Dynamic Compaction of Mechanochemically Alloyed Fe-Si Nano Powders by Magnetic Pulsed Pressure

G. H. Lee*, C. K. Rhee, W. W. Kim, J. W. Yun*, K. S. Lee*
Korea Atomic Energy Research Institute, 150 Duckjindong Yasonggu Daejeon, Korea
*Kongju National University, 182 Shinkwandong Kongju, Korea
(Received 3 December 2004 ; Accepted 11 January 2005)

Abstract Nano Fe-6.5wt%Si powders have been synthesized by mechano-chemical process (MCP) for an application of soft magnetic core. Owing to hard and brittle characteristics of Fe-6.5Si nano powders having large surface area, it is very difficult to reach high density more than 70% of theoretical density (∼7.4 g/cm³) by cold compaction. To overcome such problem a magnetic pulsed compaction (MPC), which is one of dynamic compaction techniques, was applied. The green density was achieved about 78% (∼5.8 g/cm³) by MPC at room temperature.

Keywords: Dynamic compaction, Fe-Si nano powder, Magnetic pulsed pressure, Magnetic core

1. 서 론

Fe-6.5Si 분말은 전자 산업에 있어서 고주파 자기 코어 재료로 많이 적용되고 있다1). 이것은 연착성체 (soft magnetic material)로서 스핀엘 페라이트(spinel ferrite)가 적용되기 힘든 100MHz 이상의 높은 주파수 영역에서 매우 우수한 성능을 보인다. 한편 높은 포화 저축 밀도, 낮은 손실, 높은 저항의 성질을 만족시키는 자기적 특성 측면에서 나노 구조를 갖는 Fe-Si는 매우 우수한 특성을 나타내는 것으로 보고되고 있다2,3).

기존의 연구자들은 나노 구조를 실현하기 위하여 주로 박막 형태의 연구에 집중하고4,5) 나노 구조를 갖는 벨크 재료로의 제조에 관한 내용은 거의 보고되고 있지 않다. 그것은 이 재료가 갖는 매우 단단하고 까치기 쉬운 성질로 인해 분말을 이용하여 높은 밀도의 성형체를 제조하는 것은 매우 어렵기 때문이다. 또한 기계적 합금화를 통해 제조되는 나노 Fe-Si 분말의 경우 그 형상이 복잡하고 나노화되면서 급격히 증가하는 표면적의 마찰에 의해 성형은 더욱 힘들어진다. 그럼에도 자성 재료로서 높은 투자율을 갖기 위해서는 높은 밀도를 갖게 하는 것이 반드시 필요하다.

한편 다양한 압축 성형 방법에 의해 나노 구조를 유지하면서 높은 밀도의 금속 성형체를 제조하고자 하는 연구 결과들이 보고되고 있다5,6). 나노 분말 재료의 성형에 있어서 가장 중요한 점은 나노 미세구조를 유지하면서 높은 밀도를 얻어야 한다는 것이다. 일반적으로 기계적 힘이 가해지면서 나노 구조의 결함구조가 소멸하고 입자 성장이 일어나게 되어 결함으로부터 이상 나노 구조를 유지하지 못하는 경우가 있다. 따라서 나노 구조를 유지할 수 있는 성형

*Corresponding Author : [Tel : +82-42-868-8359; E-mail : wlghee@kaeri.re.kr]
방법이 필요하다. 본 연구에서는 높은 밀도와 균일한
나노 구조를 얻기 위하여 동적 성형의 한가지 방법
인 자기 펄스 압축법7)를 이용하였다. 자기 펄스 압축
법은 전자기 펄스에 의해 매우 큰 압력(수 GPa)이
매우 짧은 시간(수~수십 미크로초)동안 인가할 수
있는 특징이 있다. 이 방법은 일بار 성장하지 아니
분말을 높은 밀도로 성형할 수 있는 장점이 있음이 보
고 되었다9). 또한 본 연구에서는 자기펄스 압축법과
비교하기 위하여 세로 시험기(Materials testing
system, MTS)를 이용한 일축 정적 압축을 동시에 수행하였다. 제조된 Fe-Si 분말과 성형된 코어의 미세
조직을 관찰하였고, 상대 밀도와 투과율을 측정하였다.

2. 실험방법

2.1. 나노 Fe-6.5Si 분말의 제조
가스 분무법(gas atomization)으로 제조된 20~40 μm
크기의 Fe-6.5Si 구형 분말을 기계 화학적 합금화법
(Mechanochemical alloying method)으로 분쇄하였다.
기계 화학적 합금화는 전기 저항을 증가시키고 보다
 쉽게 분쇄될 수 있도록 초기 분말을 질화(nitridation)
시킨 뒤 기계적 밀링(mechanical milling)에 의해 분쇄
하는 방법이다. 질화 공정은 873K(600°C), 40%의 수소
소량하시아(H2/NH3/H2) 혼합 가스 분위기에서 약 1
시간 동안 진행되었다. 기계적 분쇄를 위해 강(steel)볼
과 분말의 비율을 약 20 대 1로 하고, 수명 장치에
서 약 900 rpm으로 회전시켰다.

2.2. 나노 Fe-6.5Si 분말의 성형 및 특성 평가
상태되어 형성된 나노 Fe-6.5Si 분말을 이용하여
하중 코어 성형체를 재료시험기(MTS, Materials
Testing System)와 자기펄스성형법(MPC, Magnetic
Pulsed Compaction)으로 제조하였다. 성형 압력은
0.3 GPa부터 2.6 GPa까지 변화시켰으며, 성형 온도
상온에서 673K(400°C)까지 변화시켰다. 제조된 분말
및 성형체의 결정성을 X선 화질법(XRD, Rigaku D/
MaxIII, Japan)으로 측정, 분석하였다. 분말 및 성형
체의 미세조직을 투과전자현미경(TEM, JEOL
200CX, Japan) 및 전계 방출 주사전자 현미경
(Field emission scanning electron microscope, FE-
SEM, JEOL 6350, Japan)으로 관찰하였다. 성형체
의 밀도는 아르마데스 원리를 이용한 침수법
(Immersion method)으로 측정하였으며, RF-
Impedance analyzer를 이용하여 주파수에 따른 코어
의 투과율(permeability)을 측정하였다.

3. 결과 및 고찰

Fig 1에는 초기 분말 분말과 정화 처리 후, 그리
고 기계적 분쇄 후의 Fe-6.5Si 분말 형상을 주사 전

![Image](a)

![Image](b)

![Image](c)

Fig. 1. SEM images of Fe-6.5Si powders are shown (a) as sprayed, (b) the nitried (2h at 873K), and (c) mechanically milled (36h) powders.
자 현미경으로 관찰한 사진이다. Fig. 1(a)에서 보는 바와 같이 초기의 분말 크기는 약 20~40 μm 크기의 구형이었다. 이러한 분말을 암포니아-수소 혼합가스 분위기에서 절화시키면 Fig. 1(b)에서 보는 바와 같이 구형 분말의 표면에 매우 작은 크기의 철 절화물이 형성된다. 이러한 반응은 Fig. 2(a)의 XRD 결과에서 보는 바와 같이 주로 Fe₃N 상으로 분석되었다. 여기서 Fe₃N이 형성되는 절화 반응은 다음과 같다.\(^{19}\)

\[
4Fe + NH₃ \rightarrow Fe₃N + \frac{3}{2}H₂ \quad (ΔH = 9.9 \text{ kcal/mol}) \text{ at 298 K}
\]

(1)

이 반응은 상온에서는 환엽 반응 \((ΔH>0)\)으로 외부 에너지를 가해줘야만 일어날 수 있는 반응으로서 따라서 본 연구에서는 약 600°C에서 절화 반응을 수행하였다. 절화된 분말을 기계적으로 분쇄하게 되면 Fig. 1(c)에서 보는 바와 같이 2~4 μm 크기의 분말보다 미세한 분말로 바뀐다. 이때 기계적 분쇄 과정이 진행되면서 절화에 의해 생성된 Fe₃N은 절제 판재가 아려워지고 보다 미세화된 Fe 합금이 되는 것을 Fig. 2(b)를 통하여 확인할 수 있다. XRD 결과 점을 Fe₃N과 혼합물은 아라시고 α-Fe 주체의 약 2~3° 꼭지로 이동하면서 분말의 미세화에 의해 폭이 증가하였음을 알 수 있다. 한편 Fig. 1(c)의 관찰로서는 이 상태를 나노구조(nanostructure)라 할 수 없지만 이것을 고해상도 투과전자현미경(High

![Fig. 2. X-ray diffraction spectrums of Fe-6.5Si powders are shown (a) during nitridation and (b) during mechanical milling.](image)

![Fig. 3. High resolution TEM images of MCPed powders. 2-4 μm particles (shown in Fig.1(c)) containing (a) 20-30 nm sized α-Fe crystals which consist of (b) amorphous and crystallized region with stacking faults.](image)
resolution TEM, HRTEM)으로 관찰하면 Fig. 3(a)에서 보는 바와 같이 20-30 nm 크기의 α-Fe 상이 이 용접되어 있음을 알 수 있다. 다시금 Fig. 3(b)의 결과 용접체 내에는 α-Fe 결정상 뿐만 아니라 미정 결정상(amorphous phase)과 적층결함(stacking fault)으로 구성되어 있음을 알 수 있었다. 따라서 기계적 합금화를 통해 제조된 Fe-6.5Si 분말은 나노구조를 이루고 있음을 확인할 수 있었다.

이렇게 제조된 분말을 이용하여 완형 자기 코어 (toroidal magnetic core)를 제조하기 위하여 재료시험기(Materials Testing System)와 자기필스성형장치(MPC)로 일축 성형하였다. 제조된 코어는 외경 15 mm(혹은 10 mm), 내경 6 mm(혹은 5 mm), 두께 약 2 mm로 제조되었다. 제조 후 코어의 단면을 주사 전자현미경으로 관찰한 결과를 Fig. 4에 나타내었다. Fig. 4(a)는 재료시험기로 제조된 시편의 단면 관찰 결과이며, Fig. 4(b)는 자기필스 성형으로 제조된 시편의 단면 관찰 결과이다. 정적 성형방법인 재료시험기 일축 성형은 1개의 성형체 제조에 2초가 소요되며 본 연구에서 인가할 수 있는 최대 압력은 약 0.9 GPa이었다. 반면 동적 성형 방법인 자기 필 스 성형의 경우 압력의 인가 시간은 오سل로스코프를 통한 측정 결과 약 300μs였고, 최대 압력은 약 2.6 GPa이다. Fig. 4(a)에서 보는 바와 같이 재료시험기로 압축한 경우 중간 중간에 비 두공간들이 있고 전 체적으로 고르지 않은 성형 상태를 보인다. 재료 시험기를 이용하는 경우 0.9 GPa 이상의 압력을 인가 하는 것이 불가능하였는데 이것은 가압상 성형체의 표면에서 크랙이 발생하였기 때문이다. 이것은 정적 성형의 경우 일정 해중이 오래 된 시간 동안 작용할 때 입자간의 마찰에 의해 극복적으로 경험이 일어나면 더 이상 압축이 되지 못하고 비 두공간을 유지하는 상 태로 압축이 되기 때문이며 더 큰 힘을 작용하게 되면 먼저 경화된 부분에서 크랙이 발생하게 된다. 반면 자기필스성형방법으로 제조된 코어는 Fig. 4(b)에서 보는 바와 같이 비 두공간이 거의 관찰되지 않는 매우 균일한 성형 상태를 나타내었다. 동적 성형에서는 초기에 가해지는 큰 압력에 의해 성형체 표면에서 압력과가 발생하여 이 과정이 각각의 분말은 혼 들어 주는 효과를 얻기함으로써 각 분말의 외부력을 증진시키고 그 결과 압축되는 동안에 비 두공간들을 효과적으로 채움으로서 (채배열이 효과적으로 이루어지 고 있는 것임) 전체적으로 균일한 압축 상태를 나타 내는 것으로 사료된다. 이것은 정적 성형과 동적 성 형의 대표적인 차이점을 앞으로 볼 수 있다.

정형 압력과 성형 온도에 따른 성형체의 밀도 변화를 Fig. 5(a)에 도시하였다. 0.3-0.9 GPa의 압력 범위에서 재료시험기에 의한 정적 성형을 수행한 결과 성형압과 온도가 증가함에 따라 밀도가 지속적으로 증가하는 것을 관찰할 수 있었다. 이 때 최대 성형 밀도는 약 4.6 g/cm³으로 Fe-6.5Si의 이론적 밀도를 7.4 g/cm³로 가정했을 때 약 62%에 상당하는 값이다. 하지만 점에서 언급한 바와 같이 이 방법으로는 0.9 GPa 이상에서 성형을 하는 것은 불가능하였 다. 반면 자기필스 성형방법의 경우 인가 압력이 1.8-2.3 GPa로 정적 성형의 경우보다 쉽게 높은 압력 을 인가할 수 있었으며 이와 같은 높은 압력에서도
Fig. 5. Effect of compaction temperature and pressure on the density and permeability of powder core: (a) effect of compaction temperature and pressure on green density. (b) effect of compaction temperature on permeability of magnetic core in low frequency range (100 kHz).

Fig. 6. X-ray diffraction spectrums are shown (a) before and (b) after the crystallization at 500°C for 30 min in H₂ atmosphere.
하였으며, 차후 동적 성형된 코어의 투자율을 측정할 예정이다. 밑도의 측면에서 보면 동적성형된 시편의 경우 최대 높은 투자율을 보일 것으로 예상하고 있다. 한편 현재의 상대 밑도를 더 높이고자 하는 연구를 계속해서 추진하고 있다. 우선적인 접근 방법은 현재 많은 비용을 차지하고 있는 조적 내의 비정질 부분을 결정화하면 보다 높은 성형 밑도가 기능할 것으로 예상된다. 실제 실험 결과를 보면 Fig. 6에서 보는 바와 같이 500℃에서 약 30분 이상 열처리를 하면 비정질의 철 상들이 결정화되어 뚜렷한 결정상을 나타냅을 수 있다. 이 분말을 이용하여 동적성형한 결과가 Fig. 5(a)에서 열처리 산각형(c-Fe-6.5Si)으로 표시된 결과들이다. 비정질이 많은 분말에 비하여 밑도값이 약 1 g/cm³ 정도 증가했음을 알 수 있다. 이 외에 몇 가지 변수들을 조절함으로써 80% 이상의 성형 상태 밑도를 얻을 때 보다 좋은 코어 재료로서의 활용을 기대하고 있다.

4. 결론

이상의 실험을 통하여 얻어진 결론을 요약하면 다음과 같다.

1. 연작성 코어 재료로 활용하기 위한 나노 Fe-6.5Si 분말을 기계적 합금화에 의하여 약 20 nm의 입자 크기를 갖도록 제조하였다.

2. 정적 성형(MTS)과 동적 성형(MPC)을 통하여 Fe-6.5Si 분말 코어로 제조하였다. 정적 성형의 경우 최대 0.9 GPa의 압력에서 46.6 g/cm³의 밑도를 얻었으며, 동적 성형의 경우 최대 2.8 GPa에서 약 58.3 g/cm³의 높은 초기 성형 밑도를 보였다.

3. 나노 분말의 성형에 있어서 높은 압력을 매우 짧은 시간동안 인가할 수 있는 동적 성형이 균일한 미세구조의 높은 밑도를 갖는 성형체 제조에 있어서 효과적인 성형법임을 알 수 있다.

감사의 글

본 연구는 산업자원부 21세기 프로젝트 사업인 “차세대 소재성형 기술 개발 사업”의 일환으로 수행되었습니다. 이에 감사드립니다.

참고문헌