Biological Activities and Cell Proliferation effects of Red Ginseng Ethanol Extracts

Sung-Yeoun Hwang1,3, Seong-Hun Ahn2,*

1 Korea Bio Medical Science institute
2 Department of Meridian & Acupoint, Wonkwang University College of Oriental Medicine, Iksan, Korea
3 Research center of traditional Korean medicine, Wonkwang University, Iksan, Korea

ABSTRACT

Objectives: Reactive Oxygen Species (ROS) are continuously produced at a high rate as a by-product of aerobic metabolism. Since tissue damage by free radical, ROS such as hydrogen peroxide (H₂O₂), nitric oxide (NO) increases with age. Several lines of evidence provided that ROS appears to cause to develop aging-related various diseases such as cancer, arthritis, cardiovascular disease.

In this study, we have conducted to investigate the pharmacological effects of red ginseng for the development possibility to pharmacopuncture drug sources or healthy aid foods.

Methods: For our aims, it was investigated the biological activities of Red Ginseng ethanol extracts (RGEE) by measuring total polyphenol contents, total flavonoid contents, DPPH radical scavenging activity, ABTS radical scavenging activity and cell viability of MCF 10A and SK-MEL-2 in vitro with MTT assay method.

Results: The total polyphenol contents of RGEE was 3.06 ± 0.11mg/g in 10mg/ml, the total flavonoid contents of RGEE was 1.35 ± 0.01mg/g in same concentration. The ABTS radical scavenging activity was about 80% and that of DPPH activity was 65% in 50mg/ml of RGEE. The cell viability of SK-MEL-2, skin cancer cell line was decreased and that of MCF 10A, skin normal cell line was increased.

Conclusions: We conclude that RGEE may be useful as potential functional foods or pharmacopuncture drug sources on the diseases induced by oxidant stress.

KEY WORDS:
Red Ginseng; Red Ginseng ethanol extracts; antioxidant activity; skin cell viability

Received : Jul 13, 2011
Revised : Aug 23, 2011
Accepted : Aug 24, 2011

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding Author
Seong-Hun Ahn. Department of Meridian & Acupoint, Wonkwang University College of Oriental Medicine, Iksan, Korea
Tel : +82-63-850-6448, FAX : +82-850-6488
E-mail : drpoint@wku.ac.kr

© 2011 Korean Pharmacopuncture Institute
II. 재료 및 방법

1. 재료

본 연구는 우석대학교 분초학교실에서 검증받은 홍삼 (강도 산지, 6년근)을 분말을 만든 후 ethanol에 3일간 냉취하여 용용시킨 추출물을 강압 농축 후 동결건조하여 사용하였으며, naringin, Aluminum Chloride, sodium carbonate, gallic acid, Folin-Ciocalteu’s phenol reagent, potassium persulfate, 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-Azobis (2-methylpropion-amidine) dihydrochloride, Trolox, pyrogallol, ascorbic acid, sodium nitrite, citrate buffer, acetic acid, naphtylamine, Tris-base, dimethyl sulfoxide (DMSO) 등은 Sigma (St. Louis, MO, USA)에서 구입하였고, sulfanilic acid는 1급 시약 (Kanto chemical, Japan)을 사용하였다.

2. 방법

2.1 총 폐쇄함량 측정

총 폐쇄함량은 Folin-Denis법을 변형하여 따라 Folin-Ciocalteu reagent가 각각의 폐쇄물 화합물에 의해 환원된 결과는 분리된 화합물의 양을 인위적으로 분석하였다. 각각 약점에 시료 100μl에 Folin-Ciocalteu's phenol regent 100μl을 넣고 혼합하여 실온에서 3분간 정착 후 2% NaCO3 용액 100μl을 가하여 혼합한 후 실온에서 1시간 방치시키고 750nm에서 흡광도를 측정하였다. 총 폐쇄함량을 정량분석하기 위해 표준물을 gallic acid를 폐쇄수에 녹여 일정한 농도별로 조제하고 시료와 동일한 방법으로 실험하여 감량선성을 작성하고 시료의 총 폐쇄함량을 측정하였다.

2.2 총 플라보노이드 함량 측정

총 플라보노이드 함량은 이의 방법을 변형하여 다음과 같이 측정하였다. 0.25ml 시료에 75μl NaNO2(5%, W/V)와 0.15ml AlCl3(10%, W/V), 0.5 ml 1M NaOH을 혼합하여 2.5ml 중류수를 첨가한 다음 5분 동안 37℃에서 반응시간 후 415nm에서 spectrometer로 흡광도를 측정하였다. 플라보노이드 함량계산은 표준 물질인 gallic acid

등으로 요약할 수 있으며, 항산화 작용은, 항산화 작용, 자양강 작용, 항암작용 등 간호학적 효과가 증명된데 있어, 이에 따라 현대사회에서 다양한 항산화제료 및 기능성식품료로서 개발 요소가 증가하고 있다. 이 중 항암작용은 수많은 연구자들에 의해 적립여드의 Rg3와 Rh2가 항암 효과를 나타내는 것으로 밝혀졌다.

인삼은 대개 수합, 백삼 그리고 홍삼의 형태로 생산 후 저장, 유통되고 있으며, 수합은 종전까지 대표적인 인삼으로 70-80%의 수분을 함유하고 있어 부패 또는 손상이 발생되기 쉬우며, 백삼은 수합의 표면을 떨긴 후 자연광에 건조 또는 열풍에 건조하여 제조한 것으로 높은 저장성으로 한약재로 주로 사용되고 있다. 홍삼은 수합을 장기간 저장목적으로 수장기간 2-3시간 정도 뒤 다음 발열의 과정, 즉 수합의 전분이 호아튼되는 수지 과정을 거쳐서 수합 표면의 색이 붉어지게 되어 홍삼이란 불리고 있다. 최근에 보고된 홍삼의 양리효과는 항암효과 (10), 항산화효과 (11), 피부보습효과 (12), 항염 효과 (13), 항고혈압효과 (14) 등으로 알려져 있다.

황산산소종 (reactive oxygen species, ROS)은 호흡 과정에서 흡입한 산소 중 일부가 체내 효소계, 환원대사, 물리적 또는 환경적 요인 등에 의해 유독한 물질로 전환되어 세포독성을 일으키는 것으로, 알칼리산소 (O•-)나 superoxide (O2•-)와 같은 free radical와 과산화수소 (H2O2) 등으로 알려져 있다. 이들은 분자의 구조적으로 매우 불안정하기 때문에 본래의 세포생물을 공격하여 산화독성 세포를 유발시킨다. 특히 free radical (NO•, OH•, O2•)은 분자산 산소가 황산산소로 변화하여 다른 분자들과 반응하면서 생성되며 노화 (15), 염증 (10), 발암 (16), 동맥경화 (17)와 직접 관련이 있는 것으로 알려져 있다. 최근에 비교학적 독성이 적고 안전성 및 관능성의 문제가 없는 전통향래재 개발을 위하여 연구가 활발히 진행되고 있다.

상기 인삼 및 홍삼의 연구결과는 전통향래재로서 기능성 식품제제 개발 가능성을 높이 주고 있으며, 본 연구 또한 이러한 과정의 하나로 홍삼의 기능성 식품제제로서의 개발 가능성은 대그 희망을 동시에 앞서가 있다. 본 연구는 이러한 과정의 하나로 홍삼의 기능성 식품제제로서의 개발 가능성을 위한 홍삼의 복용 내지는 투여가 향상화할 것에 미치는 총 폐쇄배, 총 플라보노이드, ABTS radical cation, DPPH radical cation 등 측정하여 실험과 부세포주와 암세포소재의 세포발생을 관찰하여 유효한 결과를 얻었기에 보고하고자 한다.
2.3 ABTS radical scavenging activity

ABTS radical scavenging activity is a method used to determine the antioxidant capacity of substances. The reaction mixture contains ABTS radical, potassium persulfate, and the test sample. The reaction is initiated by adding potassium persulfate to a solution of ABTS radical, which is colorless. The reaction mixture is then incubated at room temperature, and the absorbance is measured at 734 nm. The scavenging activity is calculated using the following equation:

\[
\text{ABTS scavenging activity (\%)} = \frac{\text{Abs}_{\text{sample}} - \text{Abs}_{\text{blank}}}{\text{Abs}_{\text{control}} - \text{Abs}_{\text{blank}}} \times 100
\]

where Abs is the absorbance measured at 734 nm.

2.4 DPPH radical scavenging activity

DPPH assay is a method used to determine the antioxidant capacity of substances. The reaction mixture contains DPPH radical, ethanol, and the test sample. The reaction mixture is incubated at room temperature, and the absorbance is measured at 520 nm. The scavenging activity is calculated using the following equation:

\[
\text{DPPH scavenging activity (\%)} = \frac{1 - \text{Abs}_{\text{sample}}/\text{Abs}_{\text{control}}}{1 - \text{Abs}_{\text{blank}}/\text{Abs}_{\text{control}}} \times 100
\]

where Abs is the absorbance measured at 520 nm.

Table 1. Contents of total polyphenol and total flavonoid by Red Ginseng ethanol extracts

<table>
<thead>
<tr>
<th>RGEE (mg/ml)</th>
<th>Total polyphenol (mg/g)</th>
<th>Total flavonoid (mg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.73 ± 0.26</td>
<td>0.94 ± 0.01</td>
</tr>
<tr>
<td>5</td>
<td>2.47 ± 0.14</td>
<td>1.15 ± 0.01</td>
</tr>
<tr>
<td>10</td>
<td>3.06 ± 0.11</td>
<td>1.35 ± 0.01</td>
</tr>
</tbody>
</table>

RGEE means Red Ginseng ethanol extracts. The values represent the Mean ± SD for triplicate experiments.
2. ABTS radical scavenging activity

ABTS is an pH-dependent radical scavenger commonly used to measure antioxidant capacity. It is generated from vitamin C and aqueous solutions at pH 7.4. The radical is then reacted with aqueous solutions at pH 1.1 to generate a blue-colored product with a maximum absorbance at 410 nm. The absorbance of the reactant is compared to a control to determine the percentage of radical scavenging activity. The percentage of radical scavenging activity is calculated as follows:

\[\text{Percentage of radical scavenging activity} = \left(\frac{A_{\text{control}} - A_{\text{sample}}}{A_{\text{control}}} \right) \times 100\% \]

The results show that the ABTS radical scavenging activity of RGEE is concentration-dependent. The percentage of radical scavenging activity increases with increasing concentration of RGEE.

3. DPPH radical scavenging activity

The DPPH radical scavenging activity of RGEE was also measured. The DPPH radical is a stable free radical that can be reduced by antioxidants to form a yellow-colored compound with a maximum absorbance at 517 nm. The percentage of radical scavenging activity is calculated as follows:

\[\text{Percentage of radical scavenging activity} = \left(\frac{A_{\text{control}} - A_{\text{sample}}}{A_{\text{control}}} \right) \times 100\% \]

The results show that the DPPH radical scavenging activity of RGEE is also concentration-dependent. The percentage of radical scavenging activity increases with increasing concentration of RGEE.

4. Cell viability

The cell viability of MCF-10A and SK-MEL-2 cells treated with different concentrations of RGEE was measured using the MTT assay. The results show that RGEE has a concentration-dependent effect on cell viability. The percentage of cell viability decreases with increasing concentration of RGEE.

5. Conclusion

The results of this study suggest that RGEE has potent antioxidant and anti-cancer activities. Further studies are needed to investigate the mechanisms underlying these activities.
증식 신호 전단 정상세포주의 세포증식 신호 전단이 다
들 수 있음을 의미하거나 홍삼의 예단을 추출물중에서 2가지
이상의 작용물질이 있어 선택적으로 작용하고 있음을
이러 사료되었다 (Fig. 3).

IV. 결론

홍삼의 기능성 식품소재로서의 개발 가능성을 위한 홍
삼의 복용 내지는 루어가 항산화활성에 미치는 총 플라보
놀, 총 플라보노이드, ABTS radical 소가능 측정, DPPH
radical 소가능 측정하고 정상세포주와 암피부세포주
의 세포생존율을 관찰하여 다음과 같은 결과를 얻었다.
홍삼 예단을 추출물에는 총 플라보놀과 총 플라보노이
드 함량이 높도의존적으로 증가하고 있으며, ABTS radi-
cal 소가능과 DPPH radical 소가능 역시 높도의존적으로
증가하였다. 또한 암피부세포주인 SK-MEL-2에서는 세
포생존율 감소과정을 피부성장 세포주인 MCF 10A에서
는 세포생존율 증가 결과를 나타내었다.

이상의 결과로 홍삼 내지 홍삼 추출물은 생체 내 정상적
세포활성을 활성화시키며 비정상적 세포활동은 억제시키
무로 이러한 성질을 이용하여 약물 원천이나 기능성 식품
소재로서의 개발 가능성이 매우 높으므로 이에 대한 연구
과 개발이 필요하다고 사료된다.

V. References

1. Yang JP, Yeo IS. A study on the origins of ‘Ko-
2. Jang SI, Yoo HS. Oriental Medicine papers
review on Anticancer Effect of Ginseng. Ori-
ent Medicine institute, Daejeon University.
3. Li XT, Chen R, Jin LM, Chen HY. Regulation
on energy metabolism and protection on mito-
chondria of Panax ginseng polysaccharide. Am
4. Lu JM, Yao Q, Chen C. Ginseng compounds:
an update on their molecular mechanisms and
tract scavenges hydroxyl radical and protects
unsaturated fatty acids from decomposition
caused by iron-mediated lipid peroxidation.
6. Lee TK, Johnke RM, Allison RR, O’Brien KF,
Dobbs LJ, Jr. Radioprotective potential of gin-
7. Bahrke MS, Morgan WP. Evaluation of the
8. Arushanian EB. Therapeutic potential of gin-
seng root preparations in treating diabetes mel-
9. Einat H. Chronic oral administration of ginseng
extract results in behavioral change but has no
effects in mice models of affective and anxiety
ies of the antiproliferative effects of ginseng
polysaccharides on HT-29 human colon cancer
insight into the ability of American ginseng to
suppress colon cancer associated with colitis.

31. Lee HJ, Pak HO, Jang JS, et al. Antioxidant...
