Induction of Glyceollins by Fungal Infection in Varieties of Korean Soybean

Lee, Mee Ryung¹, Joo Yeon Kim¹, Jiyeon Chun³, Sunmin Park⁴, Hyo Jung Kim⁵, Jong-Sang Kim⁵, Jong-II Jeong¹, and Jeong Hwan Kim¹,2*

¹Division of Applied Life Science (BK21), Graduate School, ²Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 660-701, Korea
³Department of Food Science and Technology, Sunchon National University, Sunchon 540-742, Korea
⁴Department of Food and Nutrition, Hoseo University, Asan 336-795, Korea
⁵School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Korea

Received: May 13, 2010 / Revised: May 13, 2010 / Accepted: May 19, 2010

Glyceollins, one of the inducible phytoalexins produced by plants, were induced in a number of varieties of Korean soybean through fungal infection. Of the tested soybean varieties, Tae-Kwang, though not the most productive, was found to be currently the most suitable for the induction of glyceollins. Amongst the fungal species, Rhizopus microsporus var. oligosporus was seen to be the most effective elicitor. Halved soybean seeds produced glyceollins upon fungal infection; however, chopped soybeans and homogenized soybeans did not produce significant quantities of glyceollins.

Keywords: Glyceollins, fungal infection, soybean variety, R. oligosporus

Glyceollins are a member of a group of inducible phytoalexins produced by plants when they are exposed to a number of stress factors such as microbial infection, chemical, or physical stresses [1–3, 5]. It is thought, due to their antimicrobial activities, that glyceollins are produced in order to protect plants from microbial infection [5]. Recent studies have shown that glyceollins may well have other important biological functions, for instance by serving to increase insulin sensitivity as a result of estrogenic or anti-estrogenic activities, and even preventing cancer [8–11]. It is hence of little surprise that, as a result of these biofunctionalities, efforts have been made towards the utilization of glyceollins as an active ingredient in fermented foods. For example, soy yogurt has been produced from black soybean seeds enriched with glyceollins through fungal inoculation [6]. The rationale behind the current study is that this same strategy could be utilized to improve the functionality of traditional Korean fermented soy foods such as cheonggukjang and doenjang. Herein are examined the efficiencies of glyceollin induction in a number of varieties of popular Korean soybean, through the inoculation of fungal species. In this way, it is hoped that suitable combinations of soybean varieties and fungi for the production of fermented Korean soy foods can be determined.

Varieties of Korean soybeans were soaked in distilled water overnight at room temperature and then dehulled, by hand, before fungal inoculation. It was noted that the swollen soybean seeds were very easily halved during the dehulling process. Halved seeds were then placed on top of four layers of filter paper (Hyundai Micro Ltd., Qualitative, Korea), placed in a Petri dish (diameter 150 mm), wetted with 30 ml of sterile water, inoculated with fungal spores (5 × 10⁹ spores/200 g soybean), and then incubated at 25°C for 3 days in the dark. During the incubation period, the soybean seeds were seen to germinate, while fungi grew on the surface of seeds. After incubation, the soybeans were frozen overnight and then freeze-dried. Fungal spores were recovered from mycelia grown on PDA agar (Difco, Becton, Dickinson and Co., MD, U.S.A.) for 1 week at 25°C. Mycelia were collected using a sterile wooden stick, resuspended in a small volume of sterile deionized water, and then filtered using cheese cloth. In this manner, five fungal species were tested for the induction of glyceollins: Aspergillus awamori ATCC 14331, Aspergillus niger ATCC 4695, Aspergillus oryzae ATCC 11493, Aspergillus sojae ATCC 9362, and Rhizopus microspores var. oligosporus ATCC 22959.

For the extraction of glyceollins, freeze-dried soybean samples were mixed with 80% ethanol (7.0 ml/g of dry...
indicated to infect the soybeans (data not shown). Although
the least glyceollins amongst the species examined. Soybean
Dae-Yang ± (604 ± 2 µg/g soybean), and Ceong-Jak (473 ± 12 µg/g soybean).
Dae-Yang (344 ± 2 µg/g soybean) was found to produce the
least glyceollins amongst the species examined. Soybean
seeds did not produce glyceollins during incubation if not
inoculated with fungal spores (data not shown). Although
Soon-Chang seed consistently produced more glyceollins than
the other varieties throughout our studies, the homogeneity
of Soon-Chang seeds was questionable. Soon-Chang soybean
was cultivated and harvested by local farmers in Soonchung
county, Jeollabuk-do, for the production of cheonggukjang
and doenjang through traditional means. However, the
genetic homogeneity of the seeds could not be confirmed.
Other varieties were cultivated in experimental fields that
were supervised by researchers and thus the genetic identity
could be confirmed. Since the Soon-Chang soybean was found
to be superior to the other varieties for yield of glyceollins,
future studies on the characteristics and genetic homogeneity
of the Soon-Chang seeds would appear to be necessary for
the optimal production of glyceollin-enriched fermented
soy foods. Amongst the other varieties examined, Tae-Kwang
would appear to be the most suitable for the production of
fermented soybean foods fortified with glyceollins because
this variety is already cultivated on a large scale, and it is
thus less expensive when compared with other varieties
such as Aga and Cheong-Jak (black soybean).

The highest yield for the glyceollin production was observed when the Soon-Chang seed was infected with A. sojae (1,263 ± 56 µg/g soybean), followed by R. oligosporus (984 ± 50 µg/g soybean), A. oryzae (645 ± 30 µg/g soybean), A. sojae (589 ± 19 µg/g soybean), and A. niger (104 ± 4 µg/g soybean) (Fig. 2A). For Tae-Kwang, the best yield was observed with R. oligosporus (587 ± 3 µg/g soybean) and followed by A. awamori (222 ± 1 µg/g soybean), A. sojae (219 ± 15 µg/g soybean), A. niger (203 ± 13 µg/g soybean), and A. oryzae (200 ± 45 µg/g soybean) (Fig. 2B). For Aga, optimal yield was observed with R. oligosporus (536 ± 2 µg/g soybean), followed by A. sojae (255 ± 6 µg/g soybean) (Fig. 2C). No glyceollin was detected when A. oryzae was used for infection, although this organism is often used
for the production of fermented soy foods. These results
emphasized the importance of the careful selection of a
fungus for a specific soybean variety, if glyceollin-enriched
fermented food is the intended product. As a further
illustration this has been confirmed in other studies; for
example, when Boué infected Pioneer 95B41 seeds with
four Aspergillus species (A. sojae, A. oryzae, A. niger, and
A. flavus), A. sojae was found to be the best elicitor
(955 µg/g soybean), whereas all the other species produced
significantly less glyceollins [1].

Among the fungal species, R. oligosporus seemed the
most suitable elicitor for the induction of glyceollins. Although A. sojae was better for the Soon-Chang seed, R. oligosporus consistently induced higher amounts of glyceollins
in all the other varieties. Moreover, soybeans infected with
R. oligosporus were noted to produce a milder flavor than
soybeans infected with other fungi, and hence resulting in
a more palatable product (data not shown). Since R.
oligosporus is well known as the starter for tempeh [7],
this organism seems promising not only as an elicitor for

![Fig. 1. Induction of glyceollins in different varieties of soybean by infection with R. oligosporus.](image)
A. Aga; B. Tae-Kwang; C. Soon-Chang; D. Cheong-Jak; E. Nam-Poong; F. Dae-Yang.
glyceollins but also as a starter for fermented soybean foods fortified with glyceollins.

Halved soybeans produced much more glyceollins than those that had been chopped (cut into several pieces with a razor blade) or homogenized (by a Waring blender) (Fig. 3). This indicates that maintaining the whole structure of a seed is important for the synthesis of glyceollins upon fungal infection. Although chopped or homogenized seeds have more surface areas, thus providing seemingly more favorable conditions for mycelia to grow, the biosynthetic capabilities of the seed may be hindered. Depending on the degree of chopping (number and size of pieces), it is conceivable that different results may be obtainable. Hence, more detailed studies are necessary to determine the most suitable physical forms for soybean seeds. Along similar lines of reasoning, different methods of fungal inoculation should be examined.

In summary, of the soybean species examined, and in consideration of factors such as genetic identity, availability, and cost, the Tae-Kwang variety would appear to be the most suitable seed in Korea for the massive production of soybean foods fortified with glyceollins. R. oligosporus was found to be the best elicitor, and halved seeds were better for glyceollins production than chopped or homogenized seeds. The development of new soybean varieties, which induce more glyceollins, is very desirable, while further studies on currently available soybean varieties, including Soon-Chang, are also necessary.

Acknowledgments

This work was supported by grant 108046-03-2-HD110 (2008) from the Agricultural R&D promotion center funded by the Korean Government. M. R. Lee was supported by the BK21 program, MEST, Korea. The authors would like to express their sincerest gratitude to Dr. S. M. Boué for kindly providing glyceollin standards.
REFERENCES


