let \(S \) be any semigroup, and let \(A \) be any non-empty subset of \(S \). Then the subsemigroup generated by \(A \), that is, the smallest subsemigroup of \(S \) containing \(A \), is denoted by \(\langle A \rangle \). The rank of a finitely generated semigroup \(S \), a semigroup generated by its a finite subset, is defined by

\[
\text{rank}(S) = \min\{ |A| : \langle A \rangle = S \}.
\]

Gomes and Howie pointed out that the semigroup \(SPO_n \) is not idempotent generated and the rank of \(SPO_n \) is \(2n - 2 \) in [5]. Moreover, for \(2 \leq r \leq n - 2 \), Garba proved in [4] that the subsemigroup \(SPO(n, r) \) is generated by idempotents of height \(r \), and the rank of \(SPO(n, r) \) is \(\sum_{k=r}^{n-1} \binom{n}{k}(k-1) \).

The main goal of this paper is to find necessary and sufficient conditions for any subset of \(SPO(n, r) \) to be a (minimal) generating set of \(SPO(n, r) \) for \(2 \leq r \leq n - 1 \).

2. Generating sets of \(SPO_n \)

For convenience we state and prove probably a well known proposition.

Proposition 1. For \(n, k \geq 2 \) and \(1 \leq r \leq n - 1 \), let \(\alpha, \beta, \alpha_1, \ldots, \alpha_k \in D_r \) in \(SPO(n, r) \). Then,

(i) \(\alpha \beta \in D_r \) if and only if \(\text{im}(\alpha \beta) = \text{im}(\beta) \). In other words, \(\text{im}(\alpha) \) is a transversal of the kernel partition \(\text{kp}(\beta) \) of \(\beta \).

(ii) \(\alpha_1 \cdots \alpha_k \in D_r \) if and only if \(\alpha_1 \alpha_{i+1} \in D_r \) for each \(1 \leq i \leq k - 1 \).

Proof. The proof of (i) is clear. We prove (ii):

\(\Rightarrow \) This part of the proof is also clear.

\(\Leftarrow \) Suppose that \(\alpha_1 \alpha_{i+1} \in D_r \) for each \(1 \leq i \leq k - 1 \). We use the inductive hypothesis on \(k \) to complete the proof.

For \(k = 2 \) the claim is obviously true. Suppose that the claim holds for \(k - 1 \geq 2 \). If \(\text{im}(\alpha_{k-1}) = \{y_1, \ldots, y_r\} \), then \(\text{im}(\alpha_1 \cdots \alpha_{k-1}) = \{y_1, \ldots, y_r\} \) since \(\text{im}(\alpha_1 \cdots \alpha_{k-1}) \subseteq \text{im}(\alpha_{k-1}) \) and \(\alpha_1 \cdots \alpha_{k-1}, \alpha_k \in D_r \). Thus it follows from (i) that

\[
\text{im}(\alpha_1 \cdots \alpha_{k-1} \alpha_k) = \{y_1 \alpha_k, \ldots, y_r \alpha_k\} = \text{im}(\alpha_{k-1} \alpha_k) = \text{im}(\alpha_k),
\]

and so \(\alpha_1 \cdots \alpha_{k-1} \alpha_k \in D_r \), as required. \(\square \)
For $0 \leq s \leq r \leq n$ recall the set
\[[r, s] = \{ \alpha \in PO_n : |\text{dom}(\alpha)| = r \text{ and } |\text{im}(\alpha)| = s \} \]
(defined in [5, p. 276]). It is indicated in [5] that the top Green’s D-class $D_{n-1} = [n-1, n-1]$ in SPO_n does not generate SPO_n, and that SPO_n is not idempotent generated.

Suppose that A is a (minimal) generating set of SPO_n. Since there exist n different Green’s L-classes and n different Green’s R-classes in D_{n-1}, A must contain at least n elements from D_{n-1}. Next notice that a typical element $\alpha \in [n-1, n-2] \subseteq D_{n-2}$ has the form:
\[\alpha = \left(\begin{array}{ccc}
 a_1 & \cdots & a_{n-1} \\
 b_1 & \cdots & b_{n-1}
\end{array} \right) \in [n-1, n-2], \]
where $a_1 < \cdots < a_{n-1}$, $b_1 \leq \cdots \leq b_{n-1}$ and all but one of the inequalities between the b’s are strict. Then α is called of kernel type i if $b_i = b_{i+1}$, and we write $K(\alpha) = i$, and so the possible values for $K(\alpha)$ are $1, 2, \ldots, n-2$. It is shown in [5] that $A \cap [n-1, n-2]$ must contain at least one element of each of the $n-2$ possible kernel types in $[n-1, n-2]$. For each $i = 2, \ldots, n$ let
\[(1) \quad \alpha_i : X_n \setminus \{i\} \to X_n \setminus \{i-1\} \quad \text{and} \quad \alpha_1 : X_n \setminus \{1\} \to X_n \setminus \{n\}\]
be the unique order-preserving (bijective) transformations. That is, let α_1 denote the unique order-preserving (bijective) transformation from $X_n \setminus \{1\}$ onto $X_n \setminus \{n\}$ and, for each $i \in \{2, \ldots, n\}$, let α_i denote the unique order-preserving (bijective) transformation from $X_n \setminus \{i\}$ onto $X_n \setminus \{i-1\}$. For each $i = 1, \ldots, n-2$, let
\[(2) \quad \beta_i : X_n \setminus \{n\} \to X_n\]
be the order-preserving transformation defined by
\[j\beta_i = \begin{cases}
 i+1 & \text{if } j = i \\
 j & \text{otherwise.}
\end{cases} \]
Then it is clear that $\{\alpha_1, \ldots, \alpha_n\} \subseteq [n-1, n-1] = D_{n-1}$ and $\{\beta_1, \ldots, \beta_{n-2}\} \subseteq [n-1, n-2]$ and it is showed in [5] that
\[(3) \quad Z = \{\alpha_1, \ldots, \alpha_n\} \cup \{\beta_1, \ldots, \beta_{n-2}\}\]
is a minimal generating set of SPO_n. Thus $\text{rank}(SPO_n) = 2n - 2$. Although $SPO_n = SPO(n, n-1)$ is not idempotent generated, it is shown in [4] that $SPO(n, r)$ is generated by the idempotents in D_r, and that
\[\text{rank}(SPO(n, r)) = \sum_{k=r}^{n-1} \binom{n}{k} \binom{k - 1}{r - 1} \]
for $2 \leq r \leq n - 2$.

Notice that if $\alpha, \beta \in [r, r] \subseteq SPO(n, r)$ for $1 \leq r \leq n - 1$, then it follows from Proposition 1(i) that $\alpha \beta \in D_r$ if and only if $\text{im}(\alpha) = \text{dom}(\beta)$.
Theorem 2. Let A be a subset of SPO_n, and let B = A \cap [n-1, n-1] and C = A \cap [n-1, n-2]. Then A is a generating set of SPO_n if and only if

(i) there exists \lambda_i \in B such that dom(\lambda_i) = X_n \setminus \{i\} for each i = 1, 2, \ldots, n,

(ii) there exists \gamma_i \in B such that im(\gamma_i) = X_n \setminus \{n\} and \gamma_i \in B such that im(\gamma_i) = X_n \setminus \{i-1\} for each i = 2, 3, \ldots, n,

(iii) \lambda_i is connected to \gamma_i in the digraph \Gamma_B for each i = 1, 2, \ldots, n; and

(iv) there exists at least one element of each of the n - 2 possible kernel types in C.

Proof. (⇒) Suppose that A is a generating set of SPO_n. Let \alpha_i, with i = 1, 2, \ldots, n, be the elements defined in (1). Since A is a generating set, there exist \lambda_{i,1}, \ldots, \lambda_{i,k} \in A such that

\alpha_i = \lambda_{i,1} \cdot \cdots \lambda_{i,k}

for each i \in \{1, \ldots, n\}. Since ker(\lambda_{i,1}) \subseteq ker(\alpha_i), dom(\alpha_i) \subseteq dom(\lambda_{i,1}), im(\alpha_i) \subseteq im(\lambda_{i,1}) and \alpha_i \in [n-1, n-1], it follows that dom(\alpha_i) = X_n \setminus \{i\} = dom(\lambda_{i,1}) for each i = 1, 2, \ldots, n and that im(\alpha_i) = X_n \setminus \{n\} = im(\lambda_{i,1}) and im(\alpha_i) = X_n \setminus \{i-1\} = im(\lambda_{i,k}) for each i = 2, 3, \ldots, n. Then it is clear that \lambda_{i,1}, \ldots, \lambda_{i,k} \in B. Let \lambda_i = \lambda_{i,1} and \gamma_i = \lambda_{i,k}. Hence, the first two conditions hold. Moreover, it follows from Proposition 1(ii) that \lambda_{i,j} \lambda_{i,j+1} \in [n-1, n-1] for each 1 \leq j \leq k-1, and so there exists a directed edge from \lambda_{i,j} to \lambda_{i,j+1} in \Gamma_B for each 1 \leq j \leq k-1. Thus, \lambda_i is connected to \gamma_i in the digraph \Gamma_B. Therefore, the third condition holds as well. Since the last condition follows from the result in [5, p. 280], the first part of the proof is complete.

(⇐) For this part of the proof it is enough to show that the generating set \mathcal{Z} given in (3) is a subset of \langle A \rangle.

For any element \alpha_i defined in (1) it follows from the conditions that there exist \lambda_i, \gamma_i \in B such that dom(\lambda_i) = dom(\alpha_i), im(\gamma_i) = im(\alpha_i) and \lambda_i is connected to \gamma_i in the digraph \Gamma_B. Thus there exists a directed path from \lambda_i to \gamma_i, say

\lambda_i = \sigma_1 \rightarrow \sigma_2 \rightarrow \cdots \rightarrow \sigma_{k-1} \rightarrow \sigma_k = \gamma_i,

where \sigma_1, \ldots, \sigma_k \in B, and hence, \sigma_j \sigma_{j+1} \in [n-1, n-1] for each 1 \leq j \leq k-1. It follows from Proposition 1(ii) that \delta = \sigma_1 \cdot \cdots \sigma_k \in [n-1, n-1]. Thus we have im(\delta) = im(\sigma_k) = im(\gamma_i) = im(\alpha_i) and dom(\delta) = dom(\sigma_1) = dom(\lambda_i) = dom(\alpha_i), and so \alpha_i = \delta \in \langle B \rangle \subseteq \langle A \rangle since \alpha_i, \delta \in [n-1, n-1] are order-preserving bijections.

It follows from the last condition that, for each i = 1, 2, \ldots, n - 2, we may choose and fix an element with the kernel type i in C and say \theta_i. Thus, we have

\theta_i = \begin{pmatrix} a_1 & \cdots & a_{i-1} & a_i & a_{i+1} & a_{i+2} & \cdots & a_{n-1} \\ b_1 & \cdots & b_{i-1} & b_i & b_{i+1} & b_{i+1} & \cdots & b_{n-2} \end{pmatrix} \in C
for some $a_1 < \cdots < a_{n-1}$ and $b_1 < \cdots < b_{n-2}$ in X_n. For any element β_i ($1 \leq i \leq n-2$) defined in (2), consider two strictly partial order-preserving transformations

$$
\varphi_i = \begin{pmatrix} 1 & 2 & \cdots & n-1 \\ a_1 & a_2 & \cdots & a_{n-1} \end{pmatrix} \in [n-1,n-1] \text{ and } \\
\psi_i = \begin{pmatrix} b_1 & \cdots & b_{i-1} & b_i & \cdots & b_{n-2} \\ 1 & \cdots & i-1 & i+1 & \cdots & n-1 \end{pmatrix} \in [n-2,n-2].
$$

From [5, Lemmas 3.4 and 3.12] we have that $[r,r] \subseteq \langle B \rangle$ for all $r = 1, \ldots, n-1$, and so $\varphi_i, \psi_i \in \langle B \rangle$ ($1 \leq i \leq n-2$). Thus it follows from the fact

$$
\beta_i = \varphi_i \theta_i \psi_i
$$

that $\beta_i \in \langle A \rangle$ for all $i = 1, \ldots, n-2$. Therefore, Z defined in (3) is a subset of $\langle A \rangle$, and so $\text{SPO}_n = \langle A \rangle$.

Since a generating set of SPO_n must contain at least n elements from $[n-1,n-1]$ and at least $n-2$ elements from $[n-1,n-2]$, we have the following corollary from Theorem 2:

Corollary 3. Let B be a subset of $[n-1,n-1]$ with cardinality n and let C be a subset of $[n-1,n-2]$ with cardinality $n-2$. Then $B \cup C$ is a minimal generating set of SPO_n if and only if

(i) there exists exactly one element $\lambda_i \in B$ such that $\text{dom}(\lambda_i) = X_n \setminus \{i\}$ for each $i = 1, \ldots, n$,

(ii) there exist exactly one element $\gamma_i \in B$ such that $\text{im}(\gamma_i) = X_n \setminus \{n\}$ and exactly one element $\gamma_i \in B$ such that $\text{im}(\gamma_i) = X_n \setminus \{i-1\}$ for each $i = 2, 3, \ldots, n$,

(iii) λ_i is connected to γ_i in the digraph Γ_B for $i = 1, 2, \ldots, n$; and

(iv) there exists exactly one element of each of the $n-2$ possible kernel types in C.

For example, consider SPO_3, $B = \{\sigma_1, \sigma_2, \sigma_3\} \subseteq [n-1,n-1]$ with cardinality 3, and $C = \{\emptyset\} \subseteq [n-1,n-2]$ with cardinality 1 where

$$
\sigma_1 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \\
\sigma_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \quad \emptyset = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix}.
$$

First of all it is easy to see that B satisfies the first two conditions and C satisfies the last condition of Corollary 3. Moreover, since $\text{im}(\sigma_i)$ is a transversal of the kernel partition $\text{kp}(\sigma_{i+1})$, there exists a directed edge from σ_i to σ_{i+1} for each $1 \leq i \leq 3$ (where $\sigma_4 = \sigma_1$) in the digraph Γ_B. Thus Γ_B is a Hamiltonian digraph. It follows from their definitions that Hamiltonian digraphs are strongly connected (see [9, pages 88 and 148]) the third condition of Corollary 3 is satisfied as well, and so $A = B \cup C$ is a minimal generating set of SPO_3.

Notice that if \(A \subseteq SPO_n \) is a (minimal) generating set of \(SPO_n \), then we may use the paths in \(\Gamma_B \) to write each \(\alpha_i \) (for \(1 \leq i \leq n \)) defined in (1) as a product of elements from \(B \), where \(B = A \cap [n-1, n-1] \). For example, consider the minimal generating set \(A = \{ \sigma_1, \sigma_2, \sigma_3, \theta \} \) of \(SPO_3 \) given above and consider the transformation \(\alpha_1 = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 1 & 2 \end{pmatrix} \) defined in (1). Since \(B = \{ \sigma_1, \sigma_2, \sigma_3 \} \), \(\text{dom}(\alpha_1) = \text{dom}(\sigma_1) \), \(\text{im}(\alpha_1) = \text{im}(\sigma_2) \) and \(\sigma_1 \rightarrow \sigma_2 \) is a path in \(\Gamma_B \), it follows that \(\text{dom}(\sigma_1 \sigma_2) = \text{dom}(\alpha_1) \) and \(\text{im}(\sigma_1 \sigma_2) = \text{im}(\alpha_1) \), that is, \(\sigma_1 \sigma_2 = \alpha_1 \).

3. Generating sets of \(SPO(n, r) \)

Now we consider the subsemigroups \(SPO(n, r) \) for all \(2 \leq r \leq n-2 \). Since \(\alpha \in D_k \) (\(1 \leq k \leq r \)) can not be written as a product of elements with height smaller than \(k \), and since \(SPO(n, r) \) is generated by its idempotents of height \(r \), it is enough to consider only the subsets of \(D_r \) as a generating set of \(SPO(n, r) \). Moreover, a subset \(X \) of \(D_r \) is a generating set of \(SPO(n, r) \) if and only if, for each idempotent \(\xi \) in \(E(D_r) \), there exist \(\alpha, \beta \in X \) such that

(i) \(\text{ks}(\alpha) = \text{ks}(\xi) \),

(ii) \(\text{im}(\beta) = \text{im}(\xi) \), and

(iii) \(\alpha \) is connected to \(\beta \) in the digraph \(\Gamma_X \).

Theorem 4. Let \(X \) be a subset of Green’s \(\mathcal{D} \)-class \(D_r \) in \(SPO(n, r) \) for \(2 \leq r \leq n-2 \). Then \(X \) is a generating set of \(SPO(n, r) \) if and only if, for each idempotent \(\xi \) in \(E(D_r) \), there exist \(\alpha, \beta \in X \) such that

(1) \(\text{ks}(\alpha) = \text{ks}(\xi) \),

(2) \(\text{im}(\beta) = \text{im}(\xi) \), and

(3) \(\alpha \) is connected to \(\beta \) in the digraph \(\Gamma_X \).

Proof. The proof is similar to the proof of Theorem 2. But it is much easier since each \(SPO(n, r) \) (for \(2 \leq r \leq n-2 \)) is idempotent generated. \(\square \)

Similarly, since \(\text{rank}(SPO(n, r)) = \sum_{k=r}^{n-1} \binom{n}{k} \binom{k-1}{r-1} \) for \(2 \leq r \leq n-2 \), we have the following corollary:

Corollary 5. For \(2 \leq r \leq n-2 \) let \(X \) be a subset of Green’s \(\mathcal{D} \)-class \(D_r \) with cardinality \(\sum_{k=r}^{n-1} \binom{n}{k} \binom{k-1}{r-1} \). Then \(X \) is a minimal generating set of \(SPO(n, r) \) if and only if, for each idempotent \(\xi \in E(D_r) \), there exist \(\alpha, \beta \in X \) such that \(\text{ks}(\alpha) = \text{ks}(\xi) \), \(\text{im}(\beta) = \text{im}(\xi) \) and \(\alpha \) is connected to \(\beta \) in \(\Gamma_X \). \(\square \)

References

Hayrullah Ayik
Department of Mathematics
Çukurova University
Adana 01330, Turkey
E-mail address: hayik@cu.edu.tr

Leyla Bugay
Department of Mathematics
Çukurova University
Adana 01330, Turkey
E-mail address: ltanguler@cu.edu.tr