ON CHARACTERIZATIONS OF SET-VALUED DYNAMICS

HAHNG-YUN CHU AND SEUNG KI YOO

Abstract. In this paper, we generalize the stability for an n-dimensional cubic functional equation in Banach space to set-valued dynamics. Let $n \geq 2$ be an integer. We define the n-dimensional cubic set-valued functional equation given by

$$f(2 \sum_{i=1}^{n-1} x_i + x_n) \oplus f(2 \sum_{i=1}^{n-1} x_i - x_n) \oplus 4 \sum_{i=1}^{n-1} f(x_i) = 16 f(\sum_{i=1}^{n-1} x_i) \oplus 2 \sum_{i=1}^{n-1} (f(x_i + x_n) \oplus f(x_i - x_n)).$$

We first prove that the solution of the n-dimensional cubic set-valued functional equation is actually the cubic set-valued mapping in [6]. We prove the Hyers-Ulam stability for the set-valued functional equation.

1. Introduction

A well-known problem in functional analysis is to obtain the stabilities of functional equations. The stability problem of a functional equation was originated from a question of S. M. Ulam [22] concerning the stability of a group homomorphism. D. H. Hyers [8] affirmatively answered the stability of the linear functional equation $f(x + y) = f(x) + f(y)$. The Hyers’ theorem was generalized by T. Aoki [1]. Th. M. Rassias [19] considered a generalized version of the Hyers’ theorem permitted the Cauchy difference to become unbounded. Thereafter, P. Gavruta [7] proved the Rassias’ theorem by using the control function $\phi : G \times G \to [0, \infty)$ such that $\sum_{k=0}^{\infty} 2^{-k} \phi(2^k x, 2^k y) < \infty$ for all $x, y \in G$. Jun and Kim [9] established the Hyers-Ulam stability of the following functional equation

$$f(2x + y) + f(2x - y) = 2f(x + y) + 2f(x - y) + 12f(x).$$

It is easily proved that the function $f(x) = cx^3$ is a solution of the above functional equation. From the reason, the equation (1.1) is called a cubic

Received October 7, 2014; Revised January 12, 2016.

2010 Mathematics Subject Classification. Primary 39B82, 47H04, 47H10, 54C60.

Key words and phrases. Hyers-Ulam stability, n-dimensional cubic set-valued functional equation.

This research has been performed as a subproject of project Research for Applications of Mathematical Principles(No C21501) and supported by the National Institute of Mathematics Sciences(NIMS).

©2016 Korean Mathematical Society
In [10], Jung and Chang also investigated the Hyers-Ulam-Rassias stability of the following cubic type functional equation
\begin{equation}
(1.2) \quad f(x + y + 2z) + f(x + y - 2z) + f(2x) + f(2y) \\
= 2(f(x + y) + 2f(x + z) + 2f(x - z) + 2f(y + z) + 2f(y - z)).
\end{equation}

In [12], Chu et al. extended the cubic functional equation to the following generalized form
\begin{align*}
&f(2^{n-1} \sum_{i=1}^{n-1} x_i + x_n) + f(2^{n-1} \sum_{i=1}^{n-1} x_i - x_n) + 4 \sum_{i=1}^{n-1} f(x_i) \\
= 16f(\sum_{i=1}^{n-1} x_i) + 2 \sum_{i=1}^{n-1} (f(x_i + x_n) + f(x_i - x_n)),
\end{align*}

where \(n \geq 2 \) is an integer, and they also investigated the Hyers-Ulam stability for the generalized cubic functional equation.

In [14], Lu and Park defined the additive set-valued functional equations
\begin{align*}
f(\alpha x + \beta y) &= rf(x) + sf(y), \\
f(x + y + z) &= 2f(x + y) + f(x + z) + f(x - z) + 2f(y + z) + 2f(y - z).
\end{align*}

\begin{align*}
f(\sum_{j=1}^{n-1} x_j + 2x_n) \oplus f(\sum_{j=1}^{n-1} x_j - 2x_n) \oplus \sum_{j=1}^{n-1} f(2x_j) \\
= 2f(\sum_{j=1}^{n-1} x_j) \oplus 4 \sum_{j=1}^{n-1} (f(x_j + x_n) \oplus f(x_j - x_n)).
\end{align*}

In this paper, we start with the construction of an \(n \)-dimensional cubic set-valued functional equation. Using set-valued operations, we prove the Hyers-Ulam stability of the set-valued functional equation.

Now we introduce notations in this article. Let \(CB(Y) \) be the set of all closed bounded subsets of \(Y \) and \(CC(Y) \) the set of all closed convex subsets of \(Y \). Let
CBC(Y) be the set of all closed bounded convex subsets of Y. For elements A, A′ of CC(Y) and positive real values α, β, we denote A ⊕ A′ := A + A′. It is easy to show that αA + αA′ = α(A + A′) and (α + β)A ⊆ αA + βA. If A is convex, then we obtain that (α + β)A = αA + βA for all α, β ∈ ℝ+. We define the cubic set-valued functional equation induced from the original functional equation (1.1) as follows.

Definition 1.1. Let f : X → CBC(Y) be a mapping. The cubic set-valued functional equation is defined by

\[
(1.3) \quad f(2x + y) ⊕ f(2x - y) = 2f(x + y) ⊕ 2f(x - y) ⊕ 12f(x)
\]

for all x, y ∈ X. Every solution of the cubic set-valued functional equation is said to be a cubic set-valued mapping.

We consider an n-dimensional cubic set-valued functional equation as applying the n-dimensional cubic functional equation

\[
(1.4) \quad f(2 \sum_{i=1}^{n-1} x_i + x_n) ⊕ f(2 \sum_{i=1}^{n-1} x_i - x_n) ⊕ 4 \sum_{i=1}^{n-1} f(x_i) = 16f(\sum_{i=1}^{n-1} x_i) ⊕ 2 \sum_{i=1}^{n-1} (f(x_i + x_n) ⊕ f(x_i - x_n))
\]

for all x₁, . . . , xₙ ∈ X, where n ≥ 2 is an integer. Every solution of the n-dimensional cubic set-valued functional equation is called a n-dimensional cubic set-valued mapping.

In the next section, we introduce basic notions and definitions for the proof of the main theorems. Next we obtain the equivalence for the n-dimensional cubic set-valued mapping. And then we consider the stability problem for the generalized n-dimensional cubic set-valued functional equation. As applications, we get some results for the stability problem related to the fixed point theory. Throughout this paper, let X be a real vector space and Y a Banach space.

2. Stability of the set-valued functional equation

Firstly, we will give precise definitions and notations to prove the main theorems. We interest in the generalization of the stability for original functional equations to set-valued dynamics. For a subset A ⊆ Y, the distance function d(·, A) is defined by d(x, A) := inf{∥x − y∥ : y ∈ A} for x ∈ Y. For A, A′ ∈ CB(Y), the Hausdorff distance h(A, A′) between A and A′ is defined by

\[
h(A, A′) := \inf\{α ≥ 0 | A ⊆ A′ + αB_Y, A′ ⊆ A + αB_Y\},
\]

where B_Y is the closed unit ball in Y. In [5], it was proved that (CBC(Y), ⊕, h) is a complete metric semigroup. Rådström [21] proved that (CBC(Y), ⊕, h) is isometrically embedded in a Banach space. The followings are directly proved by using the notion of the Hausdorff distance.
Remark 2.1. Let $A, A', B, B', C \in CBC(Y)$ and $\alpha > 0$. Then we have that
\begin{enumerate}
\item $h(A \oplus A', B \oplus B') \leq h(A, B) + h(A', B')$;
\item $h(\alpha A, \alpha B) = \alpha h(A, B)$;
\item $h(A, B) = h(A \oplus C, B \oplus C)$.
\end{enumerate}

Remark 2.2. The completeness of a phase space plays important role to prove the stability in our manuscript. In detail, we construct a unique n-dimensional cubic set-valued mapping to a complete metric semigroup under addition and scalar multiplication using the completeness of the codomain.

The following proposition states that the n-dimensional cubic set-valued functional equation (1.4) is actually the generalized form of the cubic set-valued functional equation (1.3). In set-valued dynamics, it is useful to find different expressions of set-valued functional equations.

Proposition 2.3. Let $f : X \to CBC(Y)$ be a mapping. A mapping f satisfies the set-valued functional equation (1.4) if and only if f satisfies the set-valued functional equation (1.3). That is, every n-dimensional cubic set-valued mapping is actually a cubic set-valued mapping. Moreover the set-valued mapping f is single-valued in the proof of each implication.

Proof. Suppose that a mapping f satisfies the set-valued functional equation (1.4). Putting $x_i = 0$ ($i = 1, \ldots, n$), we have $f(0) = \{0\}$. Setting $x_i = 0$ ($i = 1, \ldots, n - 1$) and $x_n = x$ in (1.4), we get
\[
 f(x) \oplus f(-x) = 2((n - 1)f(x) \oplus (n - 1)f(-x)).
\]
Hence $f(x) \oplus f(-x) = \{0\}$ for all $x \in X$. By the definition of addition for subsets in X, we directly obtain that the set-valued mapping f is a single-valued mapping. Let $x_1 = x$, $x_i = 0$ ($i = 2, \ldots, n - 1$) and $x_n = y$ in (1.2), we have
\[
 f(2x + y) \oplus f(2x - y) = 2f(x + y) \oplus 2f(x - y) \oplus 12f(x).
\]
Therefore, f is a cubic set-valued mapping.

Conversely, suppose that a mapping f satisfies the set-valued functional equation (1.3). We use the induction on $n \geq 2$ to prove (1.4). Clearly, (1.4) holds when $n = 2$. Consider the case $n = k$. By the induction hypothesis, we have
\[
 f(2\sum_{i=1}^{k-1} x_i + x_k) \oplus f(2\sum_{i=1}^{k-1} x_i - x_k) \oplus 4\sum_{i=1}^{k-1} f(x_i)
\]
\[
 = 16f(\sum_{i=1}^{k-1} x_i) \oplus 2\sum_{i=1}^{k-1} (f(x_i + x_k) \oplus f(x_i - x_k))
\]

(2.1)
for all $x_1, \ldots, x_k \in X$. Putting $x_1 = x_1 + y$ in (2.1), we get

\begin{equation}
\begin{aligned}
&f(\sum_{i=1}^{k-1} 2x_i + 2y + x_k) \oplus f(\sum_{i=1}^{k-1} 2x_i + 2y - x_k) \oplus 4f(x_1 + y) \oplus 4 \sum_{i=2}^{k-1} f(x_i) \\
&= 16f(x_1 + y) \oplus 2f(x_1 + y + x_k) \oplus 2f(x_1 + y - x_k) \\
&\oplus 2 \sum_{i=2}^{k-1} (f(x_i + x_k) \oplus f(x_i - x_k))
\end{aligned}
\end{equation}

(2.2)

for all $x_1, \ldots, x_k \in X$ and $y \in X$. Setting $x = 2x_1$, $y = 2y$ and $z = x_k$ in (1.2), we have

\begin{equation}
\begin{aligned}
&2f(x_1 + y + x_k) \oplus 2f(x_1 + y - x_k) \oplus 2f(2x_1) \oplus 2f(2y) \\
&= 4f(x_1 + y) \oplus f(2x_1 + x_k) \oplus f(2x_1 - x_k) \oplus f(2y + x_k) \oplus f(2y - x_k)
\end{aligned}
\end{equation}

(2.3)

for all $x_1, \ldots, x_k \in X$ and $y \in X$. By (2.2) and (2.3), we get

\begin{equation}
\begin{aligned}
&f(\sum_{i=1}^{k-1} 2x_i + 2y + x_k) \oplus f(\sum_{i=1}^{k-1} 2x_i + 2y - x_k) \oplus 4f(x_1 + y) \\
&\oplus 4 \sum_{i=2}^{k-1} f(x_i) \oplus 4f(x_1) \oplus 4f(y) \\
&= 16f(x_1 + y) \oplus 4f(x_1 + y) \oplus 2f(y + x_k) \oplus 2f(y - x_k) \\
&\oplus 2f(x_1 + x_k) \oplus 2f(x_1 - x_k) \oplus 2 \sum_{i=2}^{k-1} (f(x_i + x_k) \oplus f(x_i - x_k))
\end{aligned}
\end{equation}

(2.4)

for all $x_1, \ldots, x_k \in X$ and $y \in X$. Putting $y = 0$ in (2.4), we obtain the desired conclusion (1.4). In addition, the equation (1.3) guarantees that the set-valued mapping f is single-valued in the part of the converse implication in this proof. □

Next, we prove the stability of the n-dimensional cubic set-valued functional equation.

Theorem 2.4. Let $n \geq 3$ be an integer and let $\phi : X^n \to [0, \infty)$ be a function such that

\begin{equation}
\tilde{\phi}(x_1, \ldots, x_n) := \sum_{i=0}^{\infty} \frac{1}{8^i} \phi(2^i x_1, \ldots, 2^i x_n) < \infty
\end{equation}

(2.5)
for all $x_1, \ldots, x_n \in X$. Suppose that $f : X \rightarrow (\text{CBC}(Y), h)$ is a mapping with $f(0) = \{0\}$ and

$$
(2.6) \quad h \left(f \left(\sum_{i=1}^{n-1} x_i + x_n \right) \oplus f \left(\sum_{i=1}^{n-1} x_i - x_n \right) \oplus 4 \sum_{i=1}^{n-1} f(x_i), 16f \left(\sum_{i=1}^{n-1} x_i \right) \oplus 2 \sum_{i=1}^{n-1} \left(f(x_i + x_n) \oplus f(x_i - x_n) \right) \right) \leq \phi(x_1, \ldots, x_n)
$$

for all $x_1, \ldots, x_n \in X$. Then for every $m \in \{1, 2, \ldots, n-1\}$ there exists a unique n-dimensional cubic set-valued mapping $T : X \rightarrow (\text{CBC}(Y), h)$ such that

$$
(2.7) \quad h(f(x), T(x)) \leq \frac{1}{16} \phi \left(\frac{x}{m}, \ldots, \frac{x}{m}, 0, \ldots, 0 \right)
$$

for all $x \in X$.

Proof. Set $x_i = x$ ($i = 1, 2, \ldots, m$) and $x_{m+1} = x_{m+2} = \cdots = x_n = 0$ in (2.6). Since the range of f is convex, we have that

$$
(2.8) \quad h(f(2mx) \oplus f(2mx) \oplus 4mf(x), 16f(mx) \oplus 2mf(x) \oplus 2mf(x)) \leq \phi(x_1, \ldots, x, 0, \ldots, 0)
$$

and we get that

$$
(2.9) \quad h\left(f\left(\frac{2}{m}x \right), f(x) \right) \leq \frac{1}{16} \phi \left(\frac{x}{m}, \ldots, \frac{x}{m}, 0, \ldots, 0 \right)
$$

for all $x \in X$. Replacing x by $\frac{x}{m}$ in (2.8), we have

$$
(2.10) \quad h\left(f\left(\frac{2}{m}x \right), f\left(\frac{2}{m}x \right) \right) \leq \frac{1}{16} \phi \left(\frac{2x}{m}, \ldots, \frac{2x}{m}, 0, \ldots, 0 \right)
$$

for all $x \in X$. Substituting x by $2x$ and dividing by 8 in (2.9), we get

$$
(2.11) \quad h\left(f\left(\frac{2^2x}{8^2} \right), f(x) \right) \leq \frac{1}{16} \phi \left(\frac{x}{m}, \ldots, \frac{x}{m}, 0, \ldots, 0 \right) + \frac{1}{8^2} \phi \left(\frac{2x}{m}, \ldots, \frac{2x}{m}, 0, \ldots, 0 \right)
$$

for all $x \in X$. By (2.9) and (2.10), we have
ON CHARACTERIZATIONS OF SET-VALUED DYNAMICS

for all \(x \in X \). Using the induction on \(i \), we obtain that

\[
(2.12) \quad h\left(\frac{f(2^rx)}{8^r}, f(x)\right) \leq \frac{1}{16} \sum_{i=0}^{r-1} \frac{1}{8^i} \phi\left(\underbrace{\frac{2^ix}{m}, \ldots, \frac{2^ix}{m}, 0, \ldots, 0}_{m}\right)
\]

for all \(x \in X \) and \(r \in \mathbb{N} \). In order to prove the convergence of the sequence \(\{\frac{f(2^rx)}{8^r}\} \), we divide inequality (2.12) by \(8^s \) and also replace \(x \) by \(2^sx \). Hence it follows that

\[
(2.13) \quad h\left(\frac{f(2^{s+r}x)}{8^{s+r}}, f(2^sx)\right) \leq \frac{1}{16} \sum_{i=0}^{r-1} \frac{1}{8^i} \phi\left(\underbrace{\frac{2^{s+i}x}{m}, \ldots, \frac{2^{s+i}x}{m}, 0, \ldots, 0}_{m}\right)
\]

for all \(x \in X \) and \(r \in \mathbb{N} \). Since the right-hand side of the inequality (2.13) tends to zero as \(s \) tends to infinity, the sequence \(\{\frac{f(2^rx)}{8^r}\} \) is a Cauchy sequence in \((CBC(Y), h) \). Therefore, from the completeness of \(CBC(Y), h) \), we can define \(T(x) := \lim_{r \to \infty} \frac{f(2^rx)}{8^r} \) for all \(x \in X \). It follows from (2.6) and the definition of \(T \) that

\[
(2.14) \quad h\left(\frac{f(2^nx)}{8^n}, f(x)\right) \leq \frac{1}{16} \sum_{i=0}^{n-1} \frac{1}{8^i} \phi\left(\underbrace{\frac{2^ix}{m}, \ldots, \frac{2^ix}{m}, 0, \ldots, 0}_{m}\right)
\]

which tends to zero as \(r \to \infty \) for all \(x \in X \). Therefore we get \(T(x) = T'(x) \) for all \(x \in X \) which completes this proof. \(\square \)

Remark 2.5. Let \(n \geq 3 \) be an integer, then using the method of the proof in the above theorem, we easily obtain the following result. Let \(\phi : X^n \to [0, \infty) \) be a function such that

\[
(2.15) \quad \tilde{\phi}(x_1, \ldots, x_n) := \sum_{i=0}^{\infty} 8^i \phi\left(\frac{x_1}{2^i}, \ldots, \frac{x_n}{2^i}\right) < \infty
\]
for all \(x_1, \ldots, x_n \in X \). Suppose that \(f : X \to (CBC(Y), h) \) is a mapping with
\[
\begin{align*}
(2.16) \quad h\left(f\left(2 \sum_{i=1}^{n-1} x_i + x_n \right) \oplus f\left(2 \sum_{i=1}^{n-1} x_i - x_n \right) \oplus 4 \sum_{i=1}^{n-1} f(x_i),
\right.
\left. 16f\left(\sum_{i=1}^{n-1} x_i \right) \oplus 2 \sum_{i=1}^{n-1} \left(f(x_i + x_n) \oplus f(x_i - x_n) \right) \right) \leq \phi(x_1, \ldots, x_n)
\end{align*}
\]
for all \(x_1, \ldots, x_n \in X \). Then for every \(m \in \{1, 2, \ldots, n - 1\} \), there exists a unique \(n \)-dimensional cubic set-valued mapping \(T : X \to (CBC(Y), h) \) such that
\[
(2.17) \quad h\left(f(x), T(x) \right) \leq \frac{1}{2^m} \phi\left(\frac{x_1}{m}, \ldots, \frac{x_n}{m}, 0, \ldots, 0 \right)
\]
for all \(x \in X \).

Corollary 2.6. Let \(0 < p < 3 \) and \(\theta > 0 \) be real numbers, and let \(X \) be a real normed space. Suppose that \(f : X \to (CBC(Y), h) \) is a mapping satisfying
\[
\begin{align*}
&\quad \frac{1}{2} h\left(f\left(2 \sum_{i=1}^{n-1} x_i + x_n \right) \oplus f\left(2 \sum_{i=1}^{n-1} x_i - x_n \right) \oplus 4 \sum_{i=1}^{n-1} f(x_i),
\right.
\left. 16f\left(\sum_{i=1}^{n-1} x_i \right) \oplus 2 \sum_{i=1}^{n-1} \left(f(x_i + x_n) \oplus f(x_i - x_n) \right) \right) \leq \theta \sum_{i=1}^{n} \| x_i \|^{p}
\end{align*}
\]
for all \(x_1, x_2, \ldots, x_n \in X \). Then there exists a unique \(n \)-dimensional cubic set-valued mapping \(T : X \to (CBC(Y), h) \) that satisfies functional equation (2.1) and
\[
\begin{align*}
\quad h(f(x), T(x)) \leq \frac{\theta}{(2^n - 2^{p+1})^p} \| x \|^{p}
\end{align*}
\]
for all \(x \in X \).

Proof. The result follows from Theorem 2.4 by setting \(\phi(x_1, x_2, \ldots, x_n) = \theta \sum_{i=1}^{n} \| x_i \|^{p} \) for every \(x_1, x_2, \ldots, x_n \in X \). \(\square \)

Remark 2.7. In the case of \(p > 3 \), using Remark 2.5 by setting \(\phi(x_1, x_2, \ldots, x_n) = \theta \sum_{i=1}^{n} \| x_i \|^{p} \), we produce a unique \(n \)-dimensional cubic set-valued mapping \(T : X \to (CBC(Y), h) \) that satisfies functional equation (2.1) and
\[
\begin{align*}
\quad h(f(x), T(x)) \leq \frac{\theta}{(2^n - 2^{p+1})^p} \| x \|^{p}
\end{align*}
\]
for all \(x \in X \) under the same assumption in Corollary 2.6.

Now, we investigate the stability for the given \(n \)-dimensional cubic set-valued functional equation using the fixed point method. We first give the definition of a generalized metric on a set \(X \). A function \(d : X \times X \to [0, \infty) \) is called a *generalized metric* on \(X \) if \(d \) satisfies the following properties
Then for each element integers n of the theory, which is variously applying to the theory of functional equations.

J: Let T be a mapping x for all $x, y \in X$.Using the alternative fixed point theorem, we investigate the stability of the n-dimensional cubic set-valued functional equation.

Theorem 2.9. Let $1 \leq m \leq n - 1$ be an integer. Suppose that a mapping $f : X \to (CBC(Y), h)$ with $f(0) = \{0\}$ satisfies the functional inequality

\begin{equation}
(2.18) \quad h\left(f\left(\sum_{i=1}^{n-1} x_i \right) + f\left(\sum_{i=1}^{n-1} x_i - x_n \right) \right) \leq 16f(x_1) \oplus 2 \sum_{i=1}^{n-1} f(x_i)
\end{equation}

for all $x_1, \ldots, x_n \in X$ and there exists a constant L with $0 < L < 1$ for which the function $\phi : X^n \to \mathbb{R}^+$ satisfies

\begin{equation}
(2.19) \quad \phi\left(\frac{2x}{m}, \ldots, \frac{2x}{m}, 0, \ldots, 0 \right) \leq 8L\phi\left(\frac{x}{m}, \ldots, \frac{x}{m}, 0, \ldots, 0 \right)
\end{equation}

for all $x \in X$. Then there exists a unique n-dimensional cubic set-valued mapping $T : X \to (CBC(Y), h)$ given by $T(x) = \lim_{r \to \infty} \frac{r(x)}{m}$ such that

\begin{equation}
(2.20) \quad h(f(x), T(x)) \leq \frac{1}{16(1 - L)} \phi\left(\frac{2x}{m}, \ldots, \frac{2x}{m}, 0, \ldots, 0 \right)
\end{equation}

for all $x \in X$.

Proof. Let $S = \{ g \mid g : X \to CBC(Y), g(0) = \{0\}\}$. We define a generalized metric on S defined by

\[d(g_1, g_2) := \inf\{ \mu \in (0, \infty) \mid h(g_1(x), g_2(x)) \leq \mu\phi\left(\frac{x}{m}, \ldots, \frac{x}{m}, 0, \ldots, 0 \right), x \in X \}, \]
where, as usual, \(\inf \phi := \infty \). It is easy to show that \((S, d)\) is complete (see [11]).

Now, we define the mapping \(J : S \to S \) given by \(Jg(x) = \frac{1}{8}g(2x) \) for all \(x \in X \).

For \(g_1, g_2 \in S \), let \(d(g_1, g_2) = \mu \). Then
\[
\begin{align*}
b\left(\frac{1}{8}g_1(2x), \frac{1}{8}g_2(2x)\right) &\leq \frac{1}{8}\mu \phi\left(\frac{2x}{m}, \frac{2x}{m}, 0, \ldots, 0\right) \\
&\leq \frac{1}{8}\mu \phi\left(\frac{m}{x}, \frac{m}{x}, 0, \ldots, 0\right)
\end{align*}
\]

for all \(x \in X \). Then by (2.19), we have
\[
\begin{align*}h(Jg_1(x), Jg_2(x)) &\leq \mu L \phi\left(\frac{x}{m}, \frac{x}{m}, 0, \ldots, 0\right) \\
&\leq \mu L \phi\left(\frac{x}{m}, \frac{x}{m}, 0, \ldots, 0\right)
\end{align*}
\]

for all \(x \in X \). The above inequality shows that \(d(Jg_1, Jg_2) \leq Ld(g_1, g_2) \) for all \(g_1, g_2 \in S \). Hence \(J \) is a strictly contractive mapping with Lipschitz constant \(L \).

By (2.9), we obtain the inequality
\[
d(Jf, f) \leq \frac{1}{16}
\]

This means that the inequality (2.20) holds. It follows from (2.18) and (2.19) that
\[
\begin{align*}
h\left(T(2 \sum_{i=1}^{n-1} x_i + x_n) \oplus T(2 \sum_{i=1}^{n-1} x_i - x_n) \oplus 4 \sum_{i=1}^{n-1} T(x_i), \\
16T\left(\sum_{i=1}^{n-1} x_i \oplus 2 \sum_{i=1}^{n-1} (T(x_i + x_n) \oplus T(x_i - x_n))\right)\right) \\
&\leq \lim_{r \to \infty} L' \phi(2^r x_1, \ldots, 2^r x_n) = 0.
\end{align*}
\]

Therefore, \(T \) is a unique \(n \)-dimensional cubic set-valued mapping, as desired. \(\square \)

Remark 2.10. In Theorem 2.9, if we take a slight change for the inequality condition of the control mapping \(\phi \) as follows
\[
\phi\left(\frac{x}{m}, \ldots, \frac{x}{m}, 0, \ldots, 0\right) \leq \frac{L}{8} \phi\left(\frac{x}{2m}, \frac{x}{2m}, 0, \ldots, 0\right),
\]

then we obtain the same difference between the cubic-like set-valued function \(f \) and a unique \(n \)-dimensional cubic set-valued mapping \(T \) given by \(T(x) = \lim_{r \to \infty} 8^r f(\frac{x}{2^r}) \). Indeed, from (2.8), we get
\[
\begin{align*}h(f(x), 8f\left(\frac{x}{2}\right)) &\leq \frac{1}{2}\phi\left(\frac{x}{2m}, \frac{x}{2m}, 0, \ldots, 0\right) \\
&\leq \frac{L}{8} \phi\left(\frac{x}{2m}, \frac{x}{2m}, 0, \ldots, 0\right)
\end{align*}
\]
for all $x \in X$. Then we define the mapping $J : S \to S$ such that $Jg(x) = g(\frac{x}{2})$ for all $x \in X$. The rest of this proof is similar to the proof of Theorem 2.9.

Corollary 2.11. Let $0 < p < 3$ and $\theta \geq 0$ be real numbers, and let X be a real normed space. Suppose that $f : X \to (CBC(Y), h)$ is a mapping satisfying

$$h\left(f\left(\sum_{i=1}^{n-1} x_i + x_n\right) \oplus f\left(\sum_{i=1}^{n-1} x_i - x_n\right) \oplus 4 \sum_{i=1}^{n-1} f(x_i),
16f\left(\sum_{i=1}^{n-1} x_i\right) \oplus 2 \sum_{i=1}^{n-1} \left(f(x_i + x_n) \oplus f(x_i - x_n) \right) \right) \leq \theta \sum_{i=1}^{n} \| x_i \|^p$$

for all $x_1, x_2, \ldots, x_n \in X$. Then there exists a unique n-dimensional cubic set-valued mapping $T : X \to (CBC(Y), h)$ that satisfies functional equation (1.4) and

$$h(f(x), T(x)) \leq \frac{\theta}{2^3 - 2^p} \| x \|^p$$

for all $x \in X$.

Proof. The proof follows from Theorem 2.9 by setting $\phi(x_1, x_2, \ldots, x_n) = \theta \sum_{i=1}^{n} \| x_i \|^p$ for every $x_1, x_2, \ldots, x_n \in X$. Then we can choose $L = 2^{p-3}$ and we get the desired result. \qed

Remark 2.12. For the case of $p > 3$ in the above corollary, we also obtain a unique n-dimensional cubic set-valued mapping $T : X \to (CBC(Y), h)$ that satisfies the functional equation (1.4) and the difference between the cubic-like set-valued function f and the n-dimensional cubic set-valued mapping T as follows,

$$h(f(x), T(x)) \leq \frac{\theta}{2^p - 2^3} \| x \|^p$$

for all $x \in X$.

Acknowledgement. The authors are deeply grateful to the referees whose advices helped to improve our manuscript.

References

[18] , On selections of set-valued inclusions in a single variable with applications to several variables, Results Math. 64 (2013), no. 1-2, 1–12.

HAEUNG-YUN CHU
DEPARTMENT OF MATHEMATICS
CHUNGNA NATIONAL UNIVERSITY
DAEJEON 34134, KOREA
E-mail address: hychu@cnu.ac.kr

SEUNG KI YOO
DEPARTMENT OF MATHEMATICS
CHUNGNA NATIONAL UNIVERSITY
DAEJEON 34134, KOREA
E-mail address: skyoo@cnu.ac.kr