나노촉매를 이용한 신화학기술
황진수·황영규·정성화·장종산
한국화학연구원 나노촉매사업단

New Chemical Technology by Using Nanocatalyst
Jin-Soo Hwang*, Young Kyu Hwang, Sung Hwa Jhun and Jong-San Chang*
Research Center for Nanocatalysis, KRICT

1. 서 론

최근의 화학기술은 IT와 BT를 기반으로 하여 삶의 질을 향상시키는데 크게 기여하였으나 이들 각각의 기술이 장점에 이르면서 이들의 한계를 드러내기 위한 노력의 결실로 NT와 융합기술이 21세기 과학기술의 열쇠로 등장하게 되었다. 특히 21세기의 요구하는 신화학기술에서는 그림 1에서 보는 바와 같이 기존의 촉매기술의 능력을 한차원 높이거나 촉매의 조성을 갱신하면서도 원천히 새로운 환경을 갖는 신 개념의 나노촉매에 의해 구현되는 Ideal Synthesis을 추구하고 있다.

‘나노촉매(nanostructured catalyst)’란 원자 분자 혹은 초분자로 이루어져 화학반응에 활성을 갖는 나노크기 또는 그 이하의 크기나 구조를 갖는 물질로 정의될 수 있으며, 여기에는 나노분산형 촉매와 나노구조 촉매가 포함될 수 있다

최근에 특히 주목받고 있는 나노구조 촉매는 나노세공체(nanoporous materials), 나노결정형(nano crystalline) 입자체, 단계 표면 및 나노세공내의 나노분산체, 나노크기의 초분자(supramolecule) 등으로 태어난다. 이러한 나노촉매는 에너지 전환 및 광촉매, 그린화학 및 환경분야에

![Catalysis is required to play as a Pivotal Role. GA Somorjai, UC, Berkeley](image)

Fig. 1. 나노촉매를 이용한 신화학기술의 이상적인 합성기술모식도
비대칭 합성, 생체모방 기술, 분자인쇄 기술 등 다양한 분야에서 연구되고 활용중에 있다. 나노촉매 가운데 나노세포체 촉매는 이제까지 제조하던 분자체를 중심으로 지난 40여 년간 정유 및 석유화학 산업에서 가장 널리 이용되어온 촉매소재 가운데 하나로서 최근에는 본다 다양한 성분, 조성, 구조 및 특성 을 갖는 나노세포 소재들이 발견되고 활발하게 연구되고 있다.

본 고찰에서는 화학(연) 나노촉매산업이 수행하고 있는 나노촉매 소재 개발, 분자 조립 및 코팅에 의한 나노촉매의 분자체기 기술과 함께 나노촉매의 신화학응용기술을 소개하고 이들을 나노촉매 및 나노분말 분야 등의 여러 학문 영역의 접목에 의해 향후 응용기술로서 가능성을 열어보고자 의도로 본 연구내용을 소개코자 하였다.

2. 나노촉매의 신화학적 응용 기술

최근 나노기술을 바탕으로 기초 화학산업의 구조 변화와 타산업의 연계를 통해 21세기에 세롭게 창출되는 신규 화학산업으로서 타학문과의 융합을 광범위하게 진행하고자 하는 새로운 패러다임으로 신화학기술이 요구되고 있다. 신화학 기술 분야에서는 에너지, 경제, 환경친화적, 학제간 융합적인 특성을 지니며, 지난 세기를 하재기술 독립 위에서 생산품의 고부가가치화, 고성 상경화, 부산물 극소화에 의한 원료료율 극대화 및 생산규모의 쇠퇴, 효율화를 통한 삶의 질 향상에 기여함을 목적으로 하고 있다. 또한 신화학기술에서는 원자나 분자들을 설계, 조합, 조립하여 기존보다 작고, 빠르고, 저렴한 나노기술을 구현하는 나노화학은 물론 화학생산 과정에서 환경오염을 근본적으로 차단하는 그런 지속가능화학이 원을 이루었다.

기존의 화학기술이 대량생산 위주의 합성기술, 구조체어 기술, 분자체어 기술의 특성을 가졌다면 신화학기술은 초미세 화학공정으로의 전환을 통해 기존적으로 차원 절약, 에너지 절약과 환경친화성을 동시에 기대하는 기술로서 대변될 수 있다. 즉, 초소형화, 저에너지 소모, 환경친화성이 21세기 신화학 기술의 핵심주제로 등장하고 있다.

나노촉매 기술이 기존 화학 관련 산업을 현자기는 사업화를 위해서는 그림 2에서 보여주는 바와 같이 나노촉매 소재제조기술을 개발하고, 이들 소재들의 조립 및 코팅 등의 기공과 기능화에 의한 분자체어를 통하여 신화학 기술에 응용할 필요가 있다. 신화학 기술 응용을 위한 나노촉매의 핵심 요소기술로는 1) 촉매소재 자체를 설계하고 합성, 제조하는 나노촉매 소재기술, 2) 나노촉매로서의 특성을 발휘하기 위해 나노촉매를 조립하거나 기능화는 분자체어 기술, 3) 특성이 최적화된 나노촉매의 신화학적 응용기술이 필요하다.

Fig. 2. 나노촉매의 핵심 요소기술

Journal of Korean Powder Metallurgy Institute
요구되고 있다.

선진국에서 제안되고 있는 21세기 화학의 주요 연구분야는 기본적으로 환경화 학공정 개발로서 선택적 화학공정, 입체선택적 합성, 비대칭 합성, 염기성 총합공정, 지방족 반응수소 화학, 대체 및 재생 원료 활용, 기능성 올레핀 중합, 생화학/생모방 총합, 바이오래스 활용, 생화학적 탈량, 생명해양 고분자 및 복합체, 고분자 및 화학제품 폐기물 재활용 등이며, 나노촉매를 활용한 기계개발이 이들 분야의 성패를 좌우하게 된다.

나노촉매를 이용한 그린화학 기술 분야의 경우 정량기술로서 이기적기 위해서는 급일계 총합공정의 나노형 불균일 총합 대체, 선택성 향상 기술, 반응조 건 화학 기술, 단단계 공정을 단순화시키는 One-Pot 반응 총합 기술 등이 완성되어야 한다. 에너지 활용, 절약 또는 광전화학적 나노촉매 기술은 정량에너지 활용기술로서 신화학 분야의 중요한 영역이 되고 있다. 주목할 만한 분야로서 화학연료에 비해 에너지 효율이 높고 환경화적인 수소 기체는 21세기 정량 에너지원이며, 이를 제조하거나 활용하는 총합기술은 에너지 신화학의 중요한 도전과제가 되고 있다. 고효율 수소저장 소재 개발, 수소생산용 저온의 개발, 수소전환용 저온 연료전지 전극촉매 등이 나노 총합 소재의 개발에 의해 활용성을 극대화하는 방안이 될 전망이다. 나노화학과 생명공학을 접목한 생모 방 또는 바이오 총합기술은 단단계 유기합성에 의해 제조가 가능한 복합한 유기화합물을 단순화시키고 고 선택적으로 함성할 수 있는 특성이 있다. 화학기술이 환경기적 접근에 따라 의존하여 대량생산 위주로 발전함에 따라 야기된 환경오염 및 자원고갈 등의 문제를 해결하고 반응조건의 완화와 초선택성을 확보하는 방편으로 생모방향이 총합기술이 필요하다.

3. 나노촉매의 연구동향

3.1. 나노촉매의 중요성

스웨덴의 화학자 Berzelius에 의해 1836년 처음 도입된 총합의 개념은 화합물의 화학질환을 끝내거나 이어지는 화학반응의 새로운 경로를 만들어 주는 물질로서 또는 자원이 변하지 않으면서 화학반응의 환경성 에너지를 낮춰 반응속도를 촉진시키는 매체로서 현재까지 이어져 왔다. 그러나 학문과 산업 기술이 급속히 발전하면서 총합은 그 정의 이상으로 화학관련 산업 및 기술 발전에 핵심적인 역할을 담당하고 있다. 산업사회의 현대화에 일관도를 달성한 정유 및 석유화학 산업은 총합기술 및 공정개발에 의해 발전할 수 있었다. 미국의 Behnet는 1930년부터 1980년대에 이르기까지 정유 및 화학산업의 63개 제품의 혁신과 34개 공정의 혁신에 있어서 각각 60% 및 90%가 총합연구 및 기술의 기여에 의해 가능하다고 지적한 바 있다.

기존 나노기술에서 완화되거나 예측되었던 소재의

\[
\text{n-C}_6\text{H}_{14} + \text{O}_2 \rightarrow \text{HOC-C}_6\text{H}_4\text{-COH}
\]

Fig. 3. 나노세공 총합에서 One-Pot 반응에 의한 Adipic Acid 합성

Conditions: 100℃, 15 atm, 24 h of reaction
X(Hex): FeAlPO-31 (6.6%), FeAlPO-31 (5.3%)

양자화 또는 극미세화에 따른 특이성들이 최근에 나노형 측량에서도 관찰되고 보고되고 있기 때문에 새로운 측량기술 영역으로서 자리잡고 있다. 나노측
매에서 기대되는 특징은 ① 나노측매에서 형성성분의 양자화시 극소입자내 전자의 입체적 제한 및 양
자크기화 효과로 측량함성을 원자단위로 지능적으로 조정이 가능하다는 점과 ② 나노커기의 결정자리에
서 반응물소의 강한 상호작용과 편세된 원자기에 서
분의 전하를 보호해줌으로써 신화상태 변화를 통해
측량함성의 지능적인 조정이 가능하다는 점을 요약
할 수 있다.

나노세공계 측량에서도 나노세공계에 형성 수소
분이 거의 원자단위로 고분산되어 차원의 경우 일반
적으로 예측하지 못했던 측량특성들이 나타날 수 있다.
예를 들면 시콜로 här에서는 나노입원의 Adipic
acid로의 화합은 기존에 5단계 반응에 의해 가능한
환경으로 정성면에 전기금성 척이 필요하게됨에
나노세공형 Fe-AlPO-21 측량을 사용할 경우 청정화
항공으로 변형되며 나노석산식산이나 시
콜로 här으로부터 Adipic acid 화합이 가능한다는
것은 영국의 Thomas 그룹의 제안한 바 있다(그림 3).

최근의 나노기술의 발전에 따르므로 물리적 특성, 화학적/생물학적 가능성을 갖는 소재 및 소자가 발견되고 다양한 형태로 융용되고 있다. 이러한 나노기술
은 어느 한 분야에 국한되지 않은 전형 다학계간의
연구영역으로 자리잡고 있다. 화학분야의 나노기술은
연료전지, 배터리, 센서, 전자 및 정보통신용 소자, 미세반응기, 측량, 분석 등에 필요한 신소재를 제안
하고 조립하는데 주로 융용되고 있다.

나노측량자는 용이가 표면과학과 소재 및 나노기
술의 발전, 산업적인 중요성과 함께 최근에 부각되기
시작했지만 실제로 본질적으로 측량을 연구하는 과학
자들은 이미 이후 오랫동안 나노세공형의 나노구조 및
나노반반응을 조절하고 융용하는데 주목해왔다. 그
러나 기존 화학분산 측량은 화학 및 관련산업 발
전에 기여한 바 매우 크지만 대량 생산에 치중하여
원료의 효율화, 환경친화성, 부산물 생성 등의 문
제를 간과해 왔다. 21세기형 신화학산업에서는 환경
친화적, 에너지 절약적 화학제품 제조를 위해서 분자
설계나 분자공학 기법에 기초한 나노측량을 이용한
기술 개발이 필요하며, 이를 위해 나노입자의 고분산
화, 나노세공 내에서 내노환경물질의 임시적 제한
(confinelement)에 의한 양자효과, 고함성화, 전자에너지
화, 저자원 소모, 자연계 모방 등의 구현이 필요하다.

3.2. 나노세공형 측량
나노세공형 측량은 4-14Å 크기의 미세세공형
(microporous) 측량과 15-250Å 크기의 메조세공형
(mesoporous) 측량으로 나눌 수 있다. 이들은 100-1200
m2/g 범위의 매우 넓은 내부 표면적을 갖는다.
나노세공형 측량에서 관찰되는 양자화 효과는 분자
크기가의 세공을 갖는 미세세공형 분자체에서는 0.1Å
차이의 분자크기에 인식할 수 있기 때문에 일반 다
공성 물질과는 전혀 다른 분자화학 형태를 갖는다는
점이다. 이러한 특징이 1970년부터 현재까지 셀로라
이트 분자체 측량에서 널리 사용된 '형상 선택적 측
량작용'을 일으키는 주요인이다. 또한 나노세공형
측량에서는 세공의 급속, 급속화학물, 유기화학물, 무
기분자, 유기금속 화합물을 포획화(encapsulation)하
는 호스트로서 사용할 뿐만 아니라 이들로 인한 화학
화학물질의 '호스트매체로서'; 또한 이들로의 반응을 유
발하는 '나노반응기로서' 작용하는 특징을 가지는데

분자크기의 나노세공 물질에서도 제조 및 융용연구는
구조적인 다양성과 여러 가지 융용가능성 때문에
매우 중요한 의미를 갖는다. 대표적인 다공성 분자체
물질인 알루미니시리체이트 체어라이트는 나노세공성
측량의 대명사로서 형상선택적 측량작용과 고정산,
흡착체, 측량 담재로서의 융용성을 때문에 지난 30여
간 신화학 산업에 측량으로 가장 널리 이용되어 왔다.
특히 반응생물 반응물, 생명질 또는 반응중간체
등의 크기에 따라 선택성을 발휘하는 형상선택적 측
량작용은 체어라이트의 측량로서의 가장 중요한 특
성으로 지적되어 왔다. 최근에는 체어라이트의 전의
되지 않더라도 구조상과 무관하게 균일한 미세
세공을 갖는 결정성 화합물을 거의 대부분 포함하고
있다. 주요화합도의 25% 원소가 물질에 참여하여 3
차원 개방형 물질구조를 형성할 수 있다고 알려져 있
다(16). 나노세공 소재의 최근 개발동향에 관해서는 다
음 절에서 보다 자세히 소개될 예정이다.

미세세공 체어라이트 측량의 세공크기에 따른 분
자 선택성은 형상 선택성의 장점이 있으나 분자
에 대한 환산은 크게 제약을 받기 때문에 유기화학
반응에의 적용성을 제한하는 요인이 되어 왔다. 이를
극복하기 위해 8-14Å(A=0.1 nm) 크기의 대형 미세세포 물질과 메조세포 물질이 개발되고 있 다11,12). 1992년 미국 Mobi사에서 처음 보고한 메조세포 물질은 이후 수천만의 연구논문이 발표되어 탄 논문에서의 인용횟수가 1000회를 넘어설 정도로 소재화학 분야에 많은 영향을 미쳤다13). 실리카 뿐만 아니라 다양한 전이금속 화합물의 메조세포 구조가 합성되고 그 특성이 연구되어 왔다. 아직까지 상업화 된 측매 및 공정은 없지만 다양한 분야에서 응용연 구가 활발히 진행되고 있다.

나노세포공 측매는 일반적으로 고체상 특성을 가 지며, 불순물 축매기 때문에 분자공학 기법에 의해 새로운 활력성분을 도입할 경우 선택성을 높이고 폐기물 발생을 크게 억제하기 때문에 청정기술에 널리 활용될 수 있다. 나노세포공 측매는 현재까지 제올라 이트가 정유 및 석유화학, 정밀화학 분야 이외에도 환경측매 및くれん화학의 청정생산 측매로서 널리 활용되고 있으며, 항후에도 메조세포 측매를 비롯한 다양한 나노세포 측매가 개발될 것으로 예측된다.

영국의 Thomas14)가 제시한 바에 따르면 나노세포형 측매 설계에 따른 기 노의 특성은 (i) 고함성, 고선택 성, 축매항성 및 내구성, (ii) 물질전달 제한으로부터의 탈피, (iii) 반응선택성, 형상선택성, 입체선택성, (iv) 환경한 조건에서의 축매작용과 환경친화성, 경제 성 및 원자 효율성, (v) 무용매에서의 축매작용, (vi) 황성성의 고분산 및 잘 정의된 황성성, (vii) 세부 축 매작용에 대한 이익의 용이성 등이다.

Thomas 그룹에서는 미세세포 구조에 Co, Fe, Mn 등의 전이금속 원자를 구조에 차환하고 탄화수소의 선택적 화합반응에 적용하여 가광을 받고 있다. 그림 5에는 고리형 카본에서 시작으로 전환되는 Baeyer-Villiger 화합반응의 MnIIIAlPO-36 분자척 측매를 미세세포 측매의 한 예로서 제시하였다. 그리고 그림 6에서는 메조세포세바에 고분자 축매 환상성분을 고 정화시켜 풀리에틸렌 고분자 섬유를 제조하는 나노 축매 반응기를 예시하였다14).

초분자 화합물은 분자들이 분자간의 인력이나 비공유 결합에 의한 자기조립 과정에 의해 형성될 수 있으며, 이들의 초분자 축매로서의 예는 자연계에서 는 생체효소나 식물의 염료 등에서 손쉽게 관찰될 다. 상온의 환상한 조건에서 초선택성을 갖고 있는 초분자 축매의 이들을 모방하기 위한 화학적, 생물학 적 연구가 그동안 꾸준히 진행되어 왔다. 생체효소를 모방하기 위한 생체모방 측매는 청정생산 및 비대칭 축매분야에서, 염료제를 모방하기 위한 초분자 광측매는 인공 광합성 및 광축매 분야에서 시도되고 있다. 나노세포체의 세포내부에 초분자 또는 유기금 속 화합물을 조성시킨 형태의 초분자 축매 역시 생체모방 측매, 입체선택적 축매, 광축매 및 초선택적 정밀화학 제품 합성 등에 연구되고 있다. 일반적으로
Fig. 5. 고분자 중합용 나노세공형 촉매 반응기

다양한 유기금속 화합물이 균일하게 촉매 특성을 나타내며, 이들이 호스트-게스트 상호작용에 의해 제올라이트에 포집화될 경우 불균일하게 촉매의 특성과 함께 제올라이트 세공내 재활효과에 의해 절온에서의 세로운 반응특성과 선택성을 발휘할 수 있다. 이러한 형태의 초본자재로 간주되며, 마치 생체 효소계와 유사한 촉매작용을 하기 때문에 벨기에의 Jacobs의 경우 제오자임(zeozyme)으로 명명하기도 하였다[3]. 그림 6에서는 본 연구팀에서 시도하고 있는 Fe-Pthalocyanine 화합물이 포집화된 제올라이트 초본

자 촉매의 그림과 이를 이용한 수소-산소의 직접 사
용에 의한 저온 수산화 반응의 예를 나타내었다.

4. 화학(연) 나노촉매사업단의
나노세공체 촉매 연구

나노세공체 촉매 연구는 국내외적으로 활발히 전
행되고 있고 다양한 연구결과들이 화학 및
재료분야의 저널에 많이 보고되고 있지만 본 고찰에
서는 전세계적인 현황 대신에 본 사업단의 나노세공

Fig. 6. 제올라이트내 포집화된 초본자 촉매 및 이를 이용한 반향촉 화합물의 저온 수산화 반응

Journal of Korean Powder Metallurgy Institute
판자. 최근 연구동향을 소개하고자 한다.

4.1. 마이크로포를 이용한 나노세공체 합성연구

본 사업단에서는 수년간부터 나노세공체의 개념을 나
 것은 정의, 정립하고 관련된 연구를 활발히 진행해
 왔다. 특히 나노세공체 소재의 합성, 조립, 기능화하는
 수단으로 마이크로포를 적용하여 몇 가지 성공적인 결
 과를 얻었다. 그림 7에서 본 사업단에서 마이크로포
 를 이용하여 aluminosilicate, metallosilicate, AlPO,
 SAPO, MeAPO, metal phosphates, mesoporous
 materials 등의 다양한 나노세공체 물질들의 합성研
 구 현황을 보여주고 있다. [8] [26]. 기존에 수열합성은 이
 용하여 제조되고 있는 나노세공체 합성에 마이크로
 포를 적용할 경우 일반적으로 알려져 있는 신속 합
 성의 특성 이외에도 나노세공체 결정의 형상모양 및
 크기 조절, 수열합성과는 다른 phase selective
 crystallization 현상, microwave-induced fabrication
 등의 새로운 특성을 관찰할 수 있었다.

나노세공체 물질은 측벽, 흡착체 등의 응용에 있어
 입자 모양의 조절이 매우 중요하다. AFI-구조를 갖는
 AlPO-5, SAPO-5 분자체의 경우 pH, 추가 원소
 (Si, F 등) 및 반응 조건의 조절로 aspect ratio(길이
 의 길이 대 너비의 비율)가 0.2-40 정도의 결정을
 얻을 수 있었다. 특히, 기존의 합성법으로는 판상모
 양의 결정을 얻기가 불가능했으나 마이크로포를 이
 용한 염기성 반응물의 결정화로부터 잘 정의된 육각
 모양의 판상 결정을 얻을 수 있었다. 그림 8은 판상,
 막대모양, 구형 및 프리즘 모양의 AFI형 나노세공형
 측벽의 결정모양 조절에 대한 개념도와 전자현미경
 사진을 예시하고 있다 [23].

나노세공체는 구조마다 각각 다른 새로운, 측벽
 특성 및 흡착성을 나타내기 때문에 상업적 응용을
 위해서 어떤 특정한 결정 구조를 선택적으로 합성하
 는 것이 중요하다. 또한 그림 9에 나타낸 바와 같이
 SAPO 분자체의 마이크로포 합성시 동일한 반응물
 및 합성조건으로 전기각질에 의한 수열합성과 다
 른 결정 구조가 생성됨을 발견하였다 [20] [22]. 이러한
 phase-selective crystallization 현상은 마이크로포에
 의한 합성이 결정화 속도가 매우 빠르게 일어나므로
 동일한 phase diagram에 있는 SAPO 분자체에서 상대
 적으로 열역학적 불안정성을 갖는 물질이 선택적으로
 얻어진 것 설명할 수 있었다. 그림 10은 합성 시간의
 경과에 따라 SAPO-5(AFI)가 SAPO-34(CHA)로 전환
 되는 현상을 보여 주고 있다. 일반적인 전기 가열에
 의한 수열합성은 반응이 매우 느리며 몇시간의 결정화
 시간으로는 어떠한 결정도 얻어지지 않다가 12시간

Vol. 13, No. 2, 2006
이상부터 SAPO-5와 SAPO-34가 동시에 생성되며, 48시간이 지난 뒤에는 SAPO-34만 선택적으로 합성되었다. 이와는 달리 마이크로파 합성에서는 붐과 30 분의 반응으로도 결정화가 시작하여 2시간이내에서 SAPO-34의 생성없이 순수하게 SAPO-5만이 합성되었다. 이러한 발견은 이용하면 일인실로 불 안정한 물질도 순수 높게 만들 수 있게 되는데 실제로 마이크로파를 이용한 phase-selective crystallization으로

Journal of Korean Powder Metallurgy Institute
Fig. 10. SAPO 분자체에 대한 마이크로파 합성(왼쪽)과 수열합성(오른쪽)의 결정화 곡선 비교

부터 그동안 불가능하다고 여겨진 예기성 합성조건에서도 SAPO-5의 합성이 이루어질 수 있었다.

4.2. 마이크로파를 이용한 나노세공체 결정의 자기조립화 연구

본 사업단에서는 세올라이트의 구조내에 금속성분을 처하할 때 치환되는 성분이 물질내 실리콘 원자에 비해 마이크로파 흡수성이 뛰어난 경우에 금속성분은 물질의 표면에서 나노접(nanoglue)역할을 하여 기준에서는 다른 결정 형상을 나타내며, 이에 따른 새로운 물리화학적, 측면적 특성을 발견하였다(16). 마이크로파를 이용하여 MFI 구조를 갖는 silicalite 결정체에 전자급공을 구조내에 치환시킬 경우 원래 육각판상형 결정을 갖는 silicalite 결정체의 b-축 방향으로 서로 결합되고 조립되어 그림 11에 나타낸 바와 같이 수열합성의 결정체는 다른 fibrous한 입자모양으로 나타내는 M-MFI(M=Ti, Fe, 및 Sn)를 합성할 수 있었다.

마이크로파 합성 조건下에서 발견한 특이한 결과들은 그림 12와 그림 13에 나타낸 것과 같다. 나노크기의 Ti-MFI 세올라이트 합이 포함된 용액에 마이크로파를 조사할 때 세올라이트 구조내에 치환된 전이금속인 Ti에 의해서 선택적으로 마이크로파를 흡수하게 되면 표면의 Ti-OH 그룹이 선택적으로 발열하여 인접한 Si-OH 그룹들의 탈수축량 반응이 일어나게 되는데 이때 육각판상형 결정의 넓은 표면을 측으로 세올라이트 결정체의 b-축 방향으로 자기조립하게 된다고 설명되었다. 이러한 자기조립된 세올라이트는 기존의 TS-1 세올라이트와 유사한 비표면적과 동봉부피를 갖지만 수열합성된 세올라이트에 비해 1/2에 불과한 낮은 충진 밀도를 갖고 자기조립을 위해 -OH가 소모됨에 따라 표면의 소수성이 크게 향상되었다. 이렇게 향상된 표면 소수성이 과산화수소를 이용한 스타렌 에폭시화 반응에 높은 측모합성과 선택성을 나타내었다.

한편 b-축 방향의 자기조립 현상을 이용하면 세울라이트 기공이 한쪽 방향으로 길게 배열하게 되는데 이것은 xylene 혼합물(p- 또는 o-xylene)의 분리실험에 적용하여 수열합성에 의해 체조된 세올라이트에 비해 높은 분리능을 얻을 수 있었다. 그림 14는 xylene 혼합물의 TPD 분석 결과로 수열합성에 의해 체조된 Ti-MFI 결정체에 비하여 마이크로파 조사를 통해 합성된 Fibrous Ti-MFI 결정체가 p-xylene에 대한 선택성이 증가함을 확인할 수 있었다. MFI 세올라이트는 새로운크기가 p-xylene과 o-xylene의 분자 크기를 구별할 수 있는 분자체로서 직선형(straight) 세포, 사인곡선형(sinusoidal) 세포, 교차형(intersectional) 세포체념과 같은 3종류의 세포구조를 갖고 있어 직선형 세포는 육각판상 결정의 평면에 수직한 방향으로 정렬되어 있으며 사인곡선형 세포는 수평한 방향으로 정렬되어 있다. 이때 MFI 제어의 지체에서는 혼합물 p-xylene과 o-xylene의 세포로 직선형 세포로 환성되며, 크기가 작고 작은 p-xylene 분자와 약간 더 큰 o-xylene 분자에 비해 세포내의 확산이 상대적으로 용이하다. 따라서 마이크로파 형성의 육각판상 결정의 넓은 면을 측으로 차축된 fibrous 결정은 일반 수열합성에 의해 얻어진 단순한 결정에 비해 직선형 세포의 길이가 작축된 결정의 숫자만큼 8-10배 정도 길어지고 p-xylene의 출작량이 o-
Fig. 11. SEM 전자현미경 사진: (a) Si-MFI-MW, (b) Ti-MFI-CH (Si/Ti=70), (c) Ti-MFI-MW (Si/Ti=120), (d) Ti-MFI-MW (Si/Ti=70), and (e) Sn-MFIMW, (f) TEM 사진: Sn-MFI-MW

Nanofabrication of Nanoporous Materials: Self-Assembly by Microwave

Fig. 12. 화학(연)의 nanogluе 개념과 마이크로파를 이용한 제율라이트 조립

Journal of Korean Powder Metallurgy Institute
xylene에 비해 크게 유리해 지게 된다. 이러한 예측과 일치하게 xylene 혼합물의 TPD 분석결과에서는 마이크로판합성에 의한 Ti-MFI 결정에서 p-xylene/o-xylene=10.7의 선택성을 나타냈으며, 이러한 결과는 수열합성에 의해 얻어진 결정에 비해 6.7배 높은 수치로 얻어졌다.

4.3. 니켈포스페이트의 금속치환 및 촉매응용 연구

본 사업단에서는 최초의 나노세공 금속 포스페이트인 니켈 포스페이트 VSB-1과 VSB-5를 미국 UC, Santa Barbara 대학과 공동 연구를 통해 처음 시작하여 금속 포스페이트 물질 최초의 촉매응용 연구에 성공하였으며, 유기아미드가 없는 새로운 합성법 개발, 다양한 금속 치환에 의한 새로운 TMI-VSB-5 개발, 골격내 치환된 니켈 또는 다른 활성금속의 Framework Catalysis, 형상선택적 촉매특성 발견 등의 연구성과를 얻었다⁷⁻⁹⁻¹⁵.

앞서 제시한 바와 같이 나노세공 분자체 VSB-5와 VSB-1은 24개의 산소로 이루어진 거대한 세공 구조를 가지므로 합성에는 각각 1,3-propane diamine

Fig. 13. Ti-MFI 제을라이트의 마이크로판 합성시 결정조립 현상과 특이성

Fig. 14. p-Xylene/o-Xylene의 1대 1 혼합물 흡착 후 TPD 분석결과: (a) 마이크로판 합성 fibrous Ti-MFI 시료와 (b) 수열합성 Ti-MFI 시료
Fig. 15. VSB-1과 VSB-5의 마이크로파에 의한 신속합성 및 template-free 합성법

![Graphs showing crystallization yield and crystallization time for VSB-1 and VSB-5](image)

Fig. 16. 합성방법에 따른 VSB-1(원복)과 VSB-5(분말)의 결정화 속도(MW: microwave synthesis, HT: hydrothermal synthesis)

![Graphs showing crystallization yield and crystallization time for different methods](image)

Fig. 17. TMI-VSB-1(원복)과 TMI-VSB-5(분말)에서 처원되는 전이금속 농도에 따른 단위관리 a-축의 변화 그래프

![Graph showing variation of a-axis with concentration of transition metal](image)

기 아닌 주형물질 없이 신속 합성할 수 있는 매우 간편하고 경제적인 새로운 합성법을 나타낸 것이다. 이에 따라 많은 사업단에서 최근에 유기 아민 화합물이 적합한 양기를 추가하여 반응물의 pH를 조절하면 VSB-5 및 VSB-1 세포체가 재조합 수 있도록 진보하였다. VSB-1과 VSB-5 물질은 마이크로파 조사에 의해 1분 동안의 결정화 과정으로 유
반응의 측면에서 활용될 수 있음이 널리 알려져 있
어 나노세포체의 금속 치환은 세올라이트 연구에서
오랫동안 매우 중요한 연구주제로 다루어져 왔다. 그
런데 니켈 포스페이트 물질은 그 자체의 측면 및 단
체로서의 특성 뿐만 아니라 다양한 전이금속이 골격
내의 Ni나 Fe에 자유롭게 치환되는 특성을 갖는다는
것을 확인할 수 있다. 특히 Ni 원자가 정유면체
배위를 갖기 때문에 정유면체 배위가 열역학적으로
정평한 전이금속 이온의 치환이 용이해지는 특성을
갖는다. 나노세포체 골격에 대한 금속의 치환 현상은
aluminosilicate 세올라이트, AIPO, SAPO 분자체 등
에서도 일어나지만 VSB-1의 경우 40% 이상의 금속
이 치환될 정도로 매우 신속성이 높은 골격 구조를
지니고 있다. 이에지 [SiO₄], [AlO₄] 정사면체로 구
성된 세올라이트 분자체에서는 치환량이 크지 않기
때문에 전이금속이 골격내에 완벽하게 치환되었는지
골격 밖에 자리잡고 있는지 분광학적으로 규명하기
가 쉽지 않았다. 그런데 니켈 포스페이트의 전이금속
치환연구에서는 이제까지와 달리 X선 화합분석에 의
한 단위체 크기 및 퍼미의 변화, ICP 화합분석 및
UV/VIS DRS 분석 및 Mossbauer 분광분석 등에
의해 전이금속의 배위 상태의 확인에 의해 명확하게
증명할 수 있었다. 그림 17은 VSB-1과 VSB-5에
여러 종류의 전이금속이 치환됨에 따라 나타나는
TMⅠ-VSB-1와 TMⅠ-VSB-5 단위체의 a축의 길이
와 단위체의 끈이 변화를 보여주고 있다. 이러한
결과는 금속 이온의 산화상태에 따른 이온반경과
Ni²⁺ 및 P⁵⁺ 양이온의 크기를 고려한 단위체의 확
대나 축소 예측과 정확히 일치하였으며, Fe, Zn, Mn,
Co 등은 나열 대신에 V은 P 대신에 치환되는 것으로
설명되었다. 그림 18에 나타낸 Fe-VSB-1의 천에 대
한 Mossbauer 스펙트럼은 high spin octahedral
Fe(III)와 Fe(II) 이온이 87%에 13%의 비율로 존재
하며, 나열 대신에 골격에 치환된다는 것을 보여준다.
이런 치환 메커니즘을 확인한 것은 phosphate와
나노세포체에서 처음 얻은 결과이며 나노세포체의 기
초 물성 및 함성 측면에서, 의미를 갖는다.

니켈 포스페이트 VSB-1의 측면에서의 특이성은 그
림 19에 제시한 바와 같이 나노세공 특성, 이온교환
능, 약산의탈기성 고체, 금속 치환능의 4가지 특징
으로 요약할 수 있다. 먼저 VSB-1의 부터디엔에서
에틸벤질의 전환에 대한 측면 활성을 400°C에서
측정할 때 기존의 세올라이트 측면에는 다른 특성을
보였다. 부터디엔으로부터 에틸벤질의 전환
반응은 중간체인 4-vinyl cyclohexene(VCH)으로
Diels-Alder 고리화 반응이 진행되며, 이성화 반응과

Fig. 18. Fe-VSB-1의 Mossbauer 스펙트럼
Fig. 19. Characteristics and applications of nanoporous nickel phosphate, VSB-1

![Diagram showing metal incorporation, ion-exchange, nickel phosphate, and weak acidity/basicity](image)

VSB-1

Zeolite NaX

Reaction conditions: $T = 400^\circ \text{C}$, GHHSV = 7,800 h$^{-1}$, feed gas = 1,3-butadiene-helium (3/10)

Fig. 20. 부터디엔의 탈수소 고리화 반응으로부터 에틸벤젠 생성에 대한 VSB-1과 NaX의 촉매활성 비교

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>PhOH Conv. (%)</th>
<th>H$_2$O$_2$ Efficiency (%)</th>
<th>CAT</th>
<th>HQ</th>
<th>BQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu-VSB-1(14)</td>
<td>17.2</td>
<td>61.9</td>
<td>68.7</td>
<td>28.3</td>
<td>3.0</td>
</tr>
<tr>
<td>Cu-VSB-1(39)</td>
<td>25.1</td>
<td>65.8</td>
<td>67.6</td>
<td>30.0</td>
<td>2.4</td>
</tr>
<tr>
<td>Cu-VSB-1(50)</td>
<td>28.0</td>
<td>64.8</td>
<td>68.3</td>
<td>29.7</td>
<td>2.0</td>
</tr>
<tr>
<td>Cu-VSB-1(70)</td>
<td>40.1</td>
<td>73.4</td>
<td>69.8</td>
<td>30.2</td>
<td>-</td>
</tr>
</tbody>
</table>

Reaction conditions: Catalyst = 0.2 g, Solvent = 60 ml water, phenol/H$_2$O$_2$ = 1 (molar ratio), phenol = 22 mmol, reaction time = 3 h, $T = 60^\circ \text{C}$, Notaton; CAT: catechol, HQ: hydroquinone, BQ: benzoquinone.

Journal of Korean Powder Metallurgy Institute
나노촉매를 이용한 신화학기술

Fig. 21. Pd/VSB-1에서 올레핀에 대한 형상선택적 수소화 반응(반응온도: 30°C, 수소압력: 2 기압, 반응물 농도: 1 mol%)

Fig. 22. 화학(염)의 새로운 나노세포형 수소흡착제

약하기 때문에 400°C 고온에서도 고체산염에 의한 부산물의 생성이 크게 줄어들며, 미세세포의 부터다 엔에 대한 농축효과와 니켈 성분의 탈수소능이 Diels-Alder 고리화 반응활성 및 탈수소 활성을 중대 시킨 요인으로 판단되었다.

VSB-1은 반응률 크기에 따라 형상선택성을 보일 수 있는데 팔라듐이 담지된 VSB-1에서 반응물의 크기에 따른 올레핀의 액상 수소화 반응으로부터 그 특성을 확인할 수 있다. VSB-5의 경우는 염기성을 나타내는 다공성 분자체로서 300°C의 수소 환원조건에서 환원할 경우 곡적에 있는 니켈이온이 부분적으로 환원되어 올레핀의 선택적 수소화 반응에 대한 촉매활성을 나타내었다. 또한 곡적에 있는 니켈이 불포화된 자리가 있어 그림 22에 나타낸 바와 같이 선택

Vol. 13, No. 2, 2006

5. 맥음말

21세기에 들어와 촉매기술은 신화학 산업의 핵심 역할을 담당하게 되었고, 나노기술과 분자공학 기술의 접목으로 나노촉매 기술로 가동되면서 인간 실생활 환경에 필수적인 사회적 요구조건으로 인식되고 있다.

이제까지 기존 화학 물질은 대량 생산에 주로 이용된 원료의 고 효율성, 환경친화성, 부산물 생성 등의 문제를 야기했으며, 사용된 촉매소재 또한 발고하게 분자설계에 기초한 나노촉매의 특성을 결여되었다. 따라서 이제는 나노촉매 기술의 새로운 방향으로, 초소량의 촉매확산, 환경친화성, 생태성 개선 등을 통해 인류의 생활환경 중간에 유익한 기능을 부여함으로써 균형적으로 삶의 질 향상 및 실용성을 갖도록 하는 기술이 필요한 시점이다. 또한 21세기 나노촉매 기술의 산업화를 지향해야할 방향은 신화학 산업으로의 전환을 위한 정밀화, 소형화, 경량화, 신기능화, 고강도화, 청정화에 의한 지능형 나노촉매의 실용화 분야이다.

21세기 현재 자연가갈과, 에너지 갈림, 환경부담 등은 고려하여 볼 때 나노촉매를 이용한 산업적 화학 반응의 구조형으로 반응 효율, 수율 증대는 물론, 백금 등의 촉매 재료 등의 경감과 가격 저하, 내구성 중간에 획기적이며 기대되어 신화학 산업에 신차라 역할을 감당하라에 보疖되고 있다. 한편 21세기 신화학의 새로운 조류는 화학공학 및 반응의 환경친화성, 소형화, 고속성능, 분자공학적 특성을 활용하여 인간 생활 및 건강개선 등을 최우선 목표로 하고 있으며, 이를 위해 화학제품 생산을 위한 새로운 패러다임의 도입을 필요로 하고 있다. 이른바 Ideal Synthesis로 나노촉매에 의한 100% 수용도 자원의 극대화, 환경친화성, 에너지 절약 등을 구현하는 방향으로 진행될 것이다.

미국의 Vision 2020 Catalysis Report와 미국화학회에서 발간한 "New Process Chemistry Roadmap (2001)"에서는 21세기에 지향해야 할 신화학산업의 예상목표로서, (1) 반응원료의 폐기물화 및 부산물화 90% 촉소, (2) 에너지 절감 30%, (3) 이산화탄소 포 함배출가스 및 배출물 30% 감소, (4) C1화합물의 활용도 20% 증가, 대체화합물 활용 13% 상승, (5) 새로운 연구개발기술로, 총합화 또는 시장화의 시간 30% 촉소 (6) 매년 새로운 제품과 활용성 양적으로 15% 증대, (7) 생산비 절감 25% 등을 제안하고 있으며, 이러한 목표를 달성하기 위해 나노촉매 및 활용기술의 개발이 필수적임이 강조되고 있다.

21세기 나노촉매 기술은 IT, BT, ET 등 여러 다양한 기술과 융합될 때 화학산업의 시장과 효과가 극대화되기 때문에 앞으로는 어떻게 다음세대의 연구 및 기술개발을 효율적으로 수행할 수 있는지가 나노촉매 기술의 미래를 좌우할 것으로 판단된다.

감사의 글

본 고찰은 산업자원부 차세대 신기술 개발사업 중 나노촉매 사업단의 지원으로 수행되었습니다.

참고문헌

620, 1996.