우리나라 연근해어선 감척사업의 경제적 투자효과 분석

표희동*
부경대학교 해양산업경영학부 (608-737) 부산시 남구 대연3동 599-1

Evaluating the Economic Effects of Fishing Vessel Buyback Programs in Korea

Hee-Dong Pyo*
Faculty of Marine Business & Economics, Pukyong National University, Busan 608-737, Korea

Abstract : Fisheries buyback programs have been implemented from 1994 in Korea, and its scale is estimated to have a value of 930 billion won, which is compounded for eight years since 1994. The paper evaluates the programs' economic and financial viability, and predicts efficient ways about how much and how long to reduce fisheries vessels so as to pursue a target biomass at MSY. For the specific purpose of the paper, aggregate fisheries stock dynamics and catch functions are specified and estimated by yearly catch and fishing effort data from 1970 to 2001, using ASPIC model and Schaefer's logistic production model. Results show that the fisheries stock in Korea has steadily declined since 1970, and that Korean fisheries overexploitation has steadily increased. Using cost-benefit analysis method, the buyback program holds the economic and financial feasibility even if the scale of buyback programs is not sufficient to avoid the downward trend in fisheries stock and harvest. The potential investment scale is predicted in several alternative scenarios using the sensitivity analysis method. The results recommend the annual reduction of 46%, 12% or 20% for the next one year, five years or three years, respectively so that the target biomass at MSY may be reached in 25 years.

Key words : buyback program, bio-economic model, economic effects, potential investment assessment, benefit-cost analysis

1. 서론

우리나라 연근해어업의 어획량은 1980년대 초반까지 꾸준히 증가하였으나 1980년대에는 어

범주외에서 정체상태를 나타내다 1990년대에 전환하면 서부터는 130만톤 수준으로 하락하여 2000년대에는 100~120만톤 수준으로 지속적으로 하락하는 양상을 보이고 있다. 1) 현재 대표적인 어획노력량이라고 할 수 있는 어선착수, 어선톤수 및 어선 마력수는 꾸준한 증가추세에

* Corresponding author. E-mail : pyoh@pknu.ac.kr

있고, 자원량 지표라고 할 수 있는 어선 톤당 어획량은 1918년을 저장으로 꾸준히 감소추세를 나타내고 있어 연

근해 어업자원량이 감소추세에 있음을 알 수 있다(해양수

산부 2003).

여기서 주목할 점은 1994년에 이래 지속적으로 어선감척

사업을 수행하고 있음에도 불구하고 어전히 어획량 수준

이 감소하고 있다는 것이다. 2) 이러한 가운데 어선감척사

업을 수행하고 있는 어업정책연구단원들은 이 사업의 경제

적 효과여부와 그 수준을 파악하고, 최적지속가능어획량

(optimal sustainable yield: OSY)에 도달할 수 있는 최적

어선감척수준과 최적감척투자계획을 설정하고자 할 것이
라. 따라서 본 연구는 이와 같은 우리나라 어업정책입안자 등의 육구를 충족할 수 있는 어선감정사업에 따른 경제적 효과모델과 최적어선감정수준을 구체적으로 제시하고자 한다.

어선감정사업은 기존의 어선색적을 감축하고 그에 따른 어업허가를 취소함으로써 해당어업의 손 어획량노르말을 중 이고자 하는 것이다. 일반적으로 어선감정사업은 어업자 원정과 또는 회복하고, 어선색적의 회복화라 어업에 대한 여건을 통해 경제적 효율성을 개선하고자 하는데 그 주된 목적이 있다(Holland et al., 1999). 이와 같은 어선감정사업은 우리나라를 비롯한 호주, 미국, 유럽, 일본, 대만 등 국제적으로 널리 시행되고 있는 어업관리방 법 중의 하나이다. 3)

2. 어선감정의 경제목표를 위한 최적어획량

어작은 다음의 3가지 점에 있어서 MSY를 넘어서는 수준에서 수요의 증가로 인한 추가적인 가격상승이 일어 나는 것으로 보인다. 4)
① 어획기수의 발달로 어작의 상대가격이 하락하면서 나타나는 가격효과(소득효과)
② 어획량의 감소로 인한 가격상승에 따른 수요증가
③ 가계소득의 증대로 인한 직접적인 소비수준의 확대 이러한 수요수수의 음의 기능에는 공급자인 입장에서 보면 어획량 감소로 인한 마이너스 효과 이상으로 가격을 상승시켜 총수익(TR)을 상승시키는 역할을 하게 된다. 따라서 MSY에서의 어획량(BM)을 상회하는 어획노르말의 투명과 비용의 증가와 생산량의 감소로 인한 이유 때문에 가격이 상승하게 된다. 이는 직접적으로 BM 이상의 어획노르말에 대한 총수익을 증가시키는 영 향을 한다. 그리고 수요촉진을 위한 우상향으로 이동하게 된다. 따라서 Fig. 1에서 가격이 상수일 경우 E점에서 균형이 이루어지거나 수요의 증가로 인해 E점에서 균형이 이루지게 된다. 반면 공급측면을 살펴보면 공급량이 MSY에

2 쉽게 어선감정사업을 수행하기도 그 효과(인원대체효과), 전업가정기간과의 일정기간이 지난 다음에 발생하고, 어선감정을 통해서 시행하기 못함으로써 어획량을 자원확장과 이로써 감소하지 못한 경우에도 그 효과가 발생하지 않을 수 있다. 이에 대한 사례모델은 대형산란수량(2003)을 참고하기 바란다.

3 Holland et al.(1999)는 어선감정사업에 대한 광범위한 국제적 사례연구를 실시하였다.

4우효국산의 어이름이 어림을 유의한 것.
Fig. 1. Price increasing effect of fish species.

서 최대가 될 것이므로 MC곡선은 어획력이 MSY 이상
에서 후반으로 급절하게 된다. 결론적으로 사회적 최적점
은 \(E_{MSY} \)에서 생산이 이루어지고, \(P_3 \)에서 가격이 결정되는
것이 가장 바람직한 결과가 된다.

그러나 수요의 증가로 인한 추가적인 가격의 상승은 어
획에 참여하는 생산자의 수익을 증가시켜 더욱 심각한 어
획자의 낭용을 유발하게 된다. 즉, \(E_{MSY} \) 이후 수요의 증
가는 MB 곡선을 MB로 이동시키고 광평점을 \(E \)에서 \(P_0 \)
로 상승시킨다. 가격측면을 살펴보면 MEY에서 \(P_2 \)가
적점을 얻을 수 있다. 그리고 MSY 수준에는 \(P_1 \)이 최적가격
이다. 하지만 납품이 일어나게 되면 생산은 둔화된다.
총 수입과 총비용이 같이지는 광평점에서 가격은 \(P_i \)이 되어
야 하지만 현실적으로 MSY 이상으로 MC 곡선은 그러지
지 않기 때문에 MSY를 기준으로 대칭적인 MC 곡선을
그리게 된다. 따라서 점 \(E \)은 점 \(E \)으로 투영되어 나타나고
가격은 \(P_1 \)가 된다. 하지만 수요가 증가하였으므로 현실에
서 가격은 \(P_1 \)에서 결정된다.

한편 이러한 수요의 증가가 MEY에는 어떤 영향을 미
치는지 살펴보도록 한다. 수요의 증가는 MSY 지점부터
수요곡선의 상승을 의미하며 이에 따라 증가한 수요곡선
에 대한 MR 곡선을 다시 그리길 수 있게 된다. 따라서 MR
곡선은 MR로 이동하여 그리고서 수익의 가용성이 MC과
의 부분이 만나는 점의 \(E_{MSY} \)과 \(E \)을 연결하여 \(E_{MSY} \)
의 수질암을 둔화시킬 수 있다. 이로 MC를 따라 대량 시기가 이동하
면 이때의 균형가격을 구할 수 있게 된다. 따라서 실제로
국가와의 이중의 극한화면에 \(E_{MSY} \)점에서 극대화되며
이중은 극대화하는 점이 가격의 증가로 인하여 \(E_{MSY} \)
이 \(E_{MSY} \)를 상승하는 수준에서 결정될 수도 있
으므로 \(E_{MSY} \)의 투입이 \(E_{MSY} \) 수준을 넘게 되면 수확
량이 감소한다는 물리적인 제약조건에 따라 현실적인 정
책목표가 될 수 없고 MSY로 정책의 목표로 설정하는 것
이 사회적 환경을 극대화할 수 있다는 점에서 바람직하다.
이는 사회경제적인 요소에 의해 정책의 목표가 변동
하는 것이 비례하여 물리적인 측면에서 최적점이 명확하게
이정하기 때문에 어업참여자 스스로도 정책의 목표를 예
측이 가능하다는 점에서 우수하다고 할 수 있다.

다시 한 번 강조한 것은 가격이 일정하다고 가정하는
기본모형과 현실적으로 어획량이 감소하거나 시간이 증가
함에 따라 증가하는 수요를 고려하여 이러한 극대화점은 지
속적으로 증가하여 \(E_{MSY} \)을 상승하는 수준에서 결정될 수
있다.\(^3\)

다음으로 사회적 후생수준은 공익주의적인 입장에서 보
면 소비자의 생산자의 이익의 합의 극대화해야 한다. MEY의
⚕️, 에서는 생산자의 이익만을 관심의 대상으로
두고 있지만 MSY에서 어획량이 극대화되기 때문에 소비
자의 후생수실이 최소화되는 경우 더 나아서 어업각도
인한 실질적인 초소화는 점을 간결하게 할 수 있다.
생산
량이 극대화될 때 어획량의 투입이 극대화되고 이에 따
로 공원수실은 가장 높게 된다. 따라서 다음과 같은 3가
지 요인에 의하여 MEY보다는 MSY가 정책의 기준이 되
어야 할 것이라는 결론을 내릴 수 있다.

1. 가격 상승효과 때문에 이중을 극대화하는 어획력
이 \(E_{MSY} \) 수준을 초과할 수 있다(표와 \(E_{MSY} \)
2. MSY에서 고용효과가 극대화된다.
3. 어획량이 극대화될 때 소비자의 후생수실이 극소화

\(^3\)이기서 주의할 점은 MEY가 MSY보다 수익이 없다는 이론은 논의의 여지가 있지만, 우리의 현실에서처럼 어획량이 적응수록
가격의 상승효과가 발생할 경우 \(E_{MSY} \)가 \(E_{MSY} \)을 초과할 수 있다는 것이다. 따라서 \(E_{MSY} \)와 MSY가 같은 \(E_{MSY} \)의 비교와 \(E_{MSY} \)과
\(E_{MSY} \)의 같은 \(E_{MSY} \)의 비교를 동등하게는 안한다. 다시 말해 MEY가 MSY보다는 이상적인 수준이므로 수익이 높음에도 여전히 어획력
이 \(E_{MSY} \)에서의 어획량이 MSY에서의 어획량보다 \(E_{MSY} \)의 어획량보다 \(E_{MSY} \)을 초과할 수 있는 예외적인 경우에 대한 이론적 근거는 규명하지 못하고, 이런 이유로 인
해 어획량을 위한 최적어획량정책을 위해서는 MSY를 일관성있게 적용하는 것이 핵심적임을 설명한 것이다.
3. 어선강착사건의 경제적 후자효과분석

어선강착사건의 경제적 효과분석을 위한 유무결정

어떤 사업을 수행함에 따른 경제적 타당성을 분석하는 데 있어서 편익과 비용을 얼마나 정확하게 추정하느냐는 아주 강조하지도 나지치지 않다. 이와 같은 요소가 비용을 추정할 때 무엇보다 중요한 기본원칙은 사업을 수행하였을 경우(with project)와 수행하지 않았을 경우(without project)의 차이에 의거하여 편익과 비용을 파악해야 하며 사업을 하기 전(before project)과 사업을 한 후(after project)의 차이를 비교하여서는 안 된다는 것이다. 왜냐하면 사업을 수행하였을 경우와 하지 않았을 경우를 비교하여야만 진정한 기회비용을 고려할 수 있기 때문이다. 이와 같이 사업사례진단 후의 차이를 바탕으로 한 편익과 비용의 추정을 전후결정이라고 하고, 사업을 수행한 경우와 그렇지 않은 경우의 차이를 바탕으로 한 편익과 비용의 추정을 유무결정이라고 한다. 경제학에서는 항상 기회비용의 개념을 사용하고 있기 때문에 이 응용에서 유무결정원칙을 준수하여 비용-편익분석과 같은 경제분석을 실시하는 것이 바람직하다(2000).

예를 들어서 어업자원의 회복을 위하여 어선강착사를 하였다고 가정한다. 사업을 수행하지 않은 시점에의 자원량이 100만 톤이고, 강착사업을 한 후의 자원량은 강착사업에도 불구하고 다른 경제적 요인들로 인하여 80만 톤으로 감소할 수 있다. 사업전후간을 비교하면, 어선강착사업을 하였을 경우에도 불구하고 자원량은 20만 톤(-100만 - 80만) 감소함으로써 이 사업의 편익이 발생하지 않는 결과를 나타낸다. 하지만, 사업을 하지 않았을 경우 자원량은 80만 톤보다 더 적은 50만 톤으로 감소할 수 있다. 이런 경우 사업의 수행유무에 의해 자원량은 20만 톤이 감소한 것이 아니라 30만 톤(-80만 - 50만)의 감소폭 축소효과(편익)가 발생한 것이다.

소요된 어선강착사업수지비의 현재가치화

어선강착사업을 위해 투입된 비용의 현재가치를 위해 우선 강착사업의 실적8을 살펴볼 필요가 있다. 어선강착 사업의 효과가 나타나기 위해서는 일인이가 존재한다. 즉, 어선을 감착 하였을 때 어업자원의 삼가에 이르러로 경제학적 가치가 감소되지 않는 경우 비용만 소요되고 편익이 발생하지 않는다는(해양수산부 2003). 하지만 편익의 발생여부와

\[\text{Price} \]

\[S_1 \]

\[P_2 \]

\[Q_1 \]

\[Q_2 \]

\[S_2 \]

\[\text{Fig. 2. Increasing effect of direct benefits by increasing yield.} \]

9) 여기서 경제적 손실의 이론적 근거는 우리가 이어가 이것이 MSY 수준을 유지하면 얻을 수 있는 기회비용(총수익)에서 실제이익에 따라 얻은 가치(taxing value)를 공제한 개념이다. 즉, 경제적 손실 = \(\sum_{t=1}^{n} (\{MSY_t - C\} \times P_t) \). 여기서, \(\alpha \) 각 여론, \(\alpha \) 연도를 나타내고, \(C \)는 어획량, \(P \)는 어획량을 나타낸다.

10) 이 부분은 생산자에게 귀속된다.
(2) 동해적 효과분석 및 경제적 가치의 종합화

전술한 바와 같이 1994년에 실시하였던 어선감착사업으로 인한 루저효과는 크게 직접적 편익과 간접적 편익으로 구분할 수 있으며 자료 분석의 한계로 인하여 본 연구에서는 직접적인 편익으로서 어획량감소 촉모효과(자원 회복효과)와 간접적 편익으로서 어획비용감소 등 어업환경 개선효과로 근거해 분석하였다. 한편, 본 연구에서는 어선감착사업으로 인한 편익의 가치를 보다 정확히 계산하기 위해서 미래 발생 가능한 편익의 흐름을 사회적 할인율로 할인하여 현재가치화하는 동해적 효과론(Sjømanda and Conrad 1987)을 실시하고, 이들 경제적 가치를 종합화(aggregation)함으로써 어선감착사업으로 인한 루저효과의 규모를 제시하였다.

효과분석을 위한 모델구성 및 자료

자원평가모델은 여러 가지가 있으나, 본 연구에서는 최적 활용 가능한 자료의 특성으로 인하여 ASPIC 양의생산량 모델을 사용하여 연계해 총어업자산량을 평가하였다. ASPIC 모델은 균형(non-equilibrium) 해피(Schafer) 형 양생산량 모델로 어획량과 어획비용량 자료를 이용하여 자원량 수준을 평가하는 것으로 최대 자원량(K)과 자원의 본원성 증장율(intrinsic growth rate; r) 변수를 조절함으로써 아래와 같은 생물학적 변수를 추정하기로 한다.

\[
\begin{align*}
\text{MSY} &= K \cdot r/4 \\
X_{\text{MSY}} &= K/2 \\
F_{\text{MSY}} &= r/2.
\end{align*}
\]

(1) 총어업자원의 생성량 함수(growth function)

연계해 총어업자원의 생성량 함수(G(X))는 ASPIC 양의생산량 모델에서 추정된 변수를 사용하여 다음과 식 (1)과
(1)
\[G(X_i) = r \cdot X_i \cdot \left(1 - \frac{X_i}{K} \right) \]

(2) 수확량 함수 (harvest function)
수확량 함수는 다음 식 (2)와 같이 자원량 수준 \(X_i\)과 이 \(\text{확률요량 수준}(E)\)에 대해 선형적으로 비례하는 것으로 가정하였다.
\[H_i = q \cdot E \cdot X_i \]

(3) 비용비용 함수 (cost function)
비용비용함수는 식 (3)과 같이 일차적인 형태로 가정하였다.
\[C(E) = aE \]

(4) 자원동태함수
자원동태함수는 다음 식 (4)와 같이 나타낼 수 있다.
\[X_{i+1} = X_i + G(X_i) - H_i \]

Table 1. Average price.
<table>
<thead>
<tr>
<th>Year</th>
<th>Yield (ton)</th>
<th>Landing value (thousand won)</th>
<th>Unit price (won/ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>1,189,000</td>
<td>2,329,483,389</td>
<td>1,959</td>
</tr>
<tr>
<td>2001</td>
<td>1,252,099</td>
<td>2,468,308,722</td>
<td>1,971</td>
</tr>
<tr>
<td>2002</td>
<td>1,095,787</td>
<td>2,486,532,270</td>
<td>2,269</td>
</tr>
<tr>
<td>Average</td>
<td>1,178,962</td>
<td>2,428,108,127</td>
<td>2,120</td>
</tr>
</tbody>
</table>

Table 2. Yearly fisheries costs per day fished. (Unit: thousand won)
<table>
<thead>
<tr>
<th>Cost items</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating costs</td>
<td>175,032</td>
<td>190,893</td>
<td>206,965</td>
</tr>
<tr>
<td>- fishing gear</td>
<td>26,414</td>
<td>26,838</td>
<td>26,971</td>
</tr>
<tr>
<td>- maintenance</td>
<td>23,351</td>
<td>22,895</td>
<td>27,201</td>
</tr>
<tr>
<td>- fuel</td>
<td>61,066</td>
<td>77,699</td>
<td>82,324</td>
</tr>
<tr>
<td>- crew</td>
<td>64,201</td>
<td>63,461</td>
<td>70,469</td>
</tr>
</tbody>
</table>

(1) ASPIC 모형에서는 이용률자를 핵심적인 Schaefer 모델, Fox 모델, Pella 모델, Tomlinson 모델 등을 다 사용할 수 있으나, 사용 분석 결과 일반적인 Schaefer 모델이 가장 적합한 것으로 나타나 본 연구에서는 이용률자 총수행함수를 Schaefer 모델을 이용하였다.
Table 3. Standardized tons and numbers of coastal and offshore fisheries vessels.

<table>
<thead>
<tr>
<th></th>
<th>Under 5 ton</th>
<th>5-10 ton</th>
<th>10-20 ton</th>
<th>20-30 ton</th>
<th>30-50 ton</th>
<th>50-100 ton</th>
<th>100-200 ton</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of vessels</td>
<td>75,864</td>
<td>7,653</td>
<td>1,411</td>
<td>1,005</td>
<td>827</td>
<td>1,463</td>
<td>515</td>
<td>88,738</td>
</tr>
<tr>
<td>Tonnages</td>
<td>127,739</td>
<td>57,864</td>
<td>20,329</td>
<td>25,605</td>
<td>32,579</td>
<td>110,345</td>
<td>86,953</td>
<td>461,414</td>
</tr>
<tr>
<td>HP</td>
<td>8,791,508</td>
<td>1,998,550</td>
<td>417,149</td>
<td>826,316</td>
<td>363,154</td>
<td>777,338</td>
<td>528,901</td>
<td>13,702,916</td>
</tr>
<tr>
<td>Tonnage Ratio</td>
<td>28%</td>
<td>13%</td>
<td>4%</td>
<td>6%</td>
<td>7%</td>
<td>24%</td>
<td>19%</td>
<td>100%</td>
</tr>
<tr>
<td>HP Ratio</td>
<td>64%</td>
<td>15%</td>
<td>3%</td>
<td>6%</td>
<td>3%</td>
<td>6%</td>
<td>4%</td>
<td>100%</td>
</tr>
<tr>
<td>Vessel Ratio</td>
<td>85%</td>
<td>9%</td>
<td>2%</td>
<td>1%</td>
<td>1%</td>
<td>2%</td>
<td>1%</td>
<td>100%</td>
</tr>
<tr>
<td>Tonnages per vessel</td>
<td>1.7</td>
<td>7.6</td>
<td>14.4</td>
<td>25.5</td>
<td>39.4</td>
<td>75.4</td>
<td>168.8</td>
<td>475</td>
</tr>
<tr>
<td>Average tonnages per vessel</td>
<td>2,687</td>
<td>1,217</td>
<td>428</td>
<td>539</td>
<td>685</td>
<td>2,321</td>
<td>1,829</td>
<td>9,706</td>
</tr>
</tbody>
</table>

Table 4. Results of ASPIC model.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>50% Lower confidence level</th>
<th>50% Upper confidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>5.724E+07</td>
<td>4.881E+07</td>
<td>3.429E+08</td>
</tr>
<tr>
<td>r</td>
<td>7.200E-02</td>
<td>1.154E-02</td>
<td>8.222E-02</td>
</tr>
<tr>
<td>MSY</td>
<td>1.030E+06</td>
<td>1.000E+06</td>
<td>1.060E+06</td>
</tr>
<tr>
<td>XMSY</td>
<td>2.862E+07</td>
<td>2.440E+07</td>
<td>1.715E+08</td>
</tr>
<tr>
<td>X/MSY</td>
<td>3.600E-02</td>
<td>5.769E-03</td>
<td>4.111E-02</td>
</tr>
<tr>
<td>F/MSY</td>
<td>7.877E-01</td>
<td>3.821E-01</td>
<td>8.842E-01</td>
</tr>
<tr>
<td>F/MSY</td>
<td>1.534E+00</td>
<td>1.342E+00</td>
<td>3.219E+00</td>
</tr>
</tbody>
</table>

Fig. 5. A comparison of actual yields and estimated yields by the model.

Fig. 6. F/MSY와 X/MSY estimated by ASPIC model.

최대 지속적 생산 가능한 어획량계수(EMS)에 대한 어획량계수(E) 비율 추이를 분석해 보면 1975년 이후부터 E/EMS가 1보다 커지기 시작함으로써 낙하가 진행되었음을 알 수 있다. 하지만 최대 지속적 생산 가능한 자원량 수준(XEMS)에 대한 자원량(X) 비율 추이 분석에서는 1988년 이후부터 자원량 수준이 XEMS보다 작아졌고, 2000년대 들어서면서부터는 X/XEMS가 0.8보다 작아졌으며 자원량기준상 낙하상태에 놓인 것으로 평가되었다.

생물경제모델을 이용한 어전감각효과분석
(1) 어전감각사업 효과 분석을 위한 시나리오

수준을 그대로 적용함으로써 자원량 변화 및 경제적 효과변화를 분석하였다. 이 시나리오는 또한 시나리오 2의 효과와 비교하기 위한 하나의 기준으로서 제시되었다.

(2) 모델 분석 결과
1994년부터 2002년까지 어전감각사업이 이루어지지 않았다면 자원량 수준은 크게 감소한 것으로 나타났다. Fig. 7에 나타난 바와 같이 자원량은 시나리오 1과 2 모두 최대 지속적 생산 가능한 자원량 수준(XEMS)보다 낮은 수준에서 형성되지만, 어전감각사업이 없을 경우의 시나리오 1에서 자원량 수준을 하였을 경우의 시나리오 2에서 보다 높은 양을 보이게 되며 어획량이 감소하는 것으로 분석되었다. 구체적으로 시나리오 1(without project) 하에서는 10년 후의 자원량 수준만 11.6% 정도로 감소되었고, 25년 후에는 46%로 더욱 감소하는 것으로 나타났다. 반면, 시나리오 2(with project) 하에서는 자원량 수준이 10년 후와 25년 후 XEMS 대비 각각 71%와 63%로 분석되었다. 이와 같은 자원량 증대효과는 같은 기간동안 시나리오 1에서 변화하는 자원량과 시나리오 2에서 변하는 자원량 차이가 바로 감각사업을 통한 자원량 증대 효과가 될 것이다. 즉, 감각사업이 없었다면 자원량은 시나리오 1에서 분석한 바와 같이 크게 감소하지만, 감각차

Fig. 7. Yield trends by Scenarios (100 years period).

13)지금까지 이루어진 감각사업의 효과를 추정할 수 있는 방법은 어업시장을 직접 관측하거나 그 효과가 나타날 때까지 기다리는 두 가지의 방법밖에 존재한다.
14)한 연구의 목적은 어전감각의 경제적 효과를 분석하는 것이기 때문에 어획감각수준에 의한 경제적 효과구조로 근간한다.
한편, Fig. 7에 나타난 바와 같이 어선격식을 수행하지 않았을 경우의 연간 총어획량은 향후 20여년 간은 감축을 수행한 시나리오 한에서의 총어획량보다 크지만 그 이후에는 급속히 감소하는 것을 보여주고 있다. 추정된 연간에 총어업자원의 본원적 성장률(r)이 낮기 때문에 어선까지를 통해 어획량을 감소하도 자원량은 급속히 성장하지 못하고, 20여년의 경기에는 점진 조장파괴로 통해 어획량이 확대되고 있음을 시사하고 있다.

Table 5에 나타난 바와 같이 시나리오 2 하에서 25년간 총어획익의 순현가치가 시나리오 1 하에서보다 약 4조원정도 큰 것으로 추정되었다. 이는 시나리오 1 하에서의 어획량 수준이 시나리오 2 하에서 어획량 수준보다 높지만, 반대로 시나리오 1 하에서의 어획익수가 시나리오 2 하에서의 어획익수보다 많기 때문에 어획비용이 상대적으로 높아 어업비용이 적기 때문이었다.

어선감적사업의 경제적 효과분석을 위해서는 다른 자료 (소비자 및 생산자 잡여 자료 등)가 전무하기 때문에 어선 감적사업에 소요된 비용과 어선감적사업으로부터 발생한 총어획익을 비교함으로써 사업추진의 정부가 이 어선감적사업의 실질적인 현금흐름(real cash flow) 차원에서 타당성 여부를 판단하는 재무적 타당성을 분석한 수밖에 없었다. 재무적 타당성 검토를 위하여 여러 분석기를 고려한 주요 요인별 분석을 수행할 수 있지만, 본 연구에서는 기간의 확대(50년과 100년)에 따른 총어획익의 현재가치의 변화를 분석하였다. 최대지속가능한 어획량(MSY)에 도달할 수 있는 양후어선감적규모와 같은 현가가치(switch value)와 같은 분석은 다음 점(투자가격 저격평가)에서 행해졌다. 한편, 본 연구에서는 어선감적사업의 투자효용성 분석의 일원으로 편익의 현재가치와 비용의 현재가치를 비교한 편익-비용비율(benefit/cost ratio) 방법을 도입하였다. 즉, 어선감적사업을 수행하였을 경우와 그렇지 않은 경우의 투자효용성의 차이를 계량적으로 추정하였다.

분석 결과는 다음의 Table 6에서 보는 것처럼 어선감적 사업으로 인한 재무적 투자효과가 3.1조원에서 11.8조원으로 나타났으며, 특히의 사업은 현금흐름 발생기간을 50 년 이상 장기적으로 고려한 경우 사업비용의 어획익 현가가 (-)로 전환되는 것으로 나타났다.

Table 5. Estimated results of the model.

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Biomass in 10 years (million tons)</th>
<th>Biomass in 25 years (million tons)</th>
<th>Profits (100 mill. won)</th>
<th>Profits per vessel (100 mill. won)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17.6 (61%)</td>
<td>13.3 (46%)</td>
<td>52,874</td>
<td>4.2</td>
</tr>
<tr>
<td>2</td>
<td>20.3 (71%)</td>
<td>18.1 (63%)</td>
<td>93,230</td>
<td>9.6</td>
</tr>
<tr>
<td>Difference (2-1)</td>
<td>2.7</td>
<td>4.8</td>
<td>40,356</td>
<td>5.4</td>
</tr>
</tbody>
</table>

주: 1. () means the ratio of each biomass over X_{rev}
2. Profits are the present value under 25 years of economic life and 4% of discount rate.

Fig. 8. Biomass trends each Scenario.

![Biomass trends each Scenario](image)

Fig. 9. Yield Trends per vessel each Scenario.

![Yield Trends per vessel each Scenario](image)

Table 6. Results of financial feasibility analysis.

<table>
<thead>
<tr>
<th>Cash flows period</th>
<th>NPV with the project</th>
<th>NPV without the project</th>
<th>Incremental cash flows</th>
<th>PV of buyback costs**</th>
<th>Financial investment effects***</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 years</td>
<td>93,230</td>
<td>52,874</td>
<td>40,356</td>
<td>9,299</td>
<td>31,057</td>
</tr>
<tr>
<td>50 years</td>
<td>101,392</td>
<td>9,713</td>
<td>91,679</td>
<td>9,299</td>
<td>82,380</td>
</tr>
<tr>
<td>100 years</td>
<td>98,588</td>
<td>-28,984</td>
<td>127,572</td>
<td>9,299</td>
<td>118,273</td>
</tr>
</tbody>
</table>

주: *Incremental cash flows = NPV with the project - NPV without the project.
**PV of buyback costs : PV of buyback costs from 1994 to 2002.
***Financial investment effects = Incremental cash flows – PV of buyback costs.
4. 어선감책사업에 대한 경제영리 평가

어선을 감책하는 경우 시나리오는 충분한 어획노력의 감소가 이루어지고 정책이 실패하지 않도록 적지 않은 어획노력의 관리정책이 시행되는 것을 가정하여 가장 적은 정책을 통해 경제적 효과만 만족하는 경우에 상정된다. 이로써 자원량의 최적수준은 현재의 자원량에 따른 적성량과 환경량과의 결합점, 그리고 현재의 어획량에 의하여 결정된다. 그러나 어획량이 최적수준보다도 자원량과 성장량의 과정을 통해 결정된다. 이러한 정책은 어획량이 적정적으로 조정되며 정책이 정당하게 추정할 수 있다고 하더라도 전반의 어획노력의 두입과 같은 사회적 변수에 의하여 영향을 받게 된다. 따라서 어선감책정책을 도입하는 경우의 시나리오에서는 어획량에 대한 추가적인 가정이 필요하게 된다.

앞서의 시나리오 분석에서는 목표 자원량, 여기서는 최적 수준을 비롯한 수준이 XMSY로 맞추어지지 않는 것으로 나타났다. 그러나 감책사업의 정책 목표는 최적 수준을 바탕으로 최적 수준으로 조정이 이루어져야만 최적 어획량을 갖는 것이 된다. 이러한 이유로 본 절에서는 목표 자원량 수준이 달성되기 위해서는 함정 감책사업이 어떻게 이루어져야 하는지를 추가적으로 분석해 보았다. 이를 분석하기 위해 다음의 3가지 시나리오로 나누어 살펴보았는데, 각각의 안은 다음과 같다.

시나리오 1: 2003년도 현제에 몇 %의 어선을 감착하면 항후 25년 후 목표 자원량이 달성되는가?

시나리오 2: 2003-2007년의 5개년에 걸쳐 몇 %의 감착하면 항후 25년 후 목표 자원량이 달성되는가?

시나리오 3: 2003-2006년의 3개년에 걸쳐 몇 %의 감착하면 항후 25년 후 목표 자원량이 달성되는가?

각각 시나리오에 대한 분석을 실질적정도로써 의하여 추정해 본 결과 시나리오 1의 경우 2003년도 현제 46%의 어선감책이 더 이루어지면 25년 후에 목표 자원량 수준이 달성되는 것으로 나타났다. 시나리오 2의 경우에 12% 5년 동안 감책사업이 이루어졌다면 25년 후 목표 자원량이 달성되었고, 시나리오 3의 경우에는 매년 20%씩 3년 동안 어선감책이 이루어지면 목표 자원량 수준이 달성되는 것으로 각각 분석되었다. 보다 구체적인 결과는 다음의 Table 7과 같다.

5. 결 론

본 연구는 어선감책사업에 대한 경제적 투자효과분석을 위한 기본방향을 도출하기 위해 어업자원 관리정책의 목표를 MEYa의 MSY로 설정하였다. 그 이유는 어획량의 감소로 인한 가격의 상승으로 MEYa에서의 어획노력이 MOS에의 어획노력이 MSY에서의 어획량을 초과하여 나타날 수 있고, MSY에서의 어획량과 고용인원이 극대화되어 소비자의 후생과 고용수준이 최대로 되기 때문이다. 즉, 감책사업으로 인한 실업은 일시적인 것이 정책이 성공하는 경우 다시 고용이 증가된다.

어선감책사업으로 인한 편익의 가치를 보다 정확히 계산하기 위해서 미래 발생 가능한 편익의 흐름을 사회적 할인율로 할인하여 현재가치화하는 동태적 효과분석을 실시하고, 이를 경제적 가치를 총합화(aggregate)함으로써 어선감책사업으로 인한 총투자효과의 규모가 분석되었다. 그 결과 1994년부터 2022년까지 어선감책사업을 수행한 경우와(project) 그리고 없었을 경우(without project)의 차이가 4조원 정도로 추정되었다. 그리고 어선감책사업에 소요된 비용과 어선감책사업으로부터 발생한 총 편익은 비교함으로써 사업체제의 정착가 어선감책사업의 실질적인 현금흐름(real cash flow) 차원에서 타당성여부를 판단하는 재무적 타당성 분석 결과, 사업의 파급효과기간이 50년일 경우 3.1조원, 파급효과기간이 100년일 경우 11.8조원으로 각각 나타났다. 또한, MSY 수준을 회복하기 위해 어선감책사업에 대한 규모를 시나리오별로 살펴본 결과 2003년도 1년간에 46%의 감착이 이루어지거나, 2003년 이후 5개년 매년 12%의 감착이 이루어지거나 또는 매년 20%씩 3년간 감착이 이루어지면 25년 후에 목표자원량 수준이 달성되는 것으로 분석되었다.

어선감책사업의 직접적인 효과는 어획량의 일시적 감소와 명확한 어획량의 증가이다. 어선감책정책으로 인한 자원량의 증가는 미래세대에 혜택을 줄 수 있다는 점에서 정책적 편익으로 볼 수 있으나 MSY 수준이상으로 증가하게 되면 현재세대의 소비가 감소하기 때문에 어음이 의외로 많으며, MSY 수준까지 증가한 자원량은 어획량의 증가로 판단이 나타나도 자원량 자체를 편익으로 계산하는 것 은 이후개발의 위험에 따른다. 어선감책사업의 간접적인 효과는 필요 이상으로 어업행위 참여단 노동자 자본

Table 7. Results of investment potential assessment.

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Biomass in 10 years (mill. tons)</th>
<th>Biomass in 25 years (mill. tons)</th>
<th>Profits (100 mill won)</th>
<th>Profits per vessel (100 mill won)</th>
<th>B/C ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.4 (89%)</td>
<td>28.6 (100%)</td>
<td>106,274</td>
<td>20.2</td>
<td>1.59</td>
</tr>
<tr>
<td>2</td>
<td>24.8 (87%)</td>
<td>28.6 (100%)</td>
<td>102,996</td>
<td>12.1</td>
<td>1.04</td>
</tr>
<tr>
<td>3</td>
<td>25.3 (88%)</td>
<td>29.1 (102%)</td>
<td>103,496</td>
<td>13.3</td>
<td>1.58</td>
</tr>
</tbody>
</table>
의 생산요소가 사회의 다른 부분에서 생산활동에 독립될 수 있다는 점에서 이학비용의 감소를 편익으로 산정할 수 있다.

사 사

이 논문은 해양수산부 "연근해 어선강착사업 투자효과 분석"에 대한 연구사업의 일부분으로서 저자에 의해 수행된 부분이지만, 이 논문의 내용은 해양수산부의 공식적인 견해가 아니고, 저자의 의견이다. 이 논문에 대하여 유익한 의견을 주신 이명의 심사자들에게 감사드린다.

참고문헌

농수산부. 수산통계연보, 각년호.
농림수산부. 농림수산통계연보, 각년호.
수협중앙회. 수산물계통연예고통계연보, 각년호.
수협중앙회, 어업경영조사보고, 각년호.
해양수산부. 해양수산통계연보, 각년호.

Received Dec. 1, 2005
Revised Feb. 6, 2006
Accepted Mar. 2, 2006