Synthesis of Ultrafine Titanium Carbide Powder by Novel Thermo-Reduction Process

Dong-Won Lee, S.V. Alexandrovskii*, Jung-Hyun Bae and Byoung-Kee Kim
Nano P/M Group, Department of Materials Technology, Korea Institute of Machinery and Materials (KIMM), 66, Sangnam, Changwon, Kyungnam 641-010, Korea
*Faculty of Non-ferrous Materials, Technical University, St. Petersburg State Mining Institute, Russia
(Received 20 October 2003 ; Accepted form 20 November 2003)

Abstract Ultra fine titanium carbide particles were synthesized by novel metallic thermo-reduction process. The vaporized TiCl₄+C₂Cl₆ gases were reacted with liquid magnesium and the fine titanium carbide particles were then produced by combining the released titanium and carbon atoms. The vacuum treatment was followed to remove the residual phases of MgCl₂ and excess Mg. The stoichiometry, microstructure, fixed and carbon contents and lattice parameter were investigated in titanium carbide powders produced in various reaction parameters.

Keywords: Carbides, Nanocrystalline materials, Metal-Thermal reduction

1. 서 론

산업의 발달에 따라 각종 요소 부품의 정밀도 향상을 위하여, 이를 가공(절삭, 단조, 압출, 인칼 등)하늘 사용되는 고강도 세라믹 공구 및 세라믹 금형의 고품질화에 대한 요구가 증대되고 있다. 이러한 부품은 고용량 원료분말을 금속분말과 혼합 후 성형/소결에 의해 제조되는데, 이때 최종 제품의 인성 및 내마 모성 등의 기계적 특성에 미치는 여러 인자 중 가장 중요시되는 것은 초기 원료분말의 품질 및 미세도이다. 이를 위하여 시병용 주요 원료 분말인 티타늄 카바이드 분말을 더욱 미세하고, 경제적이며 고품질적으로 제조하기 위한 연구가 활발히 진행되고 있다1,2).

종래 티타늄 카바이드 분말제조 방법으로서, carbothermal, 저전력반응소결(self heated reactive sintering), 촉-계 반응(Sol-Gel process) 및 가스반응법 등이 개발되었으나3,5), 이들은 모두 1) 반응온도가 약 1800℃~2200℃로 극히 높은 점, 2) 분말 합성 시 상하게 소결되거나 빠르게 제조되어 산업에서 필 요한 미분(약 1미크론)으로 사용하기 위하여 장시간의 후속 밀링 공정이 요구되는 점, 3) TiC₄O₅인 비화학양론 형태로 제조되는 점 및 4) 생산속도가 극히 낮은 점 등 개개의 단점을 가지고 있다.

이러한 종래의 단점을 극복하기 위한 새로운 공정으로 마그네슘 열원용 공정(magnesium thermal reduction process)이 최근에 한국-러시아의 공동연구 결과에 의해 소개된 바 있다5). 이 공정은 기화된 염화금속 용액(TiCl₄+C₂Cl₆) 가스를 액상 마그네슘과 반응시켜 염화마그네슘으로 생성되고 이때 발생된 Ti와 C 원자들의 결합에 의해 티타늄 카바이드가 합성되는 것이다. 본 연구에서는 이러한 공정을 적용하여 열화물 조성, 액상마그네슘으로의 유입속도 그리고 반응온도와 같은 주요한 공정변수가 티타늄 카바이드 합성물의 특성에 미치는 영향을 비교 분석하였다.

2. 실험 방법

연강(mild steel)으로 만들어진 원통형의 챔버

\[
\text{TiCl}_4(g) + \text{CCl}_4(g) + 4\text{Mg}(l) = \text{TiC}(s) + 4\text{MgCl}_2(l)
\]

탄화티타늄(TiC) 1은 제조하는데 필요한 TiCl₄, CCl₄ 그리고 Mg의 양은 각각 189.7 g, 149.8 g 그리고 97.2 g이다. 그러나 CCl₄는 TiCl₄보다 화학적으로 불안정하므로 화학적관절 양 대비 약간 많은 157.3 g(105%)과 164.8 g(110%)을 선정하여 혼합용액을 별도로 준비하였다. 재료 내 마그네슘 역할은 TiCl₄, MgCl₂, C₆Cl₆과 같은 중합성이 형성되지 않도록 충분한 확정을 유도하는 것으로서, 이를 위하여 충분한 양(330 g)을 준비하였다. 펄버 운도(반응온도)는 900℃-1100℃로 변화하였으며, 용액은 수업환류펌프(hydraulic buffer pump)를 이용해 15~40 g/min.의 범위에서 일정하게 주입되도록 조절하였다. 반응 후 Mg와 MgCl₂와 같은 부산물은 900℃에서 기계식 진공펌프(10⁻¹ torr)로 3시간 진공 처리하여 제거하였다.

제조된 합성물은 다공성(sponge) 형태로써 막차상에서 분해시킨 후, 50%H₂O+50%HNO₃ 용액에 녹여 필터링 방법으로 유리 탄소를 축출한 다음, 천소성분분석기(elemental analyzer, ANH752)로 그 양을 측정하였다. 고정 탄소(fixed carbon)량은 전체 탄소량 측정 후 유리탄소량과의 차이로 구하였다. Mg, Cl, Fe 및 O의 분석 성분을 측정(JMS 01BM-2, LEO-TC436)하였고, SEM(XITACHIS4200)을 이용한 미세조작, X-ray 회절 패턴(RIGAKU-R2000)을 분석하였다.

3. 결과 및 고찰

챔버 내에서 형성되는 반응에 대한 개략적인 현상은 그림 1에 나타내었다. 끓는점이 각각 135℃와 76℃인 TiCl₄와 CCl₄로 혼합된 용액을 약 1000℃로 가열되던 액상 마그네슘에 주입하면, 주입 용액은 챔버 내에서 적립되며, 이들 기체는 마그네슘에 의해 수리되며 특히 액상 마그네슘 표면부에서 대부분의 반응이 일어나진다. 1273 K 온도에서의 각 반응에 대한 자유에너지지는

\[
\begin{align*}
\text{TiCl}_4(g) + 2\text{Mg}(l) = \text{Ti}(s) + 2\text{MgCl}_2(l) & : \Delta G_{1300K} = -296 \text{ kJ/mol} \\
\text{CCl}_4(g) + 2\text{Mg}(l) = \text{C}(s) + 2\text{MgCl}_2(l) & : \Delta G_{1300K} = -960 \text{ kJ/mol} \\
\text{TiCl}_4(g) + \text{CCl}_4(g) + 4\text{Mg}(l) = \text{TiC}(s) + 4\text{MgCl}_2(l) & : \Delta G_{1300K} = -1,440 \text{ kJ/mol}
\end{align*}
\]

그림 1. Ultrafine titanium carbide synthesis route by Mg-thermal reduction process.
마그네슘원판에 의해 방출된 터타늄원자와 탄소원자가 방열방응에 의해 격렬히 방응함에 따라 다양한 스핀지 필름형태의 터타늄가이드가 형성된다. 이에 마그네슘 표면에 첨가 혼합되며, 이때 액상 마그네슘은 모세관 효과에 스핀지 피막 위에 가로로 증발할 수 있어 계속적인 합성물이 지속되고, 최종적으로 합성물의 무게가 충분히 짧은 시간에 의해 형성물을 용기에 비락으로 가라앉게 된다. 방응의 초기 단계인 약 5분간 발생효과에 의해 생과 온도가 약 100°C 가량 상승하였으며, 이후 발생과 발열효과의 균형이 맞아 일정한 온도를 유지하였는데, 이러한 온도 증가량은 방응 초기 온도 및 용액주입속도의 변수 변화에 관계없이 거의 100°C로 일정하였다.

그럼 2번은 방응온도, 용액의 공급 속도 및 용액조성의 변화에 따라 생성되는 화학물에 대한 충합의 유리 및 결합탄소량 변화 경향을 나타내고 있다. 그래프에서 방응온도 변화의 경우, 위에서 언급한 바와 같이 방응 개시 온도가 아닌 정상온도에서 상승 후 유지된 온도로 취하였다. 방응온도가 높을 경우 탄소와 터타늄은 열적으로 환성화되어 더욱 용이하게 결합함으로써, 결합성에서의 유리 탄소량이 감소되고 결합 탄소량이 증가하는 것으로 쉽게 이해될 수 있다.

용액의 주입속도가 약 40 g/min으로 증가할 경우, 환원 후 발생된 탄소는 터타늄과 효과적으로 결합하지 않고, 즉 TiC₉₇₉₇ 형태의 합성물이 형성됨과 동시에 비 결합된 유리 탄소량은 약 2 wt% 이상까지 증가하는 것으로 나타났다. 이러한 현상은 Mg에 의한 TiCl₄ 및 CCl₄의 환원속도 차이 효과로 일부러 생성되었다. CCl₄는 열역학적으로 TiCl₄ 보다 더욱 불안정하며 또한 Mg환원시 반응 구조들이 상대적으로 크다. 따라서 CCl₄가 우선적으로 환원될 수 있고, 이에 따라 합성물에는 유리탄소량이 낮을 수 있다. 특히 이러한 현상은 용액의 공급 속도가 빠를 경우, 즉 단위시간당 CCl₄광축속도/CCl₄ 방출속도의 비가 높을 경우 두드러지게 나타날 수 있다. 원자 단위로 같은 비율로 서서히 방출된 Ti와 C는 큰 구조적으로 화학양론을 맞추면서 쉽게 합성될 수 있지만, 우선적으로 발생한 덩어리 형태의 유리탄소는 이후 고상환산에 의해 화학양론을 높여야 하기 때문이다. 이러한 유추에 대한 확인은 TiCl₄와 CCl₄ 각 성분에 대한 개별적인 Mg 환원 시 화학적 반응속도(Kinetic)를 비교할 경우 어느정도 맞춰질 수 있으며, 이에 대한 연구는 진행 중이다. 따라서 본 연구에서는 용액의 유입속도를 낮추는 것이 화학양론에 가까운 연화탄소를 합성하는데 더 효과적인 결과를 내릴 수 있었다.

화학양론 배이 110°C의 과정의 CCl₄로 만들어진 용액의 경우 TiC₉₇₉₇형태의 우수한 조성의 합성물을 유도하였으나 다량의 유리탄소량을 낫였다. 반면 100% CCl₄ 용액을 사용했을 경우는 전체 탄소량이 부족하였다. 따라서 105% CCl₄ 용액을 사용하는 것이 화학양론을 최대한 증가시키고 동시에 유리탄소량을 최소화시킬 수 있는 적절한 조건으로 판명되었다.

결론적으로, 경제적인 최적조건을 갖는 TiC 합성물은 용액공급속도가 20~30 g/min, 초기반응온도가 980°C 그리고 105% CCl₄ 용액을 사용할 경우 얻어진 특본 연구를 통해 알 수 있으며, 이에 합성된 탄소량은 유리탄소량이 약 1.0 wt%인 TiC₉₇₉₇형태를 지니고 있다.

최적의 조건에서 합성된 탄소물의 X선 회절 분석
결과를 그림 3에 나타내었는데, 꼬리져는 TiC 단일 상을 보여준다. TiC의 결정구조는 NaCl 형태의 FCC구조이며, 또한 비 화학양론 상인 TiC, 및 TiC₃O₇의 경우도 같은 결정구조를 가지므로, 그림 3의 결과만으로는 꼬리질의 TiC 함성이 이루어진 것으로 확신할 수 없다. 따라서 이를 확인하는 가장 적절한 방법은 합성물의 격자상수를 정량적으로 확인하는 방법이다. 따라서 아래 식에 나타난 외삽법을 사용해 이의 격자상수를 구하였다.\[a = d_{(111)} \left(h^2 + k^2 + l^2 \right)^{1/2} \] (5)\[F(\theta) = \cos 2\theta / \sin \theta + \cos 2\theta / \theta \] (6)

일반적으로 180도에 근접한 각각에서의 회절면에서 언어지는 격자상수 ‘a’가 결정상수와 가장 근접한 것으로 알려져 있다. 즉 F(\(\theta\))가 ‘0’으로 접근할 때의 ‘a’ 값이 결정상수이다. 따라서 각각 회절면인 (420)면과 (222)면 사이의 범위에서 X선 회절 패턴을 측정하였고, 언어진 F(\(\theta\))와 a 값의 변화를 그림 4에 나타내었고, 이 결과로부터 격자상수 ‘a’를 구하였다. 합성된 분말의 격자상수는 0.43267 nm으로 나타났고 TiC\(_{10}\)의 표준값에 비해 약간 낮은 값을 갖는다. 이는 합성물에서 분석된 약 0.6-1.1 wt.%의 산소 불순물의 영향과 관련이 있다. 산소의 경우 TiC\(_3\)O, MgO 및 Fe\(_2\)O\(_3\)와 같은 산화물의 형성에 기인한 것으로 생각할 수 있고, 따라서 표준값대비 약간 낮은 격자상수의 원인으로는 이러한 oxycarbide 형성과 앞서 언급한 stoichiometry 효과로 볼 수 있다고 생각함을 할 수 있다. 생성물에서 또 다른 불순물 함양은 Fe: 0.1-0.6 wt.%, Mg: 0.3-0.8 wt.%, 그리고 Cl: 0.1-0.3 wt.%로 감지되었다. Mg와 Cl 불순물은 미흡한 진공 배출로 인한 것이고 Fe는 용기(container)의 내부 백면의 절연분이 약간 마그네슘으로의 환산에 의한 것으로 여겨진다. 따라서 이러한 불순물 농도의 경우, 고품질의 챔버 재료(예: 고순도 Ti 용기)의 사용과 진공축출 공정의 개선을 통해서 더욱 감소시킬 수 있으리라 판단되었다.

그림 5에는 약하게 분석된 합성물의 미세조직을 나타낸는데, 미세한 입자와 아직 분해되지 않은 조밀한 입자의 두 가지 형상을 보이고 있다. 입자 형상의 차이가 화학적 불균일성에 기인할 수 있다고 추측되어, EPMA로 모든 부분에 대한 미세 점 분석(random micro-spot analysis)을 수행한 결과, 미세한 입자와 분해되지 않은 조밀입자 모두 화학 조성이 균일하다. 즉 미세조직에서 나타난 조밀 입자는 단순히 분석의 완전함이 부족임으로 생각할 수 있다. 그림 6에 조밀입자의 표면부를 확대하여 관찰한 미

Fig. 3. X-ray diffraction pattern of produced titanium carbide.

Fig. 4. Determination of lattice parameter of produced titanium carbide.

Fig. 5. SEM microstructure of the crushed titanium carbide.
새구조를 나타내었으며, 평균입자크기가 약 50 nm인 나노분말로 느슨하게 응집된 형태를 보여주고 있다. 심질적으로 스폰지 타타늄 제조 공정의 경우, 액상 마그네슘에 TiCl₄ 용액을 주입하는 방법으로 진행되는데, 이 경우에도 환원 초기 단계에 있어서는 극히 미세한 타타늄 분말이 합성되나, 금속 타타늄 미세분말은 환원 반응 진행시 그리고 진공 축출 시 크게 성장하여 최종적으로 조각한 망상구조의 다공성 타타늄형태를 이루어 된다. 그러나 본 연구에서는 TiCl₄ + CCl₄ 용액을 사용함으로 고용량 회합물인 TiC가 합성되므로, 주어진 공정 운도에서의 결정입 성장이 효과적으로 억제되어 모질처럼 분말 상태를 유지하게 된다. 따라서 본 공정의 주요 경평은 1) 액상 금속 공정의 다공성 탄소수합생산공정을 일부 개량하여 더욱 부가가치적이고 나노구조를 가지는 TiC 분말을 합성할 수 있는 점, 2) TiC 분산형태에 작용 다른 금속염화물과 CCl₄ 혼합용액을 사용하여 다양한 고용량 분말 성장의(예: TaC, VC, B,C 등) 양상이 가능한 점, 3) 채비 분위기라 보다 견고한 탄화수합물 고용량 분말(예: TiCN, Si₃N₄ 등)의 양성이 가능한 점, 4) 환원제로 Mg-Ni 혼합액을 사용해 균일한 초립 TiC+Ni 복합분말의 양성과 가능한 점, 그리고 5) 기존의 스폰지 탄소수합 공정규모와 유사한 대량생산이 가능한 점을 들 수 있다.

4. 결 론

TiCl₄ + CCl₄ 혼합용액을 액상 마그네슘으로 주입시
기효과적 산소가스와 마그네슘과의 반응을 유도하
는, 새로운 활 환원법을 적용하여 초립 TiC 분말
합성에 성공하였다. 최적의 반응 조건은 30 g/min의
용액주입속도, 980°C의 초기반응온도 그리고 105%
CCl₄용액을 사용할 경우로서 나타났다. 또한 격자상
수는 표준값에 가까운 0.43267 nm이었고 합성률 입
자크기는 약 50 nm이다.

감사의 글

본 연구는 과학기술부에서 지원되는 한·러 재료
기술센터의 연구비 및 21세기 프로덕션 연구개발 사
업의 일환인 '차세대 소재형성기술개발 사업단'의 연
구비 지원으로 수행되었으며, 이에 감사드린다.

참고 문헌