FINITE GROUPS WITH SOME SEMI-p-COVER-AVOIDING OR ss-QUASINORMAL SUBGROUPS

QINGJUN KONG AND XIUYUN GUO

Abstract. Suppose that G is a finite group and H is a subgroup of G. H is said to be an ss-quasinormal subgroup of G if there is a subgroup B of G such that $G = HB$ and H permutes with every Sylow subgroup of B. H is said to be semi-p-cover-avoiding in G if there is a chief series $1 = G_0 < G_1 < \cdots < G_t = G$ of G such that, for every $i = 1, 2, \ldots, t$, if G_i/G_{i-1} is a p-chief factor, then H either covers or avoids G_i/G_{i-1}. We give the structure of a finite group G in which some subgroups of G with prime-power order are either semi-p-cover-avoiding or ss-quasinormal in G. Some known results are generalized.

1. Introduction

All groups considered in this paper are finite. G always means a group, $|G|$ denotes the order of G and $\pi(G)$ denotes the set of all primes dividing $|G|$.

Let \mathcal{F} be a class of groups. We call \mathcal{F} a formation, provided that (1) if $G \in \mathcal{F}$ and $H \leq G$, then $G/H \in \mathcal{F}$, and (2) if G/M and G/N are in \mathcal{F}, then $G/(M \cap N)$ is in \mathcal{F} for any normal subgroups M, N of G. A formation \mathcal{F} is said to be saturated if $G/\Phi(G) \in \mathcal{F}$ implies that $G \in \mathcal{F}$. In this paper, \mathcal{U} will denote the class of all supersolvable groups. Clearly, \mathcal{U} is a saturated formation.

A famous topic in group theory is to study the influence of some subgroups with prime-power order on the structure of G. In [6], Li, Shen and Liu generalized s-quasinormal subgroups to ss-quasinormal subgroups. A subgroup H of G is said to be an ss-quasinormal subgroup of G if there is a subgroup B of G such that $G = HB$ and H permutes with every Sylow subgroup of B. Recently, Fan, Guo and Shum [1] introduced the semi-p-cover-avoiding property. A subgroup H of G is said to be semi-p-cover-avoiding in G if there is a chief

Received June 11, 2013.
2010 Mathematics Subject Classification. 20D10, 20D20.
Key words and phrases. ss-quasinormal subgroup, semi-p-cover-avoiding subgroup, saturated formation.

The research of the authors is supported by the National Natural Science Foundation of China(11301378), SGRC(GZ310), the Research Grant of Tianjin Polytechnic University and Shanghai Leading Academic Discipline Project(J50101).
series $1 = G_0 < G_1 < \cdots < G_t = G$ of G such that H either covers or avoids G_i/G_{i-1} whenever G_i/G_{i-1} is a p-chief factor.

Some interesting results have been obtained about the structure of a group G under assumption that some subgroups of G are ss-quasinormal or semi-p-cover-avoiding in G (see: [1, 3, 5, 6]).

There are examples to show ss-quasinormal and semi-p-cover-avoiding are two different properties of subgroups.

Example 1.1. Let $G = A_5$, the alternative group of degree 5. Then A_4 is an ss-quasinormal subgroup of G but not semi-p-cover-avoiding in G.

Example 1.2 ([2, Example 2.4]). Let A_4 be the alternative group of degree 4 and $C_2 = \langle c \rangle$ a cyclic group of order 2, generated by an element c. Let $G = C_2 \times A_4$. Then $A_4 = K_4 \cdot \langle t \rangle$, where $K_4 = \langle a, b \rangle$ is the Klein four-group with generators a and b of order 2 and $\langle t \rangle$ is a cyclic group of order 3. Take $H = \langle ac \rangle$ to be the subgroup of G generated by ac. It is clear that the following series

$$1 < K_4 < A_4 < C_2 \times A_4 = G$$

is a chief series of G such that H covers $G = A_4$ and avoids the rest. This is to say that H has the semi-cover-avoiding property in G. Of course, H is semi-p-cover-avoiding in G. However, H is not ss-quasinormal in G.

The aim of this article is to unify and improve some earlier results using ss-quasinormal and semi-p-cover-avoiding subgroups. Our main theorems are as follows:

Theorem 3.1. Let G be a group and p a prime divisor of $|G|$ with $(|G|, p-1) = 1$. Let P be a Sylow p-subgroup of G. If all maximal subgroups of P are either semi-p-cover-avoiding or ss-quasinormal subgroups in G, then G is p-nilpotent.

Theorem 3.6. Let \mathcal{F} be a saturated formation containing \mathcal{U}. Suppose that G is a group with a solvable normal subgroup H such that $G/H \in \mathcal{F}$. If all maximal subgroups of all Sylow subgroups of $F(H)$ are either semi-p-cover-avoiding or ss-quasinormal in G, then $G \in \mathcal{F}$.

Theorem 3.7. Let \mathcal{F} be a saturated formation containing \mathcal{U}. Suppose that G is a group with a normal subgroup H such that $G/H \in \mathcal{F}$. If all maximal subgroups of all Sylow subgroups of $F^*(H)$ are either semi-p-cover-avoiding or ss-quasinormal in G, then $G \in \mathcal{F}$.

2. Basic definitions and preliminary results

In this section, we give some results that are needed in this paper.

Lemma 2.1 ([6]). Let H be an ss-quasinormal in a group G, $K \leq G$ and N a normal subgroup of G.

(i) If $H \leq K$, then H is ss-quasinormal in K;

(ii) HN/N is ss-quasinormal in G/N;
Theorem 3.1. Let $N \leq K$ and K/N is ss-quasinormal in G/N, then K is ss-quasinormal in G.

Lemma 2.2 ([1, 3]). Let H be a semi-p-cover-avoiding subgroup of a group G and N a normal subgroup of G. Then
(i) H is semi-p-cover-avoiding in K for every subgroup K of G with $H \leq K$;
(ii) HN/N is semi-p-cover-avoiding in G if one of the following holds:
(1) $N \leq H$;
(2) $\gcd(|H|, |N|) = 1$, where $\gcd(\cdot, \cdot)$ denotes the greatest common divisor.

Lemma 2.3 ([7]). Let G be a group and p a prime divisor of $|G|$ with $(|G|, p - 1) = 1$. Let P be a Sylow p-subgroup of G. If all maximal subgroups of P are semi-p-cover-avoiding or s-quasinormally embedded subgroups in G, then G is p-nilpotent.

Lemma 2.4 ([8]). Let G be a group and p a prime dividing $|G|$ with $(|G|, p - 1) = 1$.
(i) If N is normal in G of order p, then $N \leq Z(G)$;
(ii) If G has a cyclic Sylow p-subgroup, then G is p-nilpotent;
(iii) If $M \leq G$ and $|G:M| = p$, then $M \leq G$.

Lemma 2.5 ([6]). Let H be a nilpotent subgroup of G. Then the following statements are equivalent.
(i) H is s-quasinormal in G;
(ii) $H \leq F(G)$ and H is ss-quasinormal in G;
(iii) $H \leq F(G)$ and H is s-quasinormally embedded in G.

Lemma 2.6 ([7]). Let \mathcal{F} be a saturated formation containing \mathcal{U}, G is a group with a normal subgroup H such that $G/H \in \mathcal{F}$. Then $G \in \mathcal{F}$ if one of the following holds:
(i) all maximal subgroups of all non-cyclic Sylow subgroups of H are either semi-p-cover-avoiding or s-quasinormally embedded in G;
(ii) all maximal subgroups of all non-cyclic Sylow subgroups of $F^*(H)$ are either semi-p-cover-avoiding or s-quasinormally embedded in G.

Lemma 2.7 ([4, X.13]). Let G be a group and M a subgroup of G.
(i) If M is normal in G, then $F^*(M) \leq F^*(G)$;
(ii) $F^*(G) \neq 1$ if $G \neq 1$; in fact, $F^*(G)/F(G) = \text{Soc}(F(G)C_G(F(G))/F(G))$;
(iii) $F^*(F^*(G)) = F^*(G) \geq F(G)$; if $F^*(G)$ is solvable, then $F^*(G) = F(G)$.

3. Main results

Theorem 3.1. Let G be a group and p a prime divisor of $|G|$ with $(|G|, p - 1) = 1$. Let P be a Sylow p-subgroup of G. If all maximal subgroups of P are either semi-p-cover-avoiding or ss-quasinormal subgroups in G, then G is p-nilpotent.
Proof. If all maximal subgroups of P are semi-p-cover-avoiding in G, then G is p-nilpotent by Lemma 2.3. Hence there exists a maximal subgroup P_1 of P such that P_1 is ss-quasinormal in G. Firstly, fix an H which is a maximal subgroup of P such that H is ss-quasinormal in G.

Now we prove that there exists a Hall p'-subgroup K of G such that HK is a subgroup of index p in G.

By conditions, there is a subgroup $B \leq G$ such that $G = HB$ and $HX = XH$ for all $X \in \text{Syl}(B)$, and $H \cap B$ is of index p in B_p, a Sylow p-subgroup of B containing $H \cap B$. Thus $S \notin H$ and $S \cap H = B \cap H$ for all $S \in \text{Syl}_p(B)$. So $B \cap H = \bigcap_{b \in B} (S^b \cap H) \leq \bigcap_{b \in B} S^b = O_p(B)$.

We claim that B has a Hall p'-subgroup. Because $|O_p(B) : B \cap H| = p$ or 1, it follows that $|B/O_p(B)| = p$ or 1. As $(|G|, p - 1) = 1$, then $B/O_p(B)$ is p-nilpotent by Lemma 2.4, and hence B is p-solvable. So B has a Hall p'-subgroup. Thus the claim holds. Now, let K be a Hall p'-subgroup of B. $\pi(K) = \{p_2, \ldots, p_s\}$ and $P_i \in \text{Syl}_{p_i}(K)$. By the conditions, H is ss-quasinormal in G, so H permute with subgroup $(P_2, \ldots, P_s) = K$ and $HK \leq G$. Moreover, $[G : HK] = p$ as desired.

Now, for every H_i which is a maximal subgroup of P (H_i is ss-quasinormal in G), there exists a Hall p'-subgroup K_i of G such that $M_i = H_iK_i$, which is a subgroup of index p in G. As $(|G|, p - 1) = 1$, by Lemma 2.4, $M_i \leq G$. Obviously, H_i is s-quasinormally embedded in G. Thus every maximal subgroup of G is either semi-p-cover-avoiding or s-quasinormally embedded in G. By Lemma 2.3, G is p-nilpotent.

Corollary 3.2. Let p be the smallest prime dividing the order of a group G and P a Sylow p-subgroup of G. If all maximal subgroups of P are semi-p-cover-avoiding or ss-quasinormal subgroups in G, then G is p-nilpotent.

Corollary 3.3. Suppose that G is a group. If all maximal subgroups of all Sylow subgroups of G are either semi-p-cover-avoiding or ss-quasinormal in G, then G has Sylow tower of supersolvable type.

Proof. It is clear that $(|G|, p - 1) = 1$, if p is the smallest prime dividing $|G|$. By the hypothesis, all maximal subgroups of all Sylow subgroups of G are either semi-p-cover-avoiding or ss-quasinormal in G, so G satisfies the condition of Theorem 3.1, and hence G is p-nilpotent. Let U be the normal p-complement of G, then U satisfies the condition by induction, hence G possesses Sylow tower property of supersolvable type.

Theorem 3.4. Let \mathcal{F} be a saturated formation containing \mathcal{U}. Suppose that G is a group with a normal subgroup H such that $G/H \in \mathcal{F}$. If for every prime p dividing $|H|$ and $P \in \text{Syl}_p(H)$, If all maximal subgroups of P are either semi-p-cover-avoiding or ss-quasinormal in G, then $G \in \mathcal{F}$.

Proof. Assume that the theorem is not true and let G be a minimal counter-example.
(1) H has minimal normal subgroup H_1, $H_1 \leq Q \leq H$, $Q \in \text{Syl}_q(H)$ and q is the largest prime in $\pi(H)$.

Obviously, H satisfies the condition of Corollary 3.3, so H possesses Sylow tower property of supersolvable type. Let q is the largest prime dividing $|H|$ and Q is a Sylow q-subgroup of H, then $Q \subseteq H$, so H has minimal normal subgroup H_1, $H_1 \leq Q$ and H_1 is an elementary abelian q-group, as desired.

(2) $G/H_1 \in \mathcal{F}$, $H_1 \notin \Phi(G)$, $H_1 = Q \in \text{Syl}_q(H)$.

Obviously, $G/H_1 \in \mathcal{F}$. Since \mathcal{F} is a saturated formation, so H_1 is the unique minimal normal subgroup of G containing in H, $H_1 \notin \Phi(G)$. Moreover, $H_1 = F(H)$. Since H is solvable, so $C_H(H_1) \leq F(H)$ and $C_H(H_1) = H_1 = F(H)$. Since $Q \leq H$, $Q \leq F(H)$, thus $H_1 = Q \in \text{Syl}_q(H)$.

(3) The final contradiction.

For any maximal subgroup Q_1 of Q, Q_1 is either semi-p-cover-avoiding or ss-quasinormal in G by (2) and the hypothesis. Thus Q_1 is either semi-p-cover-avoiding or s-quasinormally embedded in G by Lemma 2.5. Hence $G \in \mathcal{F}$ by Lemma 2.6(i). We get the final contradiction. □

Corollary 3.5. Let G be a group, H a normal subgroup of G such that G/H is supersolvable. If all maximal subgroups of all Sylow subgroups of H are either semi-p-cover-avoiding or ss-quasinormal in G, then G is supersolvable.

Theorem 3.6. Let \mathcal{F} be a saturated formation containing \mathcal{U}. Suppose that G is a group with a solvable normal subgroup H such that $G/H \in \mathcal{F}$. If all maximal subgroups of all Sylow subgroups of $F(H)$ are either semi-p-cover-avoiding or ss-quasinormal in G, then $G \in \mathcal{F}$.

Proof. As H is solvable, by Lemma 2.7, $F(H) = F^*(H)$. For any Sylow subgroup P of $F(H)$ and for any maximal subgroup P_1 of P, if P_1 is ss-quasinormal in G, then P_1 is s-quasinormally embedded in G by Lemma 2.5. Applying Lemma 2.6(ii), we can get $G \in \mathcal{F}$. □

Theorem 3.7. Let \mathcal{F} be a saturated formation containing \mathcal{U}. Suppose that G is a group with a normal subgroup H such that $G/H \in \mathcal{F}$. If all maximal subgroups of all Sylow subgroups of $F^*(H)$ are either semi-p-cover-avoiding or ss-quasinormal in G, then $G \in \mathcal{F}$.

Proof. Suppose that the theorem is false and let G be a minimal counter-example.

Case 1. $\mathcal{F} = \mathcal{U}$.

Let G be a minimal counter-example.

(1) Every proper normal subgroup N of G containing $F^*(H)$ is supersolvable.

Since $N/N \cap H \cong NH/H$ is supersolvable, we get $F^*(H) = F^*(F^*(H)) \leq F^*(N \cap H) \leq F^*(H)$ by Lemma 2.7. So $F^*(H) = F^*(N \cap H)$ and N, $N \cap H$ satisfy the hypothesis of the theorem. Hence N is supersolvable by the minimal choice of G.

(2) \(H = G \) and \(1 \neq F^*(G) = F(G) < G \).

If \(H < G \), then \(H \) is supersolvable as \(H \) contains \(F^*(H) \) and \(F^*(H) = F(H) \), it follows that \(G \) is supersolvable by Theorem 3.6, a contradiction.

If \(F^*(G) = G \), then \(G \) is supersolvable by applying Corollary 3.5, a contradiction. Thus \(F^*(G) < G \), it is supersolvable by (1), so \(F^*(G) = F(G) \neq 1 \) by Lemma 2.7.

(3) The final contradiction.

For any Sylow subgroup \(P \) of \(F^*(H) \) and for any maximal subgroup \(P_1 \) of \(P \), \(P_1 \) is either semi-p-cover-avoiding or ss-quasinormal in \(G \) by the hypothesis. As \(P_1 \leq F(G) \), so \(P_1 \) is either semi-p-cover-avoiding or s-quasinormally embedded in \(G \) by Lemma 2.5. Applying Lemma 2.6(ii), we can get \(G \) is supersolvable, the final contradiction.

Case 2. \(\mathcal{F} \neq \emptyset \).

By Case 1, \(H \) is supersolvable, so \(H \) is solvable and \(F^*(H) = F(H) \) by Lemma 2.7. Then \(G \in \mathcal{F} \) by Theorem 3.6.

Acknowledgements. The paper is dedicated to Professor Geoffrey Robinson for his 60th birthday.

References

[1] Y. Fan, X. Guo, and K. P. Shum, Remarks on two generalizations of normality of sub-

Algebra 36 (2008), 4436–4447.

[7] S. Qiao and Y. Wang, Finite groups with some semi-p-cover-avoiding or S-quasinormally

211–223.

Qingjun Kong

Department of Mathematics

Tianjin Polytechnic University

Tianjin 300387, P. R. China

E-mail address: tjkqj1978@163.com

Xiuyun Guo

Department of Mathematics

Shanghai University

Shanghai 200444, P. R. China

E-mail address: xyguo@staff.shu.edu.cn