Accuracy Comparison of Motor Imagery Performance Evaluation Factors Using EEG Based Brain Computer Interface by Neurofeedback Effectiveness

Donghag Choi, Yonsu Ryu, Youngbum Lee, Se Dong Min, and Myoungho Lee

Department of Electrical & Electronic Engineering, Yonsei University, 134, Shinchondong, Seodaemun-gu, Seoul, Korea
(Received April 30, 2011. Accepted July 20, 2011)

Abstract: In this study, we evaluated the EEG based BCI algorithm using common spatial pattern to find realistic applicability using neurofeedback, EEG based BCI algorithm - EEG mode, feature vector calculation, the number of selected channels, 3 types of classifier, window size is evaluated for 10 subjects. The experimental results have been evaluated depending on conditioned experiment whether neurofeedback is used or not. In case of using neurofeedback, a few subjects presented exceptional but general tendency presented the performance improvement. Through this study, we found a motivation of development for the specific classifier based BCI system and the assessment evaluation system. We proposed a need for an optimized algorithm applicable to the robust motor imagery evaluation system with more useful functionalities.

Key words: electroencephalography (EEG), brain computer interface (BCI), motor imagery, neurofeedback, common spatial pattern (CSP), EEG mode, feature vector calculation, channel, classifier, window size

I. 서 론

뇌컴퓨터 인터페이스(Brain-Computer Interface, BCI)는 뇌활동을 통해 외부기를 응용하거나 제어함으로써 재활을 돕거나[1] 인간의 인지력 보완, 뇌의 감각 운동 기능 동을 회복시키는 것을 주요 목표로 삼고 있다[2]. EEG 기반 BCI 시스템의 뇌파 수많은 특징이 테크 짜임을 직접 부착하거나 바늘(needle)형 전극을 두피에 삽입하여 측정하는 침습형과 두피에 헤드검 또는 일반 접합형전극을 분리식 측정하는 비침습형이 있는데, 일반적으로 안전한 미침습형을 사용한다.

EEG 기반 BCI 시스템의 실험을 위해 사용된 전기적 뇌활동으로는 뮤주파(μ-mu rhythm)[2-6], 느린데니피질전위 (slow cortical potential, SCP)[7-9], 사건관련전위(event-related potential, ERP) p300[8,9], 안정상태시각유발전위 (steady-state visual evoked potential, SSVEP)[10,11] 등이 있고 가장 널리 사용된 두뇌 활동 모니터링에는 운동활동과 연계된 뮤주파변화에 대한 관찰로서[2,12,13] 이는 사건관련 동기화(event-related synchronization, ERS)와 사건관련 비동기화(event-related desynchronization, ERD)와 직접 관련이 있다[14-16].

이러한 뇌의 전기적 활동 신호를 이용하여 EEG와 생 각과의 연관성을 찾아내고 있고[17] 특히 ERD와 ERS는 공간은행(spatial navigation), 임신(mental calculation) 그리고 회전(rotation) 등과 같은 정신적 과제(metal task) 수행이 아닌 동작 운동(motor movement)과 관련된 동작상상(motor imagery) 즉, 사지를 운동하는 생각을 하는 경우
뇌의 우반구와 좌반구에서 특정대역의 파워가 증가하는 현상을 말하는데 이 분야에서 많은 연구가 진행되고 있다[14-16].


본 논문에서는 뉴로피드백이 모든 경우에 있어서 성능향상 효과가 있음을 확인하였다고 가정하여 성능 향상을 저해하는 요소가 아닌 것임지를 뉴로피드백의 효과를 통해 살펴보고자 하였으며 따라서 EEG 기반 BCI 환경에서 활용될 수 있는 동작상상의 특징들을 뉴로피드백과 함께 사용하여 EEG 기반 BCI의 동작상상 평가에 사용되는 요소에 대해서 종류별로 뉴로피드백의 효과가 각각 어떻게 나타나는지를 확인하고자 한다.

II. 본론

본 논문에서는 뉴로피드백 유무에 따른 실험데이터를 얻기 위해 국내 대학(Laxtha)의 32CH EEG장치(모델: WEG-32)를 사용하였고 샘플링 주파수 256 Hz로 피험자 뇌의 전기적 활동 신호를 수집하였다[27]. 신호수집은 특정 이벤트가 액행될 때 두뇌에 부착한 전극을 통해 뇌파의 변화를 시스템으로 전송하여 정기적으로 기록한다. 신호처리는 전처리, 특징추출, 특징분석으로 구성되는데 전처리는 필터링이나 DC 성분 제거와 이외에 공간적인 필터 (spatial filter)를 도입하는 것이 일반적이다[15]. 또한 특징 추출에 사용되는 주요 특징들은 특징 추출이 대여의 파워[16], 자동회귀(autoregressive, AR) 파라미터[51], 시간적인 특성을 인식하는 총공공간패턴(common spatial pattern; CSP)[16,51,52] 등이 있는 뉴로피드백 BCI 연구에서는 특정 대역과의 변동을 최대화 하는 특성상 ERD/ERS 분석에 CSP가 주로 사용된다[27].

공통공간패턴은 신체기관의 움직임을 범적한 경우 뇌의 좌우두부에 부착한 C3 전극에서, 좌측부위를 움직일 경우 뇌의 우두부 두부에 부착한 C4 전극에서 뇌파가 활성화되는 현상 (ERD/ERS)이 발생하는데[14-16], 이는 C3와 C4에서 주로 나타나기는 하지만 그 주위의 감각운동경로가 깊은 전극에서 성격의 삶의 세계인 뇌의 활성을 나타낸다. 이때 이 두 신호의 전극 간에 발생한 차이를 극대화하는 공간패턴 (spatial pattern)을 구하는 영상 신호 분석 알고리즘이다. 현재 가장 일반적인 알고리즈에 알려져 있으며 많은 BCI 응용 연구에서 CSP를 사용하고 있다[15,16,43,52].

그리고 특정분류는 선형분류기(linear classifiers), 신경망(neural network), 최근접근으로분류기(nearset neighbor classifiers)등이 있으며 BCI 연구에서 선형분류기인 선행
판별분석(linear discriminant analysis; LDA), 지원벡터
머신(support vector machine; SVM), 최소자승
선형분류기(least square linear classifier)가 많이 사용되는 선형 분
 usando비ベクトル(least square linear classifier)가 많이 사용되어 왔다
[43,53-56].

본 연구에서는 16 채널 EEG의 평가 실험을 통해 얻은 데
이터를 대역 중복 필터링(band pass filtering, 9-13Hz)하
여 특징을 추출하는 방식의 공통공간필터를 사용하였으며, 공간필터(spatial filter)를 통한 신호의 세기를 특정 벡터로
사용하였다. 또한 분류기로는 선형분류기(linear classifier)를
사용하였다.

III. 실험 설계

무경험 피험자 남녀 10명을 대상으로 확장된 국제 10/20
시스템(extended International 10/20 system)에 따라 16개의 위치에 전극을 피험자의 두피에 부착하여 컴퓨터 모니
터와 스큐케를 통해 2초간 빈번한 자극을 보여주고 다시 2초 후에
실험자에게 보여준다. 이어서 시각을 일리는 "세"소리와 함께
4초간 시청각 자극을 제시하여 동작상황을 하게 한다. 두, 세
의 원격적 활동 신호를 수집하였다. 그 중에서 시각의 좌우
동작상황에 가장 현저한 결과를 얻을 수 있는 C3, C4 지점
의 데이터를 취하여 9-13Hz에서 대역 중복 필터링을 하였
고 상대 대역 파워 스펜드 분석 결과를 피험자의 모니터
를 통해 그림 1과 같이 실시간으로 피드백하였다.

비교 평가를 할 때 있어 표 1과 같이 2가지 경 우를 사용했
다. 첫 번째 경우에는, 혼란데이터가 뉴로피드백이 없는 시각
자극이고, 평가데이터는 피드백이 있는 정각 자극이다. 두 번
째 경우는, 혼란데이터가 피드백이 있는 시각 자극이고, 평
가데이터는 피드백이 없는 정각 자극이다.

성능 요인은 EEG BCI 억기록 기반의 동작상황에 대
한 적절 성능을 평가함에 있어 매우 중요하다. 표 2와 같이
성능 평가 항목은 모두 5가지인데, 뉴로피드백(EEG mode),
특정벡터계산(feature vector calculation), 선택CSP채널
(selected CSP channel), 선택분류기(selected classifier)

와 ERD, RP

 선택CSP채널

 선택분류기

선택CSP채널

선택분류기

그림 1. 뉴로피드백 개념도
Fig. 1. Concept diagram of neurofeedback
우에 대해 동일한 자극에 대해 홀연데이터와 평가데이터를 제시하여 뉴로피드백을 적용한 경우와 적용하지 않은 경우에 대하여 구분하여 실험하였다.

IV. 실험 결과

본 논문에서는 뉴로피드백을 사용하지 않은 실험과 뉴로피드백을 사용한 실험 간의 교차 평가를 통해 두 가지 측면에 대해 결론을 얻었다. 이 본론에서는 표 1과 같이 첫 번째는 뉴로피드백이 없이 시각 자극에 의한 홀연데이터와 뉴로피드백을 이용한 각각 자극에 의한 평가데이터에 대해 성능을 평가하였고 두 번째로 뉴로피드백을 이용한 시각 자극에 의한 홀연데이터와 뉴로피드백 없이 각각 자극에 의한 평가데이터에 대해 성능 평가하였다. 또한 성능 평가 향목으로 표 2와 같이 5가지를 고려하였다.

1. 비교 평가(1) - Train: No feedback, Test: Feedback

피드백 없이 홀연하고 피드백을 주면서 평가한 경우에 대한 교차 평가이다. 그림 2는 ERD/RP의 결과를 보여 준다.

![그림 2. ERD/RP 교차평가 평균값(1). (a) 정확도, (b) 총평균](attachment:image2.png)

Fig. 2. ERD/RP average of cross evaluation (1). (a) accuracy, (b) total average

1번, 4번 피험자 각각의 경우에, ERD에서 개략 70%의 정확도를 보인다. 총 평균값에 있어서는 ERD 평균값과 RP 평균값보다 크다(p < 0.05).

그림 3은 특정벡터 계산 결과를 보여 준다. 각 피험자의 경우에 mean 값 없이 70% 이상의 정확도를 보이고 있다. 총 평균값에 있어서, mean 평균값은 다른 특성의 평균값보다 작으며 sum(abs) 평균값은 최고의 정확도를 보여준다(p < 0.05).

선택CSP 엔진의 결과가 그림 4에 보이는데, 피험자 5번, 7번, 8번, 9번 각각의 경우에 각 채널에 대해 약간의 차이를 나타내었고 그 외의 경우는 특정 채널 값이 높거나 낮은 것으로 나타났다. 총 평균값의 경우엔, 채널수가 증가할 때 평균값은 감소했다.

분류기의 결과는 그림 5에서 보여준다. 피험자 각각에 있어서, 피험자 1번이 약 70%의 정확도를 보였고 4번은 SVM 베이스로 약 70%의 정확도를 보였다. 다른 경우들은 전반적으로 60% 이상의 정확도를 나타냈다. 총 평균값의 경우, LS가 최고의 정확도를 보였고 그 다음이 LDA, 마지막이 SVM 분류기였다(p < 0.05).

장크기의 결과는 그림 6에서 보여진다. 1번과 4번의 피
험자가 부분적으로 약 70% 정확도를 보였고 그 외의 경우는 대체적으로 60% 이상의 정확도를 나타냈다. 총 평균값의 경우, 3조인 경우가 가장 높은 정확도를 보였으며 그 다음이 2조, 마지막은 1조였다.

2. 비교 평가(2) - Train: Feedback, Test: No feedback
피드백을 줌 혼란과 피드백을 주지 않은 평가의 경우에 대한 교차평가이다. 성능 평가 항목에 따라, 우선적으로, 뇌파 모드가 ERD인 경우가 ERD와 RP의 결과에 따라 총 10명의 피험자에 대해 비교하였다. ERD/RP의 결과는 그림 7에서 보여주고 있다. 피험자 1번, 5번, 6번 그리고 9번의 경우 ERD와 RP 간에 큰 적차가 있었고 총 평균값에 있어서는 RP평균값이 ERD 평균값보다 크다는 것을 보여 주었다.
특징벡터계산의 결과는 그림 8에서 보여져는데, 피험자
그림 7. ERD/RP (2). (a) 정확도, (b) 총평균
Fig. 7. ERD/RP (2). (a) accuracy, (b) total average

그림 8. 특성벡터계산 (2). (a) 정확도, (b) 총평균
Fig. 8. Feature vector calculation (2). (a) accuracy, (b) total average

그림 9. 선택CSP 채널 (2). (a) 정확도, (b) 총평균
Fig. 9. Selected CSP channel (2). (a) accuracy, (b) total average

각각에 있어서, 피험자 1번, 3번, 4번, 5번, 6번, 9번 그리고 10번은 각 특정 간에 큰 차이를 보였고 특히 10번 피험자만 뺄고 mean값이 다른 특정의 평균값보다 작았다. 총 평균값에 있어서는, sum(aba)의 평균값이 다른 특정의 평균값에 비해 높았다.

선택CSP 채널의 결과는 그림 9에서 보여 주고 있다. 피험자 각자의 경우에 있어서, 피험자 1번, 8번, 9번 그리고 10번은 각각의 채널에서 작은 차이가 있었다. 다른 경우들은 특정 채널에서 높거나 낮은 것으로 나타났다. 총 평균값에 있어서는, 4채널의 평균값이 가장 높고 16채널 평균값이 가장 작았다.

분류기의 결과는 그림 10에서 보여 진다. 피험자 각각의 경우에 있어서, 피험자 1번과 5번의 가량의 정확도를 보였고 다른 경우들은 4번 이상의 평균값에 대해서는 60%
이하의 정확도를 보였다. 총 평균값의 경우에는, SVM이 최고의 정확도를 보였고 두 번째가 LS, 마지막이 LDA 분류기였다.

그림 11의 결과는 그림 12에서 나타난다. 피험자 각각의 경우에 있어서, 피험자 4번과 5번이 70% 가량의 정확도를 보였고 대상자 1번은 부분적으로 70% 이상의 정확도를 보였다. 다른 경우들은 대체적으로 60% 이하의 정확도를 보였다. 총 평균값의 경우에는, 창 크기 1초가 최고의 정확도를 보였고 두 번째가 3초, 마지막이 2초의 경우였다.

3. 비교 분석

ERD/RP, 창 크기와 선택CSP 필터에 대한 결과에 대해 CSP 필터 분포를 파악했고 다른 상황 요소들은 CSP 필터 분포를 변화시키지 않는다는 점도 알게 되었다. 또한 ERD/RP와 창 크기에 대한 2차원의 CSP 필터 즉, CSP 필터, CSP last filter를 얻었다. 그림 12는 교차평가를 통해 평균을 뽑기 2차 결과를 비교하였다. CSP filter 분포는 동작 상황에 의해 어느 부분이 활성화되고 비활성화되는지를 보여준다. 붉은색은 가장 활동적인 부분을 보여주며 파란색은 가장 비활성화된 부분을 보여준다. 노란색은 중간상태를 보여준다. CSP filter 분포는 평가데이터세트가 아니라 훈련데이터세트에 영향을 많이 받는다.

그림 12에서 보는 바와 같이 ERD/RP 경우에 있어서, CSP filter 분포들은 ERD/RP의 feedback, no feedback 간에 완전히 다르다. 창 크기의 경우에는, CSP filter 분포들은 거의 유사하지만 색상의 농도는 중간 활성화 정도가 격차 있는 것을 의미하는 창 크기가 감소할 때 바뀌게 된다.

그림 13에서는 EEG 모드, 특정백터제선, 공동공간프리 채널, 분류기, 창크기에 대해 뉴로피드백을 실시한 조건의 경우 알고리즘 수행 결과에 걸쳐 다소 높은 정확도를 나타내었고 RP에서만 예의 경우가 나타난 것을 보여준다.

V. 결 론

본 연구에서는 뉴로피드백에 기반한 EEG 기반 BCI의 현실적인 가능성을 찾기 위해 신호처리 과정에 대한 BCI 알고리즘을 평가한다. 본 연구를 통해 EEG 기반 BCI 성능평가 요소별 뉴로피드백 유무에 따른 효과에 대한 결과로, 일반적으로 성능평가요소들에 있어서 대부분의 경우에 뉴로피드
표 1. 피험자 1의 ERD 및 RP의 CSP 필터 분포

![CSP filter distribution](image)

Fig. 12. CSP filter distribution ERD/RP, window size

그림 13. 조건적 피드백에 따른 EEG-BCI 성능평가 요소별 정확도 비교

![Accuracy comparison](image)

Fig. 13. Accuracy comparison of motor imagery performance evaluation factors using EEG based BCI by conditioned neurofeedback

백이 있음에 성능향상을 가져오며 특별한 경우에는 그

비교적인 예외적인 경우도 발생할 수 있다는 사실을 확인

할 수 있었다. 본 연구의 결과는 BCI시스템 기반 EEG의

특정 분류기, BCI 사용 능력 평가 시스템에 기반한 EEG
의 개발을 위한 일반적이며 강화된 피험자 동작상황 적용 평가의 최적화 알고리즘에 필요한 근거가 될 것이다.

참고문헌


[31] 이혜정, and 최승진, “브레인컴퓨터 인터페이스를 위한 기계 학습,” 경로과학회지 = Communications of the Korea


