The Effect of Adaptation to Sound Intensity on the Neural Metabolism in Auditory Pathway: Small Animal PET Study

Dong-Pyo Jang
Neuroscience Research Institute, Gachon University of Medicine and Science
(Received December 3, 2010. Accepted December 15, 2010)

Abstract: Although sound intensity is considered as one of important factors in auditory processing, its neural mechanism in auditory neurons with limited dynamic range of firing rates is still unclear. In this study, we examined the effect of sound intensity adaptation on the change of glucose metabolism in a rat brain using [F-18] micro positron emission tomography (PET) neuroimaging technique. In the experiment, broadband white noise sound was given for 30 minutes after the [F-18]FDG injection in order to explore the functional adaptation of rat brain into the sound intensity levels. Nine rats were scanned with four different sound intensity levels: 40 dB, 60 dB, 80 dB, 100 dB sound pressure level (SPL) for four weeks. When glucose uptake during the adaptation of a high intensity sound level (100 dB SPL) was compared with that during adaptation to a low intensity level (40 dB SPL) in the experiment, the former induced a greater uptake at bilateral cochlear nucleus, superior olivary complexes and inferior colliculus in the auditory pathway. Expectedly, the metabolic activity in those areas linearly increased as the sound intensity level increased. In contrast, significant decrease interestingly occurred in the bilateral auditory cortices: The activities of auditory cortex proportionally decreased with higher sound intensities. It may reflect that the auditory cortex actively down-regulates neural activities when the sound gets louder.

Key words: Sound Intensity, Auditory processing, [F-18]FDG, small animal PET

본 논문에서는 [F-18]FDG 소모를 전용 PET기술로 소리 크기에 대한 신경학적 메커니즘 연구에 응용한다는 소문에 세서 마취에 대한 영향 없이 다양한 실험 디자인을 통해 기존 영상연구의 결과를 보완하면서 새로 제공한 정보를 얻을 수 있겠다고 주장하고 있다. 그리고 여러 가지 다른 크기의 소리 세서에 백서를 노출시키면서 소동을 전용 PET을 이용하여 뇌의 활동변화를 측정하고 하였다. 우선 소리세서의 레벨에 따른 청각관련 뇌의 영역에서의 소모량 변화를 위해 40 dB, 60 dB, 80 dB, 100 dB 음압 레벨(Sound Pressure Level: SPL)의 연속적인 화이트 노이즈 자극을 백서에게 주고 소동을 전용 PET 영상을 활용하였다.

II. 연구 방법

1. 실험동물

종 마리의 300-350 g 무게의 Sprague Dawley 백서들 이 실험에 사용하였다. 모든 실험과정은 동물연구에 대한 국법보건처지국(National Institutes of Health Guidelines for Animal Research)에 맞추어 진행되었다. 동물은 12시간 주기로 밤/낮(오전 8시 점심)이 구분되며, 50-60% 정도의 습도를 가지는 자외소금에 적합한 불을 켜 있는 환경에서 보관되었다. 기본적으로 실험시작하기 4일전에는 연구실에 배속되며 백서가 실험환경에 적응하도록 여유 시간을 두었다.

2. 소리재생

소음원은 Forge 9.0 소프트웨어를 사용하여 만든 디자인음으로 만들어 DTB 사의 RP2.1 시스템을 사용하여 야 또는 심호의 효과를 통해 실험을 통해 실험에 맞는 소리 크기로 추출되게 자극으로 사용되었다. 그림 1(a)에서 처럼 소리는 자체 제작한 90 cm × 90 cm × 90 cm의 방음사각형상자(30 dB 소리감수)의 스피커를 통해 백서에 전달하도록 하였다. 정확한 소리작용에 대한 실험 시 작성할 소리작용장치(Sound Level Meter)를 이용하여 자극소리에 대한 평균소리작용을 측정하였다.

3. 실험프로토콜

종 마리의 백서에서 4가지 다른 소리작용(40 dB, 60 dB, 80 dB, 100 dB) 화이트 노이즈 자극 30분간 두 세트 관찰한 후에, [F-18]FDG 소모를 전용 PET 영상을 활용하였다. 그림 1(b)의 영상프로토콜에서 정의하는 것처럼 한마리의 백서에 [F-18]FDG 주입 직후 하나의 화이트 노이즈 자극을 30분간 들려 주고, 소리 자극이 끝난 후 소동을 전용 PET을 이용하여 소리작용동안 측정된 [F-18]FDG을 측정하였다. 그리고 1주일 후에 같은 방식으로 다른 크기의 소리를 자극후 영상화하는 작업을 반복하였다. 각 백서당 4주간 총 4번의 다른 크기의 소리자극에 대한 뇌활성도 변화가 측정되었으며, 소리작용 순서에 대한 영향을 월세하기 위해 백서마다 랜덤하게 소리작용 자극 순서를 바꾸어 실험을 진행하였다.

4. [F-18]FDG 소모를 전용 PET 영상 프로토콜 및 분석

[F-18]FDG 주입 30 분 전에는 환경에 적응하기 위해 60 dB 화이트 노이즈 자극을 주어 30도C의 온도로 따뜻하게 하여 FDG가 노출에 최소한 촉촉하고, 최대한 뇌에 촉촉되어도 하였다. 100 g 몽무게당 500µCi [F-18]FDG는 마취없이 고려 정맥을 통해 주입하였고, 자극실험 및 [F-18] FDG 측정이 끝난 후 30분간 소동을 전용 PET 영상촬영
그림 1. 소리자극 실험을 위한 소리자극시스템 및 프로토콜 (a) 소리 자극을 위한 소리자극 כולו, 30 dB 정도의 소음 차단되며, 내부에서 모니터링 할 수 있도록 구성되었다. (b) 실험 시 소리자극.csrf의 내부 모습 (c) micro PET 영상 실험 프로토콜

Fig. 1. Experimental system and protocol for sound stimulation (a) Sound stimulation chamber with 30 dB sound proof and monitoring camera (b) Scene monitored during the sound stimulation experiment (c) Experimental protocol for micro PET imaging experiment with sound stimulation

그림 2. [F-18]FDG micro PET 영상 분석 프로세서. 분석의 정확도를 위해 뇌부분 만을 추출하여 다루고 백그라운드 인자를 이용하여 같은 공간으로 정규화한 후에 statistical parametric mapping(SPM)을 통해 그룹분석 및 영역 분석을 진행하였다

Fig. 2. [F-18] FDG micro PET analysis procedure. Only brain images extracted for accurate analysis were normalized with micro PET templates. These data were analyzed with statistical parametric mapping(SPM) technique for group analysis and regional analysis

을 하였다. 그림 2에서처럼 얻어진 영상 데이터의 정확한 통계적 분석을 위해 소동률 전용 PET 영상에서 백서의 뇌 영상만 캡으로 그려서 추출하였다. 추출된 각 영상은 정확한 해부학적 위치 정보를 가지고 있는 [F-18]FDG PET 백서 뇌 템플릿에 정규화 되어졌고, 통계적인 파워를 높이기 위해 각 영상은 2 mm FWHM(full width at half maximum)을 가지는 가우시안 키팩을 이용하여 스무싱(smoothing) 단계를 거쳤다. 통계적인 분석은 복합기반의 통계분석(Voxel based statistical analysis) 방법이 사용되었다[15]. 통계적 기준치는 P < 0.05 (Familywise 에러보정, T = 6.0)를 사용.
하였고, 결과에 대한 T값을 PET 빌딩 및 영상과 함께 보여 주었다. 국소 뇌영역에 대한 그래프 분석을 위해서는 통계적 으로 최대 T값을 가지는 복제를 기준으로 반경 0.5 mm 내의 복제값들의 평균을 구하여 사용하였다.

III. 결 과

100 dB 소리 자극과 40 dB 소리 자극 조건을 비교했을 때 청각기능에서 내측두부핵(MGN)을 제외한 대부분의 핵들에서 포도당 대사의 유의미한 차이를 보였다(Table 1). 이 영 역들 이외에도 인손마(Insula)영역에서도 변화를 보였다. 와 우각핵(CN), 위통리브핵(SOC) 및 하부의 하구(IC)의 경우 40dB의 소리 자극보다 100dB의 시끄러운 소리에서 유의미하게 활성도가 증가함을 보였다(그림 3). 그러나 청각피 점연(AC)에서는 포도당 대사량이 소리자극에 큰 영향을 줄 어드는 것으로 나타났다. 이러한 경향은 4 개의 다른 소리 크기 레벨을 동시에 비교한 그림 3(b,c)에서는 좀 더 확연히 볼 수 있다. 그림 3(b)는 40 dB 환경에서의 각 뇌영역의 뇌 활성도를 100로 가정하고 상대적인 변화를 본 것으로서 청각피점연(AC)의 경우 소리자극의 크기에 반비례하여 활성 도가 증가하는 것으로 나타났다. 이는 원측 오른쪽이 동일 한 결과를 보였다. 내측두부핵(MGN)의 경우 통계적으로 유 의미한 차이를 보이지 않았고, 와우각핵(CN), 위통리브핵 (SOC)의 경우 전반적으로 소리가 증가함에 따라 선형적 으로 활성도가 증가함을 보였다.

IV. 토의 및 결론

본 연구는 처음으로 [F-18]FDG 소동물 전용 PET 뇌영 상기능을 이용하여 소동물에서 일차감각 소리자극에 따른 뇌 활동 변화를 보여 주었다. 특히 백서의 조그만한 뇌에서 PET 영상을 통해 와우각핵(CN), 위통리브핵(SOC), 하부 의 하구(IC) 및 청각피점연(AC)과 같은 청각기능의 중요한 핵에서 소리자극에 대한 반응을 확인하여 구분할 수 있는 것으 로 나타났고, 이는 소동물 전용 PET 뇌영상 방법이 적합한 해상도를 가지고 소리와 같은 일차감각 연구에 충분히 사용 될 수 있는 측면에서 중요한 의미를 지닌다. 특히 e-fos 나 자가방사기록법 Autoradiography 같은 방법과는 달리 하나 의 개체에서 여러 실험조건에서 반복해서 영상을 얻을 수 있기 때문에 개체에 대한 차이를 배제한 영상연구가 가능할 수 있는 장점이 있다. 이 이외에도 마취의 영향을 배제하고 뇌 영상을 하기 위해서 때문에 향후 동물 행동에 관련된 연구에 [F-18]FDG 소동물 전용 PET 뇌영상기술이 널리 사용될 수 있을 것으로 사료된다.

그림 3에서 보는 바와 같이 본 연구 결과에서는 소리가 가지는 것이 있는 곳에 빠르게 하우각핵(CN), 위통리브핵(SOC), 하부의 하구(IC) 영역에서 뇌의 활성도가 빠르게 나타나는 것으로 관찰되었다. 이는 기존의 MRI 연구결과들과 상당히 일치한다[5,11]. 그리고 그림 3(b,c)에서 보는 바와 같이 청각기능에서 아래로 내려 감쇠될 소리가 변화에 대한 반 응이 더욱 커진다는 부분적인 정보도 알 수 있었다. 본 연구 결과 중에서는 가장 흥미로운 것이 하나는 소리가 가지는 경계에 따라 청각피점연의 활성도가 변한다는 것이다. 이는 기 존 연구들에게 보여준 것처럼 큰 소리의 자극에 대하여 청각피점연의 활동이 증가한다는 보고와는 정반대의 결과이다. 그러나 이러한 다른 결과는 소리자극의 빌딩의 차이에 기인한 것으로 보인다. 기존 연구에서는 소리가 가지는 것들에 대해서는 다른 방법으로 변화할 때의 순간적인 뇌의 반응을 본 반면, 본 연구

<table>
<thead>
<tr>
<th>Table 1. 100 dB와 40 dB의 소리 자극 조건을 비교했을 때 유의미하게 포도당 대사량 활성도는 뇌의 오른쪽 영역에서도 나타난 결과를 표시한 것이다.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1. The activated or deactivated brain region in the comparison analysis between 100 dB and 40 dB condition. Paxinos coordinates was found as a position with maximum T-value in the activated or deactivated area vicinity.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>뇌영역</th>
<th>X</th>
<th>y</th>
<th>z</th>
<th>T-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cochlear Nucleus (CN)</td>
<td>L</td>
<td>-3.8</td>
<td>-11.2</td>
<td>-8.8</td>
</tr>
<tr>
<td>Superior olivary complex (SOC)</td>
<td>R</td>
<td>3.4</td>
<td>-11.2</td>
<td>-9.4</td>
</tr>
<tr>
<td>Inferior Colliculus (IC)</td>
<td>L</td>
<td>-2.6</td>
<td>-9.6</td>
<td>-10.4</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>1.8</td>
<td>-9.2</td>
<td>-10.8</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>-1.8</td>
<td>-9</td>
<td>-4.8</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>1.8</td>
<td>-8.8</td>
<td>-4.8</td>
</tr>
<tr>
<td>Auditory cortex (AC)</td>
<td>L</td>
<td>-6.4</td>
<td>-5.4</td>
<td>-5</td>
</tr>
<tr>
<td>Insula</td>
<td>R</td>
<td>6.4</td>
<td>-5.8</td>
<td>-5.2</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>-5.2</td>
<td>0.6</td>
<td>-6.6</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>5.4</td>
<td>0.6</td>
<td>-7.4</td>
</tr>
</tbody>
</table>
그림 3. 소리크기에 따른 뇌활성도의 변화 (a) 40 dB 화이트 노이즈 자극에 대하여 100 dB 화이트 노이즈 자극에서 통계적으로 유의미하게 대사량 활성도 차이를 보이는 뇌영역 및 정각경로에서는 대표적인 영역들에 대한 변화를 볼 수 있다. 각 영역은 다음을 의미한다. CN(외우각핵-cochlear nucleus), SOC(위외굴절핵- superior olivary complex), LL(외측상유리핵·lateral lemniscus nuclei), IC(하부의 하구·inferior colliculus), MGN(내측측두핵-medial geniculate nucleus) 및 AC(청각피질-auditory cortex). 특히 다른 영역과 다르게 청각피질의 경우 소리크기에 기절한 풍동성이 뚜렷하다. (b) 40 dB 자극시의 각 뇌영역의 포도당 대사량을 기준으로 60 dB, 80 dB, 100 dB 활동량을 척도함을 때 소리크기에 대응 뇌영역에서의 활동도 차. (c) 각 뇌영역에서의 활동도 차.

Fig. 3. The glucose metabolism changes to the level of sound intensity (a) the nuclei of auditory pathway and insular region where the glucose metabolism changes clearly were observed in the comparison between 100 dB SPL and 40 dB SPL stimuli conditions. CN (cochlear nucleus), SOC (superior olivary complex), LL (lateral lemniscus nuclei), IC (inferior colliculus), MGN (medial geniculate nucleus), AC (auditory cortex) and insula (b) Activity plot after normalized with 40 dB glucose metabolism in left brain region (c) in right brain region.

에 대해서는 [F-18]FDG 소 القيام 전용 PET 영상기술의 특성상 하나의 소리 크기에 대해서 30분간 노출되여 이용한 결과이다. 따라서 본 연구에서의 정각피질의 반응은 순간적인 소리 크기의 변화에 대한 반응이기보다는 코이스트랑처럼 시끄러운 공간으로 들어가서 시간이 지나면 점점 소리에 대한 구분이 명확해질 때 나타나는 뇌의 반응에 가깝다. 즉 소리에 대한 적응(adaptation)에 대한 뇌 활성의 변화를 보여주는 것으로 사료된다. 흥미로운 것은, 소리에 대한 정각피질의 적응 반응은 새로운 소리에 대한 반응을 높이 정확한 소리 구분을 하려는 것으로 알려져 있다[12]. 이런 관점에서 빛을 내 소리크기와 감각신경계 커진 활동에서 정각피질의 활동량이 높아지는 실험결과는 큰 소리에 대한 노이즈를 역동적으로 감소시키고 새로운 소리에 대한 반응성을 높이기 위한 스리운 청각 메커니즘으로 여겨진다[13]. 하지만 그 외에도 불구하고 외우각핵(CN), 위외굴절핵(SOC), 하부의 하구(IC)에서는 소리크기에 적응반응이 거의 일어나지 않고, 정각피질에서는 유독한 다른 적응반응을 보인다는 것은 이에선 중요 부분 중 하나이다. 따라서 다양한 정각자극조건을 이용한 연구들을 통해 소리 크기에 정각피질 및 정각경로의 적응반응에 대한 연구는 더 필요할 것으로 생각된다.

결론적으로 본 연구는 처음으로 [F-18]FDG 소를 전용 PET 뇌영상기술을 이용하여 소리 크기에 대한 뇌대사의 변화를 보여주었다. 정각피질의 활동은 소리 크기에 반비례하는 것으로 나타났으며, 반면 정각경로의 아래에 있는 영역들의 경우 소리의 크기에 비례하는 뉴런의 활동을 보여주었다. 이런 결과는 아마도 정각피질이 소리가 커질 때 뉴런의 활동을 억제하는 방향으로 조절하여 소리에 대한 뇌 반응을 최적화하는 하러 한다는 것을 반영하는 것으로 사료된다.

참고문헌

