AUTOCOMMUTATORS AND AUTO-BELL GROUPS

Mohammad Reza R. Moghaddam, Hesam Safa, and Azam K. Mousavi

Abstract. Let \(x \) be an element of a group \(G \) and \(\alpha \) be an automorphism of \(G \). Then for a positive integer \(n \), the autocommutator \([x, \alpha]_n \) is defined inductively by \([x, \alpha] = x^{-1}x\alpha = x^{-1}\alpha(x) \) and \([x, \alpha]_n = [[x, \alpha], \alpha] \). We call the group \(G \) to be \(n \)-auto-Engel if \([x, \alpha]_n = [\alpha, x]_n = 1 \) for all \(x \in G \) and every \(\alpha \in \text{Aut}(G) \), where \([\alpha, x] = [x, \alpha]^{-1} \). Also, for any integer \(n \neq 0, 1 \), a group \(G \) is called an \(n \)-auto-Bell group when \([x, \alpha]_n = [x, \alpha]^n \) for every \(x \in G \) and each \(\alpha \in \text{Aut}(G) \). In this paper, we investigate the properties of such groups and show that if \(G \) is an \(n \)-auto-Bell group, then the factor group \(G/L_3(G) \) has finite exponent dividing \(2n(n-1) \), where \(L_3(G) \) is the third term of the upper autocentral series of \(G \). Also, we give some examples and results about \(n \)-auto-Bell abelian groups.

1. Introduction

Let \(G \) be a group and let \(\text{Aut}(G) \) denote the automorphism group of \(G \). For \(\alpha \in \text{Aut}(G) \) and \(x \in G \), the autocommutator of \(x \) and \(\alpha \) is defined to be \([x, \alpha] = x^{-1}x\alpha = x^{-1}\alpha(x) \). The absolute centre and the autocommutator subgroup of \(G \) are the subgroups \(L(G) = \{ x \in G : [x, \alpha] = 1 \text{ for all } \alpha \in \text{Aut}(G) \} \) and \(K(G) = \langle [x, \alpha] : x \in G, \alpha \in \text{Aut}(G) \rangle \), respectively (see [6]). Clearly, the absolute centre is a characteristic subgroup contained in the centre of \(G \) and the autocommutator subgroup is a characteristic subgroup containing the derived subgroup of \(G \). Hegarty [6] uses the notation \(G^* \) for \(K(G) \) and proves that if \(G/L(G) \) is finite, then so is \(K(G) \). Autocommutator subgroup and absolute centre are already studied in [3, 11].

Let \(n \) be a positive integer. The autocommutator \([x, \alpha]_n \) is defined inductively by \([x, \alpha]_1 = [x, \alpha] \) and \([x, \alpha]_n = [[x, \alpha]_{n-1}, \alpha] \) for \(n \geq 2 \). The group \(G \) is said to be \(n \)-auto-Engel if \([x, \alpha]_n = [\alpha, x]_n = 1 \) for all \(x \in G \) and every \(\alpha \in \text{Aut}(G) \), where \([\alpha, x] = [x, \alpha]^{-1} \). Auto-Engel groups are already studied by Moghaddam et al. (see [9]).

Received May 21, 2012; Revised August 16, 2012.

2010 Mathematics Subject Classification. Primary 20D45, 20F12; Secondary 20E36, 20D15.

Key words and phrases. \(n \)-auto-Bell group, autocentral series, autocommutator subgroup, \(n \)-auto-Engel group, \(n \)-Bell group.

©2014 Korean Mathematical Society

923
For any integer \(n \neq 0, 1 \), a group \(G \) is called \(n \)-auto-Bell if \([x^n, \alpha] = [x, \alpha^n] \) for every \(x \in G \) and \(\alpha \in \text{Aut}(G) \). In particular, a group \(G \) satisfying the previous identity for all inner automorphisms \(\alpha \in \text{Inn}(G) \) is an \(n \)-Bell group. The study of \(n \)-Bell groups was the subject of several articles, see for instance Brandl and Kappe [1], Kappe and Morse [8], Delizia et al. [4] and Tortora [13].

A group \(G \) is called \(n \)-Kappe if the factor group \(G/R_2(G) \) has finite exponent dividing \(n \), where \(R_2(G) = \{ g \in G : [g, x, x] = 1 \text{ for all } x \in G \} \) is the set of all right 2-Engel elements of \(G \). It is well known that every \(n \)-Bell group is \(n(n-1) \)-Kappe (see Brandl and Kappe [1]).

In [9], it is proved that the set of all right 2-auto-Engel elements of \(G \), \(AR_2(G) = \{ g \in G : [g, \alpha, \alpha] = 1 \text{ for all } \alpha \in \text{Aut}(G) \} \) is a characteristic subgroup of \(G \). Here, we call a group \(G \) an \(n \)-auto-Kappe group when the factor group \(G/AR_2(G) \) has finite exponent dividing \(n \). In this paper, we study some connections of such groups with \(n \)-auto-Bell groups.

Also, Delizia et al. [4] proved that for an \(n \)-Bell group \(G \), the exponent of \(G/Z_3(G) \) divides \(2n(n-1) \).

In [10], Moghaddam et al. studied the concept of lower autocentral series and its properties. We define the upper autocentral series by a similar manner. The \(n \)-th absolute centre of \(G \) is defined in the following way: \(L_1(G) = L(G) \) and \(L_n(G) = \{ x \in G : [x, \alpha_1, \alpha_2, \ldots, \alpha_n] = 1 \text{ for all } \alpha_i \in \text{Aut}(G) \} \). One obtains an ascending chain of characteristic subgroups of \(G \) as follows:

\[
1 = L_0(G) \leq L_1(G) \leq \cdots \leq L_n(G) \leq \cdots ,
\]

which we may call the upper autocentral series of \(G \).

In Section 3, we show that if \(G \) is an \(n \)-auto-Bell group, then the factor group \(G/L_3(G) \) has finite exponent dividing \(2n(n-1) \).

2. Auto-Bell and auto-Kappe groups

First, we state a result about 2-auto-Engel groups, which is proved in [9].

Lemma 2.1 ([9]). Let \(G \) be a 2-auto-Engel group. Then for every \(x, y \in G \), \(\alpha \in \text{Aut}(G) \) and \(n \in \mathbb{Z} \) the following properties hold:

- (a) \([x, x^\alpha] = 1\);
- (b) \([x, \alpha^n] = [x, \alpha]^n = [x^n, \alpha]\);
- (c) \([x^\alpha, y] = [x, y^\alpha] \);
- (d) \([\alpha, x, y] = [\alpha, y, x]^{-1}\).

By the above lemma, every 2-auto-Engel group is an \(n \)-auto-Bell group for any integer \(n \neq 0, 1 \). Now, suppose that \(G \) is a 2-auto-Bell group. Then the identity \([x^2, \alpha] = [x, \alpha^2]\) implies that \([x, \alpha][x, \alpha]^{\alpha^{-1}} = ([x, \alpha][x, \alpha]^\alpha]^\alpha^{-1} \). Hence \(([x, \alpha]^\alpha)^\alpha = [x, \alpha]\) and so \([x, \alpha, \alpha^{-1}, \varphi_2] = 1\), where \(\varphi_2 \) is the inner automorphism defined by \(x \). If we replace the automorphism \(\alpha \) by \(\varphi_2 \), then we have \([x, \alpha^{-1}, \varphi_2]^{\alpha^{-1}} = 1\). Hence \([x, \alpha, \alpha] = 1\) and since a right 2-auto-Engel element is also a left one (see [9]), \(G \) is a 2-auto-Engel group. Thus for any 2-auto-Bell group \(G \), we have \([G, \alpha] \subseteq C_G(\alpha)\) for every \(\alpha \in \text{Aut}(G) \).
and hence \(\text{Aut}(G), x, x = 1\) for every \(x\) in \(G\) (i.e., \(x\) is also a left 2-auto-Engel element). Therefore
\[
\text{Aut}(G) = A(G) = \{\alpha \in \text{Aut}(G) : xx^n = x^n x \text{ for all } x \in G\},
\]
the set of commuting automorphisms of the group \(G\) (see [2]). It is easy to see that every 2-auto-Bell group satisfies the identity \(\alpha(x)\alpha^{-1}(x) = x^2\). In Section 4, we discuss a family of infinitely many non-abelian finite 2-groups which are 2-auto-Bell.

In what follows, we determine the structure of the abelian 2-auto-Bell groups. Let \(G = \langle x, y : x^4 = y^4 = 1, xy = yx \rangle \cong \mathbb{Z}_4 \times \mathbb{Z}_2\). Consider the automorphism \(\alpha\) of \(G\) given by \(\alpha(x) = xy\) and \(\alpha(y) = yx^2\). Clearly, \([x, \alpha, \alpha] = x^2\) and hence \(G\) is not a 2-auto-Bell group. Now, assume that \(G\) is a 2-auto-Bell abelian group, then for the automorphism \(\alpha : x \mapsto x^{-1}\), we have \(x^4 = [x, \alpha, \alpha] = 1\) for every \(x \in G\). Therefore \(G\) is a direct sum of cyclic groups of order 2 or 4. On the other hand, \([x, \alpha]^4 = [x, \alpha]^4 = 1\) and so \(\exp(\text{Aut}(G))\) divides 4. Using the above example and the fact that \(\mathbb{Z}_2 \times \mathbb{Z}_2\) and \(\mathbb{Z}_4 \times \mathbb{Z}_4\) have an automorphism of order 3, it follows that \(G \cong 1, \mathbb{Z}_2\) or \(\mathbb{Z}_4\). Recall that the structure of non-abelian 2-auto-Bell (2-auto-Engel) 2-groups is studied in [9].

Now, we discuss the relations between auto-Bell and auto-Kappe groups after some preliminary results.

Lemma 2.2. Let \(G\) be an \(n\)-auto-Bell group, \(x \in G\) and \(\alpha \in \text{Aut}(G)\). Then
\(\text{(i)}\) \([x^n, \alpha, x^{-n}] = 1\);
\(\text{(ii)}\) \(x^{n(1-n)} \in Z(x^{\text{Aut}(G)}), \text{ where } x^{\text{Aut}(G)} = \langle x^n : \alpha \in \text{Aut}(G) \rangle\).

Proof. (i) Since \(G\) is \(n\)-auto-Bell,
\[
[x^n, \alpha]^{-x^{-n}} = [x^{-n}, \alpha] = [x^{-1}, \alpha^n] = [x, \alpha^{-n}]^{-x^{-1}}.
\]
Conjugating with \(x\) and taking the inverse yields \([x^n, \alpha][x^n, \alpha, x^{-1-n}] = [x, \alpha^n]\). Hence \([x^n, \alpha, x^{-1-n}] = 1\).

(ii) Using the Jacobi identity, one obtains \([x, \alpha, y^n][y, x, \alpha^y]\alpha, y, x^n\] = 1 for every \(x\) and \(y\) in \(G\) and \(\alpha \in \text{Aut}(G)\), where \(\varphi_y\) is the inner automorphism of \(G\) defined by \(y\). From this identity and (i) it follows that
\[
1 = [\alpha, x^{1-n}, x^n\alpha] = [x^{(n-1)}\alpha, x^{-1-n}, x^n\alpha] = [x^{n-n^2}, x^n\alpha].
\]
Hence \(x^{n(1-n)} \in Z(x^{\text{Aut}(G)})\). \(\Box\)

Proposition 2.3. Every \(n\)-auto-Bell group is also \((1-n)\)-auto-Bell and hence \(n(1-n)\)-auto-Bell.

Proof. Since \(G\) is an \(n\)-auto-Bell group, \([x^n, \alpha^{-1}]^\alpha = [x, \alpha^{-n}]^\alpha\). Therefore \(x^{-na}x^n = x^{-a}x^{a^{-1}}\) and hence
\[
x^{-1}x^{(1-n)a}x^n = x^{n-1}x^{a^{-1}}.
\]
So \([x^{1-n}, \alpha] = [x, \alpha^{1-n}]\). Finally, \([x^{1-n}, \alpha][x^{1-n}, \alpha, x^n] = [x, \alpha^{1-n}]\) and by Lemma 2.2(i), \(G\) is a \((1-n)\)-auto-Bell group. Clearly, it follows that \(G\) is also \(n(1-n)\)-auto-Bell. \(\Box\)
Observe that an \(n \)-Bell group need not be a \((-n)\)-Bell group, in general. Clearly, by Proposition 2.3 an \(n \)-auto-Bell group need not be \((-n)\)-auto-Bell. In the following theorem, we show that every \(n \)-auto-Bell group is also \(n(n-1) \)-auto-Bell.

Theorem 2.4. Every \(n \)-auto-Bell group is also \(n(n-1) \)-auto-Kappe and hence \(n(n-1) \)-auto-Bell.

Proof. Let \(G \) be an \(n \)-auto-Bell group, \(x \in G \), \(\alpha \in \text{Aut}(G) \). Using Lemma 2.2(ii) and Proposition 2.3, we get \(x^{n(1-n)} \in Z(x^{\text{Aut}(G)}) \) and hence

\[
1 = [x^{n(1-n)}, x^\alpha] = [x, x^{n(1-n)\alpha}] = [x, [x^{n(1-n)}, \alpha]].
\]

Therefore

\[(1) \quad [\alpha^{n(1-n)}, x, x] = 1,
\]

and hence, \(\alpha^{n(n-1)} \in A(G) \). So, in every \(n \)-auto-Bell group, we have the following identity,

\[(2) \quad [x^{n(n-1)\alpha}, x] = 1 = [x^{\alpha}, x^{n(n-1)}].
\]

Now, put \(m = n(n-1) \). For the \(n \)-auto-Bell group \(G \), it is easy to see that

\[(3) \quad x^{(n-1)\alpha}x^{n(1-n)} = x^n.
\]

Replacing \(x \) by \(x^n \) yields

\[(4) \quad x^{n\alpha^{1-n}} = x^{-m\alpha}x^{n^2}.
\]

In the equation (4), if we replace \(\alpha \) by \(\alpha^{-1} \) and conjugate with \(\alpha \), we get \(x^{n\alpha^n} = x^{-m}x^{n^2\alpha} \). Now, conjugating the equation (3) with \(\alpha^n \) and using the latter equality yields

\[(5) \quad x^{(n-1)\alpha^{-1+n}} = x^{n\alpha^n}x^{-\alpha} = x^{-m}x^{n(n^2-1)\alpha}.
\]

By the equation (2), clearly \([x^m, \alpha, x] = 1 \) and so \([x^m, \alpha^{-1}, x]^{\alpha} = 1 \). It follows that

\[(6) \quad [x^m, \alpha, x^\alpha] = 1.
\]

Therefore by Proposition 2.3, equations (4), (5) and (6)

\[
[x^m, \alpha, x] = [x^{-m}, \alpha]^{x^{n\alpha^n}} = [x^n, \alpha^{1-n}]^{x^{(n-1)\alpha}, \alpha^n} = x^{-n}x^{n\alpha^{1-n}}x^{(1-n)\alpha}x^{(n-1)\alpha^{1-n}+1} = x^n x^{-m}x^{n^2}x^{(1-n)\alpha}x^{-n\alpha^n}x^{-\alpha} = x^m x^{-m}x^{(1-n)\alpha}x^{-m}x^{n(n^2-1)\alpha} = x^{(-n(n-1)+(1-n)+n^2-1)\alpha} = 1.
\]
Thus G is $n(n-1)$-auto-Kappe. It also follows that $[x^{-1}, \alpha^{-m}] = [x^{-1}, \alpha^{-m}]$.
Therefore $[x, \alpha^n]^{1-1} = [x, \alpha^n]$ and hence by Proposition 2.3 and (1) we get:

$$[x^m, \alpha] = [(x^{-m})^{-1}, \alpha] = [x, \alpha^{-m}]^{x^{-m}}$$
$$= [x, \alpha^{-m}]^{-1} = [x, \alpha^{-m}]^{x^{-m}}$$
$$= [x, \alpha^n].$$

So G is an $n(n-1)$-auto-Bell group. \Halmos

Remark 2.5. Some connections are held between Kappe and Bell groups, which may not be true for auto-Kappe and auto-Bell groups. For example in [4, Theorem 2.1], it is pointed out that every n-Kappe group is an n^2-Bell group. If G is the elementary abelian 2-group of order 4, then G is a 2-auto-Kappe, but as G has an automorphism of order 3, it cannot be a 4-auto-Bell group.

We end this section by pointing a result, which gives some relations about auto-Bell groups.

Proposition 2.6. Let G be a group and $n \neq 0, 1$ be an integer.

(i) If G is an $(n-1)$-auto-Kappe and n-auto-Bell group, then G is also $(n-1)$-auto-Bell.

(ii) If G is an n-auto-Kappe and n-auto-Bell group, then G is also an $(n+1)$-auto-Bell group.

Proof. (i) Let $x \in G$ and $\alpha \in \text{Aut}(G)$. Since G is an n-auto-Bell group (and hence $(1-n)$-auto-Bell) and also an $(n-1)$-auto-Kappe, we get

$$[x^{1-n}, \alpha] = [x, \alpha^{1-n}] = [x, \alpha^{n-1}]^{-1} - [x, \alpha^{n-1}]^{-1}.$$

On the other hand, since x^{n-1} is a right 2-auto-Engel element, it is also a left one and so $[\alpha, x^{n-1}, x^{n-1}] = 1$. Therefore $[x^{1-n}, \alpha] = [x^{n-1}, \alpha]^{-1}$. This implies that $[x^{n-1}, \alpha] = [x, \alpha^{n-1}]$ and hence G is an $(n-1)$-auto-Bell group.

(ii) Since G is an n-auto-Kappe, one may show that $[x^n, \varphi, \alpha^{-1}, \alpha] = 1$, where φ_x is the inner automorphism defined by the element x. Replacing α by $\varphi^{-1} \varphi_x$ yields $[x^n, \alpha, \varphi^{-1} \varphi_x] = 1$. Thus $[x^n, \alpha]^{x^{-1}} x = x[x^n, \alpha]$ and hence $[x^n, \alpha]^{x^{-1}} = x^n[x^n, \alpha]$. Therefore $x^{-1}[x^n, \alpha] x^{-1} x^n = x^{-1} x^n [x^n, \alpha] x^n$ and from the fact that G is an n-auto-Bell group, it follows that $[x^n, \alpha]^x [x, \alpha] = [x, \alpha][x, \alpha]$. This shows that $[x^{n+1}, \alpha] = [x, \alpha^{n+1}]$. Thus G is an $(n+1)$-auto-Bell. \Halmos

3. Upper autocommutative series in auto-Bell groups

Given a group G, the n-th autocommutator subgroup of G is

$$K_n(G) = \langle [x, \alpha_1, \alpha_2, \ldots, \alpha_n] : x \in G, \alpha_1, \ldots, \alpha_n \in \text{Aut}(G) \rangle.$$

It can be easily seen that for every $n \in \mathbb{N}$, the n-th autocommutator subgroup is a characteristic subgroup of G containing $\gamma_{n+1}(G)$. Now, we obtain the following series of subgroups

$$G = K_0(G) \supseteq K_1(G) \supseteq K_2(G) \supseteq \cdots \supseteq K_n(G) \supseteq \cdots.$$
which is called the lower autocentral series of \(G \). In [10], it is proved that for any finite abelian group \(G \) and every natural number \(n \), there exists a finite abelian group \(H \) such that \(G \cong K_n(H) \).

Now, the \(n \)-th absolute centre of \(G \) is defined inductively by \(L_1(G) = L(G) \) and \(L_n(G) = \{ x \in G : [x, \alpha_1, \alpha_2, \ldots, \alpha_n] = 1 \text{ for all } \alpha_i \in \text{Aut}(G) \} \). Clearly, the \(n \)-th absolute centre of \(G \) is contained in the \(n \)-th centre of \(G \), \(Z_n(G) \). One obtains an ascending chain of characteristic subgroups of \(G \) as follows:

\[
1 = L_0(G) \leq L_1(G) \leq \cdots \leq L_n(G) \leq \cdots,
\]
which we may call the upper autocentral series of \(G \). In the following theorem, we prove that if \(G \) is an \(n \)-auto-Bell group, then \([G^{2^n(n-1)}, \alpha, \beta, \gamma] = 1 \) for every \(\alpha, \beta, \gamma \in \text{Aut}(G) \).

Theorem 3.1. Let \(G \) be an \(n \)-auto-Bell group. Then the factor group \(G/L_3(G) \) has finite exponent dividing \(2n(n-1) \).

Proof. First, we show that for any right 2-auto-Engel element \(x \) of \(G \), the subgroup \(x^{\text{Aut}(G)} = \langle x^\alpha : \alpha \in \text{Aut}(G) \rangle \) is abelian. Let \(\alpha \) and \(\beta \) be automorphisms of \(G \). Then

\[
[x^\alpha, x^\beta] = [x^{\alpha \beta^{-1}}, x]^\beta = [x[x, \alpha \beta^{-1}], x]^\beta = [[x, \alpha \beta^{-1}], x]^\beta.
\]

On the other hand, every right 2-auto-Engel element is also a left 2-auto-Engel element. Hence \(x^{\alpha \beta^{-1}, x, x} = 1 \) and this implies that \([x^\alpha, x^\beta] = 1 \) and hence \(x^{\text{Aut}(G)} \) is abelian.

Now, by Theorem 2.4, \(g := x^{n(n-1)} \) is a right 2-auto-Engel element. So, for each \(\alpha \in \text{Aut}(G) \), we have \([g, \alpha^{-1}] = [g, \alpha]^{-1} \). On the other hand, since \(g^{\text{Aut}(G)} \) is abelian, we get \([g, \alpha \beta] = [g, \alpha][g, \beta][g, \alpha, \beta] \) (observe that \([g, \alpha] \in g^{\text{Aut}(G)} \) for every \(\alpha, \beta \in \text{Aut}(G) \)). Hence \([g, \alpha \beta^{-1}] = [g, \beta^{-1} \alpha^{-1}] \) and the above equality shows that

\[
[g, \alpha, \beta] = [g, \beta, \alpha]^{-1}.
\]

Now, suppose that \(\alpha, \beta \) and \(\gamma \) are arbitrary automorphisms of \(G \). One may check that the equality \([g, \alpha, \beta \gamma] = [g, \beta \gamma, \alpha]^{-1} \) implies that \([g, \alpha, \beta, \gamma]^2 = 1 \) and since \(g \) is a 2-auto-Engel element, we obtain \([g^2, \alpha, \beta, \gamma] = 1 \). Therefore \([x^{2^n(n-1)}, \alpha, \beta, \gamma] = 1 \) and this completes the proof. \(\Box \)

4. *Abelian* \(n \)-*auto-Bell groups

Clearly, every abelian group is an \(n \)-Bell group, but this statement is not true for \(n \)-auto-Bell groups. In what follows, we give some examples of auto-Bell groups and also discuss some results about \(n \)-auto-Bell abelian groups. Observe that by Proposition 2.3, in this section we may suppose that \(n \geq 2 \).

Example 4.1. (i) Let \(G \) be a non-periodic abelian group, and consider the inverting automorphism \(\alpha \in \text{Aut}(G) \) and a torsion-free element \(x \in G \). Then one can easily see that \(x^\alpha = x^{-2n} \) and \([x, \alpha^n] = x^{(-1)^n-1} \). If \(G \) is an \(n \)-auto-Bell group, then we must have \(-2n = (-1)^n - 1 \), and this implies that \(n \in \{0, 1\} \). So, \(G \) cannot be an \(n \)-auto-Bell group for every integer \(n \neq 0, 1 \).
(ii) In [7], Jamali constructed the following family of groups. For \(m \geq 3 \), let \(G_m \) be a 2-group with the following presentation

\[
G_m = \langle a_1, \ldots, a_m, b : a_1^2 = a_2^2 = \cdots = a_m^2 = 1, a_{m-1}^2 = b^2, [a_1, b] = 1, \rangle.
\]

The group \(G_m \) is of order \(2^{2m} \) with exponent 4 whose automorphism group is isomorphic to \(\mathbb{Z}_2^{m} \) and also \(Z(G_m) \cong \mathbb{Z}_2^m \). Clearly, for every \(m \geq 3 \), \(G_m \) is a non-abelian 2-auto-Bell (and hence an \(n \)-auto-Bell, for every \(n \geq 3 \)) group. By using GAP [5], one can check that \(G_3 \cong (\mathbb{Z}_4 \times \mathbb{Z}_4) \rtimes \mathbb{Z}_2 \).

(iii) Let \(G = \mathbb{Z}_4 \times \mathbb{Z}_4 \times \mathbb{Z}_2 \cong \langle x \rangle \times \langle y \rangle \times \langle z \rangle \). Consider the automorphism \(\alpha \) defined by \(\alpha(x) = xy, \alpha(y) = x^2yz \) and \(\alpha(z) = x^4y^2z \). One can easily check that \(1 = [x^4, \alpha] \neq [x, \alpha^4] \) and so \(G \) is not a 4-auto-Bell group.

Recall that there are only two non-trivial abelian 2-auto-Bell groups, namely \(\mathbb{Z}_2 \) and \(\mathbb{Z}_4 \).

Observe that if \(G \cong H \times K \) is an \(n \)-auto-Bell group, then so are \(H \) and \(K \). Now, let \(G \) be an abelian \(n \)-auto-Bell group \((n \geq 3) \) and \(\alpha \) be the inverting automorphism. Clearly, the identity \([x^n, \alpha] = [x, \alpha^n] \) implies that \(\exp(G) \) divides \(2n \) or \(2(n - 1) \) when \(n \) is an even or an odd integer, respectively. By Proposition 2.3, \(G \) is also a \((1 - n)^2\)-auto-Bell group. Hence, the exponent of \(\text{Aut}(G) \) divides \(n(n - 2) \) or \((n - 1)^2 \) when \(n \) is an even or an odd integer, respectively.

By the above statement, it is easy to see that the 3-auto-Bell abelian groups are actually 2-auto-Bell. Assume that \(n = 4 \). Therefore \(G \) is a direct sum of cyclic groups of order 2, 4 or 8. Hence, Example 4.1(iii) and the fact that \(\mathbb{Z}_2 \times \mathbb{Z}_2 \), \(\mathbb{Z}_4 \times \mathbb{Z}_4 \) and \(\mathbb{Z}_8 \times \mathbb{Z}_8 \) have an automorphism of order 3, show that \(G \) is isomorphic to one of the groups \(\mathbb{Z}_2 \times \mathbb{Z}_2 \), \(\mathbb{Z}_4 \times \mathbb{Z}_4 \), \(\mathbb{Z}_8 \times \mathbb{Z}_8 \) or \(\mathbb{Z}_4 \times \mathbb{Z}_8 \).

Finally, let \(G \) be a 5-auto-Bell abelian group. It is easy to see that \(\exp(G) \) and \(\exp(\text{Aut}(G)) \) divide 8 and 16, respectively. One may check that the abelian 5-auto-Bell groups are actually 4-auto-Bell.

Remark 4.2. Let \(p \) be an odd prime, \(n \geq 6 \) and \(G \) be an abelian \(n \)-auto-Bell \(p \)-group (if any). By the above statement, it is easy to see that \(\exp(\text{Aut}(G)) \) divides \(n \) or \((n - 1)\) when \(n \) is an even or an odd integer, respectively.

The following theorem may be considered as a criterion for recognition of abelian \(p \)-groups which are not \(n \)-auto-Bell.

Theorem 4.3. Let \(G \) be a finite abelian \(n \)-auto-Bell group with \(|G| = \prod_{i=1}^{m} p_i^{r_i} \). Then for every \(1 \leq j \leq m \), the numbers \(p_j(p_j - 1) \) and \(\prod_{i=1}^{j-1} p_i \) divide \(n \) or \((n - 1)\) when \(n \) is an even or an odd integer, respectively.

Proof. Suppose that an arbitrary prime \(p \) divides the order of \(G \). Clearly, the Sylow \(p \)-subgroup \(P \) of \(G \) is also an \(n \)-auto-Bell group. If \(p = 2 \) or \(3 \) the result is true. Suppose that \(n \) is an even integer and \(p \geq 5 \). By considering the inverting automorphism, we get \(p|n \). Let \(\alpha : x \mapsto x^{-1} \) be an automorphism of \(P \), where \(1 < \lambda < p \) and \((\lambda, p - 1) = 1 \). Then the identity \([x^n, \alpha] = [x, \alpha^n] \) implies that \(p|(\lambda^n - n\lambda + n - 1) \). Therefore \(\lambda^n \equiv 1 \pmod{p} \).
On the other hand, Euler’s theorem implies that \(\lambda^{p-1} \equiv 1 \pmod{p}\) and since \((\lambda, p-1) = 1\), we get \((p-1)|n\). Therefore \(p(p-1)|n\). Similarly, it may be shown that \(p(p-1)|(n-1)\), if \(n\) is an odd integer. Therefore the proof is complete.

The above theorem immediately yields the following corollary.

Corollary 4.4. There is no abelian \(n\)-auto-Bell \(p\)-group for \(n < p(p-1)\).

Proposition 4.5. If \(G\) is an abelian \(p(p-1)n\)-auto-Bell \(p\)-group (\(p\) odd and \(1 \leq n \leq p-1\)), then \(G \cong \mathbb{Z}_p\).

Proof. Clearly, \(\mathbb{Z}_p\) is a \(p(p-1)m\)-auto-Bell group for every \(m \in \mathbb{N}\). It is enough to show that \(\mathbb{Z}_p \times \mathbb{Z}_p\) and \(\mathbb{Z}_p^k\) \((k \geq 2)\) are not \(p(p-1)n\)-auto-Bell. Since \(\text{Aut}(\mathbb{Z}_p \times \mathbb{Z}_p) \cong GL(2, p)\) and \(\exp(GL(2, p)) = p(p^2 - 1)\), we obtain \(1 = [x^{p(p-1)n}, \alpha] \neq [x, \alpha^{p(p-1)n}]\) for some \(x \in \mathbb{Z}_p \times \mathbb{Z}_p\) and \(\alpha \in GL(2, p)\).

Also, since \(p^k\) does not divide \(p(p-1)n\), we get \([x^{p(p-1)n}, \alpha] \neq [x, \alpha^{p(p-1)n}] = 1\) and hence the cyclic group of order \(p^k\) \((k \geq 2)\) cannot be a \(p(p-1)n\)-auto-Bell \(p\)-group.

Remark 4.6. In the previous proposition, it is not difficult to show that if \(n = p\), then \(G \cong \mathbb{Z}_p\) or \(\mathbb{Z}_{p^2}\). If \(n = p+1\), then \(G \cong \mathbb{Z}_p\) or \(\mathbb{Z}_p \times \mathbb{Z}_p\) and finally if \(n = p+2\), then \(G \cong \mathbb{Z}_p\). Observe that if \(n > p+2\), then the structure of \(G\) may depend on the odd prime \(p\).

References

Mohammad Reza R. Moghaddam
Department of Mathematics
Khayyam Higher Education Institute
Mashhad, Iran
and
Centre of Excellence in Analysis on Algebraic Structures
Ferdowsi University of Mashhad
Iran
E-mail address: mrrm5@yahoo.ca

Hesam Safa
Department of Mathematics
Faculty of Basic Sciences
University of Bojnord
Bojnord, Iran
E-mail address: hesam.safa@gmail.com

Azam K. Mousavi
Faculty of Mathematical Sciences
International Branch
Ferdowsi University of Mashhad
Iran
and
Centre of Excellence in Analysis on Algebraic Structures
Ferdowsi University of Mashhad
Iran
E-mail address: akafimoosavi@yahoo.com