Quantitative Analysis of Modified Fermi-Direct Filter applied to Clinical MR Image

요약

영상처리 분야에서 필터링은 특정 목적에 따른 영상의 화질 개선을 위해 사용되고 있으며, 자기공명영상 분야에서도 여러 가지 필터들이 영상의 질적 향상을 위해 사용되고 있다. 본 논문에서는 최근 연구되어진 변형된 Fermi-Direct 필터를 여러 가지 형태로 다시 변형해 보고 가장 적합한 형태를 도출해 보았다. 또한 이렇게 제작된 필터를 현재 병원에서 사용하고 있는 MR장비로 환자를 통해서 얻어진 임상 영상 (original image)에 적용하였다. 그 결과 임상 영상(original image)들이 필터를 통과한 후 육안으로 보았을 때 차질이 개선되어진 것을 알 수 있었으며, 이들의 경량적인 평가를 위해 각 영상들의 R, G, B 채널의 히스토그램을 구하였다. 결론적으로, 병원에 따른 차이가 다소 있었으나 original image에 비해 필터를 적용한 후 얻어진 영상의 명암비와 선명도가 더 우수한 결과를 보였다. 따라서 변형된 Fermi-Filter의 사용이 실제 환자의 질병을 정확히 진단하여 치료하는데 기여할 수 있음을 알 수 있었다.

실현· | Filtering | 변형된 Fermi-Direct 필터 | 히스토그램 (R, G, B 채널) |

Abstract

Filtering has been used to improve the image quality not only in MRI but in most image processing fields. In this paper, modified Fermi-Direct filter was transformed in various shapes, and then the optimum shape was designed. In addition, Newly made filter was applied in real clinic, which showed the obvious improvement in image quality. In conclusion, filtered image was superior to original image in contrast and sharpness. Then, this was proved by the histogram of R, G, B channel used for the quantitative analysis.

Keyword: | Filtering | Modified Fermi-Direct Filter | Histogram (R, G, B Channel) |

1. 서론

의학 분야에서 의료기기의 개발로 인해 과거에 비해 질환의 진단은 향기적으로 진일보하게 되었다. 특히 영상을 통한 진단 방법은 인체 내부 장기의 구조 및 형 태학적인 양상을 관찰함으로써 비침습적인 방법으로 진단을 진단할 수 있다. 이러한 영상기기로부터 획득한 의료영상들을 효율적으로 활용하기 위해서 다양한 영상처리 기법들이 사용된다. 즉, 전처리(preprocessing) 하는 영상처리 기법과 이차원 영상을 삽차원 영상으로
이나내는 영상 재구성 방법, 영상을 효율적으로 저장하고 전송하기 위한 압축기법과 복원기법 등이 있다. 그리고 영상기기 또는 주의한 영역으로부터 발생한 잡음 및 artifact를 제거하여, 영상의 신호 강도와 신호 대 감음비를 증가시키고 대조도를 향상시키며 영상의 화질을 개선하는 기법 등이 있다[1].

전달의 정확도를 높이기 위해 확득된 영상에 포함된 잡음 및 artifact를 제거하고 대조도를 향상시키기 위해 다양한 필터들이 사용되고 있으며, 이들 중 대표적으로 많이 사용되고 있는 필터는 공간적 필터(spatial filter)와 시간 및 주파수 필터(temporal or frequency filter)이다[2][3].

본 연구에서는 여러 필터들 중에서 변형된 Fermi–Dirac 필터를 여러 가지 형태로 다시 변형해 보고 최적화된 형태를 찾아보고자 하였으며[4-8], 또한 실제 임상에 적용하여 전단적 가치를 평가해 보았다[9].

II. 본론

서론에서 언급한 바와 같이 다양한 필터들 중에서 변형된 Fermi–Dirac 필터의 형태를 다양하게 구성해 보고자 한다. 먼저, 사용자의 요구에 부합하도록 커리어하게 변형할 수 있는 Fermi–Dirac 필터의 파라미터들을 변화시켜 7 가지 형태의 변형된 Fermi–Dirac 필터를 구성하였다. 변형과정은 세단계로 구분하였으며, 각 단계는 다음과 같다. 첫 단계로 Fermi–Dirac 필터의 기울기 조정률, 즉 통과해역에서 저지역으로 저수 함수적으로 감소할 때의 기울기를 가변하도록 하였다. 그리고 주파수 필터에서 사용되는 통과해역과 저지역의 차단 주파수(cutoff frequency)를 조정하였다. 두 번째 단계로는 Fermi–Dirac 필터의 통과해역과 저지역 내 설정한 원도우의 x축과 y축의 반지름, 즉 통과해역과 저지역 내 원도우의 폭을 가변하도록 하였다. 세 번째 단계로는 Fermi–Dirac 필터의 통과해역 내에 흡수된 저지역내 싱크과형 형태의 임펄스파(impulse wave), 즉 릴프(ripple)를 흡수하고 ripple의 진폭을 가변하도록 하였다.

이와 같은 과정으로 Fermi–Dirac 필터의 파라미터들 을 가변시켜 7 가지 형태의 변형 Fermi–Dirac 필터를 생성한 후 각각의 환자의 MR 영상에 적용하여 변형된 Fermi–Dirac 필터들의 영상화질 개선효과를 검토하였다[3].

본 연구에서 제안한 Fermi–Dirac 필터의 전달 함수는 아래의 식(1)으로 표현할 수 있다.

\[
R(x, y) = \frac{\sum \sum \sum \sum e^{-\frac{y}{y_{max}}\frac{1}{1+e^{-\frac{y}{y_{max}}}}}}\times a_{m}\times f(l) + \sum \sum \sum \sum e^{-\frac{y}{y_{max}}\frac{1}{1+e^{-\frac{y}{y_{max}}}}}}\times a_{m}\times f(l) + \sum \sum \sum \sum e^{-\frac{y}{y_{max}}\frac{1}{1+e^{-\frac{y}{y_{max}}}}}}\times a_{m}\times f(l)
\]

여기서, N은 영상의 해상도를 결정하는 차수에 관한 파라미터이고, \(a_1\)은 Fermi–Dirac 필터의 통과해역(passband)을 결정하는 기울기 조정률(roll-off rate), \(a_2\)는 저지역(stopband)의 기울기 조정률, \(a_3\)은 Fermi–Dirac 필터의 중심주파수 영역에 영향을 준다. 그리고 인공 신호과형의 기울기 조정률을 의미하며, \(a_1\)은 Fermi–Dirac 필터의 기울기를 의미하며, \(a_2\)는 Fermi–Dirac 필터의 통과해역 내에 흡수되는 저지역의 기울기를 의미하며, \(a_3\)은 통과해역에 흡수된 저지역 내에 흡수되는 신호과형 형태의 임펄스파의 기울기를 의미한다. 그리고 \(N_x\)는 k-space의 중심영역에 원도우를 설정할 때 통과해역의 x 방향 반지름을 의미하며, \(N_y\)는 y 방향 반지름을 의미한다.

식(1)을 이용하여 \([1]\)과 같이 각 필터의 반반으로서 기울기 조정률, 통과해역 내 원도우의 범위, 통과해역에 흡수된 저지역 내 원도우의 범위, 통과해역에 흡수된 저지역 내에 흡수되는 신호과형 형태의 임펄스파의 기울기, 그리고 각각의 진폭을 변량시켜 7 가지 형태의 변형 Fermi–Dirac 필터를 구성하였고 이 들을 환자로부터 얻어진 MR 영상에 적용하여 영상 화질을 개선시키는 최적의 파라미터들을 찾고자 하였다.
표 1. 변형 Fermi-Dirac 필터의 파라미터 변화사례

<table>
<thead>
<tr>
<th>Case</th>
<th>j</th>
<th>k</th>
<th>n</th>
<th>m</th>
<th>H</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>4</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

[그림 2]에서 보여진 영상들은 비교해 보면 case에 따라 차이를 볼 수 있고 육안으로 볼 때 원 영상 (original image)에 비해 case 1과 case 2에서 좌측 뒤에 출혈을 동반한 병변 부위가 경계 및 내부 형태가 더욱 선명하게 관찰되어 더욱 영상의 해질 개선 효과가 가장 잘 나타난 경우로 보인다.
또한 이들의 장량적인 평가를 위해 각각 필터를 적용한 영상들의 히스토그램을 산출하였다(그림 3). 영상에서 \((R, G, B) = (0, 0, 0)\)의 값을 가지는 경우는 검정색을 나타내고 \((R, G, B) = (255, 255, 255)\)일 경우는 화색을 나타낸다. MR 영상은 화색으로 표현되기 때문에 틀리고 영상과는 달리 \(R, G, B\) 채널 값들이 각 복셀마다 비슷하다. 따라서 각 영상의 \(G\) 채널의 히스토그램을 통해 성능을 평가하였다. \(R, G, B\) 채널 중에 \(G\) 채널을 선택한 이유는 \(R, B\) 채널보다 보통 2배의 많은 정보량을 담고 있기 때문이다. 히스토그램의 세로는 복셀의 수가 되고 가로는 명암 비를 나타내도록 하였다.

그림 2. 사례별 주파수 필터를 적용한 실제영상

그림 3. 사례별 입상 영상의 \(G\) 채널 히스토그램
III. 결론 및 향후 연구방향

본 논문에서는 MR 영상의 화질을 향상시키기 위해 적용 되어지는 여러 종류의 주파수 필터 중에서 최근 연구 되어진 변형 Fermi-Dirac 필터를 여러 형태로 다시 변형해보고, 그 중 가장 우수한 형태의 필터를 찾고자 하였다. 변형 과정은 세 단계로 구분하였으며, 각 단계는 다음과 같다. 먼저, 첫 단계로 Fermi-Dirac 필터의 기울기 조정을, 즉 통과역에서 저지역으로 지수 함수적으로 감소할 때의 기울기를 가변적으로 하였다. 그리고 주파수에서 사용되는 통과대역과 저지대역을 차단주파수 (cutoff frequency)를 조정하였다. 다음으로, 두 번째 단계로는 Fermi-Dirac 필터의 통과대역과 저지대역 내 설정한 원도우의 x축과 y축의 반지름, 즉 통과대역과 저지대역 내 원도우의 폭을 가변하도록 하였다. 마지막으로, 세 번째 단계는 Fermi-Dirac 필터의 통과대역 내에 흡연된 저지역에 싱크파형 형태의 임펄스파 (impulse wave), 즉 터널 (ridge)을 흡연하고 ridgeline을 가변하도록 하였다. 왜냐하면 MR 영상의 대조도와 SNR를 향상시키기 위함이다. 이와 같은 과정으로 Fermi-Dirac 필터의 파라미터들을 가변시켜 7 가지 형태의 변형 Fermi-Dirac 필터를 생성한 후 생성된 변형 Fermi-Dirac 필터 각각의 환자의 MR 영상에 적용하여 변형된 Fermi-Dirac 필터들의 영상 화질 개선 효과를 비교・검토한 후 최적의 변형 Fermi-Dirac 필터를 선정하였다. 선정된 변형 Fermi-Dirac 필터의 파라미터들은 다음과 같다. 기울기 조정 (\(\alpha\))은 0.3이고, 통과대역의 x축 반지름 (rx1)이 0.3이며 y축 반지름 (ry1)은 0.3, 필터의 전폭 (ampL)은 1로 설정하였다. 그리고 저지대역의 기울기 조정 (\(\omega\))은 0.3이고, 저지대역의 x축 반지름 (rx2)이 0.1이며 y축의 반지름 (ry2)이 0.1, 필터의 전폭 (ampL)은 0.6으로 설정하였다. 또한 center ripple의 기울기 조정 (\(\omega\))은 0.9이고, x축 반지름 (rx3)이 1/80이며 y축 반지름 (ry3)이 1/80, 필터의 전폭 (ampL)을 0.2로 설정하였다. 설계한 변형 Fermi-Dirac 필터의 특징은 중심주파수 영역에 내역지정 필터와 신호강도의 차이를 나타내는 임펄스 응답 특성을 지니는 싱크파형을 흡연한 형태이고, Fermi-Dirac 필터의 통과대역의 형태와 내역폭이 변형되었으며 동과대역 내 저지대역의 형태와 내역폭이 변화되었고 또한 싱크파형의 흡연으로 인해 Fermi-Dirac 필터의 통과대역 내에서 신호강도의 차이를 증가시켰다.

이러한 과정으로 생성된 필터를 실제 MR영상에 적용하여 비교해 보고, 정량적인 평가를 위해 핸스토그래프를 구함으로써 최적의 필터 형태를 구현하였다.

향후 연구로는 변형 Fermi-Dirac 필터를 다양한 임상 환경에 적용하여 점차적 최적의 필터를 확립하는 것이 필요하다고 사료된다.

참고 문헌

