Abstract

The present study examined the 3-dimensional space distribution characteristics of sea water intrusion using data available from previous observations. For this study, we used 3D FEMWATER, which is a 3-dimensional finite element model. The target area was around Daechang-ri, Gimje-si, Jeollabuk-do. The area is relatively easy to formulate a conceptual model and has observation wells in operation for surveying sea water intrusion. Considering the uncertainty of numerical simulation, we analyzed sensitivity to hydraulic conductivity, which has a relatively higher effect. According to the result of the analysis, the variation of TDS concentration had an error range of $-1,336 \sim +107$ mg/l. Taking note that the survey data from observation wells were collected when the boundary between fresh water and sea water in the aquifer was in equilibrium, we set the range of time for numerical simulation and estimated the spatial distribution of TDS concentration as the range of sea water intrusion.

According to the result of estimation, the spatial distribution of TDS concentration calculated when 1,440 days were simulated was taken as the range of sea water intrusion. Using the result of calculation, we can draw not only vertical views for a certain section but also horizontal views of different depth. These views will be greatly helpful in understanding the spatial distribution of the range of sea water intrusion. In addition, the result of this study can be used rationally in proposing an optimal quantity of water pumping through investigating the moving route of sea water intrusion over time in order to prevent excessive water pumping and to maintain an optimal number of water pumping wells per interval.

Keywords: Seawater intrusion, Total Dissolved Solids (TDS), Hydraulic conductivity, Sensitivity, 3D-FEMWATER

* Chungbuk University professor, Prof. S. Yun
** Chungbuk University assistant professor, Prof. S. Nam
*** Chungbuk University associate professor, Prof. S. Lee
**** Chungbuk University professor, Prof. S. Kim

* Corresponding author. Tel.: +82-43-261-2402
Fax: +82-43-275-2377
E-mail address: coastal@chungbuk.ac.kr
I. 서 론

해안선 부근에서 해수가 대수층을 따라 닿수지하
수계로 침입하는 해수침투는 강우량 및 증발산량
변화에 따른 지하수면의 높이 변화, 조석에 의한
해수면 변화, 해수와 담수간의 밀도차 등 주로 자
연적 요인에 의하여 발생하며, 투수성 퇴적층이나
단층과 퇴적물의 공간적 분포 등 지질학적 특성에 의
하여 그 정도가 좌우되는데, 최근에는 해수지역에
서의 특별한 지하수 개발과 대양 수문 등 인위적
인 요인에 의하여 더욱으로 확산되고 있어 심각한
문제가 되고 있다.

해수침투에 의한 염수화 과정은 대상지구의 수리
지질학적 특성에 따라 다양하게 나타나는데 해수체
의 이동에 따른 점투과정과 담수체화의 혼합과정으
로 크게 구분할 수 있다(Todd, 1976). 이러한 이
론적 배경을 기초로 바탕이 되는 지역의 대수
층이 다공질 매체로 구성되어 있는 경우의 해수침
투과정에 대하여는 해수체와 담수체의 밀도차 같은
상호관계에 기초한 연구가 진행되어 왔다(KARICO,
2002).

우리나라에서 해수침투에 관한 사례는 제주도와
같은 도서지역(Choi and Kim, 1989; Choi et al.,
1991; Lee et al., 1997)과 서해안 중부지대
(Jeen et al., 2001), 서해안 연안지역(Park et
al., 2002), 임해지역(Kim et al., 1997), 그리고
부산 동남해안 지역(Shim et al., 2002b)에 대하
여 보고된 바 있다.

국내에서는 수질조사 등 기초조사와 해수의 동역
학을 고려하지 않은 Ghyben-Herzberg 이론에 근
거한 해안 대수층에서 해수침투에 대한 연구가 대
부분이었다. 그러나 실제 지하수는 정적평형상태에
있는것이 아니고 연속적으로 이동하기 때문에 해수
와 담수의 경계면도 변동하게 된다(Shim et al.,
2002c). 그러므로 해수침투의 범위를 추정하기 위
하여 추적자를 이용한 관측실험, 양수시험 그리고
지하수층의 모양과 속성을 파악하기 위한 지구물리
탐사를 실시하고 관측에서 측정된 자료를 이용한
다. 그러나 수리지질학적 환경에서의 변수들의 공
간분포는 매우 다양하고 복잡하기 때문에 각 개의
관측자료들로부터 전체적인 분포 양상을 파악하고
광범위한 해수침투 분포를 추정하는 데는 한계가 있다.

따라서 현재 국내외에서는 기 관측자료나
전기비 저항 탐사를 이용하여 지하수 모델링을 수행
하여 해수침투의 범위를 추정하거나 예측을 하고
있다. 사용되는 대표적인 프로그램으로는 SUTRA,
SWI, MT3D 등이 있다. 또 박 등(1997)은 남와
해수의 동역학을 고려한 전산모형 SIMLAS (Huyakorn,
et al., 1996)를 이용하여 중·동 제주 수역의 지
하수 개발로 인한 지하수위 변화와 해수침투에 대
한 예측 모델링을 수행한 바 있다.

하지만 이렇게 수행된 모델링의 대부분은 관측점
을 기준으로 1차원 내지는 2차원적인 분석으로 판
단하는데 그쳤다. 따라서 지역 전체에 대한 해수침
투 분포양상을 파악하기 어렵고 각종 인자들, 특히
모델링 지역의 수리지질학적 변수를 구축하는데 상
당한 시간과 노력을 들여야 하기 때문에 지하수 업
무 관련 실무자들에게 여전히 많은 부담이 되고 있다.

따라서 본 연구에서는 홍수와 및 분포의 여러에
대해서 효율 및 이론현상을 모의할 수 있고, 대수
층 전체를 모델링할 수 있는 3D-FEMWATER 모
형(E.P.A., 1992)을 이용하여 개념모델을 구축하
고 추정모형을 시각화 하였다. 이때 수처리형에
필요한 매개변수는 기존의 조사자료(KARICO,
2004)를 이용하고 현장시험이나 기존 인사들이 유
국의 연구결과를 이용하여 모델링을 수행하였다.
그리고 계산된 영분능도를 이용하여 해수침투현상
을 분석, 평가함으로써 그에 대한 결과 사례를 적
성화하여 해수침투상에 대한 고찰을 시도하였다.

II. 연구 대상지역

1. 수리지질 특성 및 기초조사

본 연구의 대상지역으로는 전라북도 김제시 촉산
Table 1 Observation wells of Daechang

<table>
<thead>
<tr>
<th>Well No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BH-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BH-3</td>
<td>17.3 m</td>
<td>42 m</td>
<td>17.4 m</td>
<td>26.8 m</td>
<td>24.5 m</td>
</tr>
<tr>
<td>BH-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BH-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. 대창지역에 대한 수리매개변수

대창지역의 수리지질특성 파악을 위하여 기조 사례는 있는(KARICO, 2004) 자료를 바탕으로 Freeze and Cherry (1979)의 분류표를 이용하여 수리전도도와 투수계수 값을 Table 2와 같이 설정하였다.

Table 2에서 Bulk density는 Dean et al.(1989)과 Millse et al.(1985)이 지질학적 물질에 따라 평균값의 범위를 제시하였는데 이를 이용하였다.

전기전도도에 따른 물의 상태분류는 다양한 방법이 제안되어 있지만 본 논문에서는 Table 3과 같이 Freeze & Cherry(1979)가 제안한 TDS에 의한 구분법을 적용하였다.

담수와 해수의 경계면을 고찰하는데 일반적으로 많이 이용되는 총 고용량물질(TDS)과 전기전도도(EC) 사이의 상관 관계식은 다음과 같은 식을 사용하였다(Shim et al, 2002a).

Table 2 Hydraulic parameters used for 3D-FEM-WATER modeling

<table>
<thead>
<tr>
<th>Property</th>
<th>Layer</th>
<th>Clay loam</th>
<th>Sand loam</th>
<th>Granite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductivity (m/s)</td>
<td>4.17e6</td>
<td>3.81e6</td>
<td>1.39e5</td>
<td></td>
</tr>
<tr>
<td>Bulk density (kg/m³)</td>
<td>1.300</td>
<td>1.490</td>
<td>1.500</td>
<td></td>
</tr>
<tr>
<td>Compressibility (m³/kg)</td>
<td>3.57e-15</td>
<td>7.72e-14</td>
<td>7.72e-15</td>
<td></td>
</tr>
<tr>
<td>Water viscosity</td>
<td>3.63e-5 (kg/m·h)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density of water</td>
<td>1.000 kg/m³</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3 Classification of water as a TDS

<table>
<thead>
<tr>
<th>Classification</th>
<th>TDS (mg/l, g/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh water</td>
<td>0 ~ 1,000</td>
</tr>
<tr>
<td>Brackish water</td>
<td>1,000 ~ 10,000</td>
</tr>
<tr>
<td>Saline water</td>
<td>10,000 ~ 100,000</td>
</tr>
<tr>
<td>Brine water</td>
<td>> 100,000</td>
</tr>
</tbody>
</table>

 초기조건과 경계조건에 따라 다음의 기본방정식을 풀도록 설계되어 있다. 호름에 대한 기본방정식은 Richards 방정식을 기초로 하며, 방정식은 다음과 같다.

\[
\frac{\rho}{\rho_0} F \frac{\partial h}{\partial t} = \nabla \cdot \left(K \cdot \left(\frac{\rho}{\rho_0} \nabla z \right) \right) + \frac{\rho}{\rho_0} q \]

\[
F = a' \frac{\theta}{n} + \beta \theta + n \frac{\partial S}{\partial h} \]

여기서, \(F \)는 저류계수, \(h \)는 압력수두, \(K \)는 수리 전도도, \(q \)는 유입/유출, \(\rho \)는 농도 C에서의 물의 밀도, \(\rho_0 \)는 C=0에서의 물의 밀도이며, \(\rho' \)는 주입수(injection fluid) 또는 외수(withdrawn water)의 밀도, \(\theta \)는 습윤상수, \(a' \)는 매체의 수중 압축성, \(\beta \)는 물의 수중 압축성, \(n \)은 공극률, \(S \)는 포화상태를 나타낸다.

수리전도도 \(K \)는 다음 식으로 주어진다.

\[
K = \frac{\rho g}{\mu} \kappa = \left(\frac{\rho}{\rho_0} \right) \left(\frac{\mu}{\mu_0} \right) \frac{\rho_0 g}{\mu_0} \kappa, \kappa = \frac{\rho}{\rho_0} K_{sk} \]

여기서, \(\mu \)는 임의의 농도에서의 물의 동점성계수, \(\mu_0 \)는 C=0에서의 동점성계수, \(k \)는 투수성텐서, \(k_s \)는 포화투수성텐서, \(k_0 \)는 상대투수성 또는 상대수리전도도, \(k_{so} \)는 포화수리전도도텐서이다.

밀도와 동점성계수는 농도의 함수이며 각각 다음 형식을 취하여 가정한다.

\[
\frac{\rho}{\rho_0} = a_1 + a_2 C + a_3 C^2 + a_4 C^3 \ldots \]

그리고

\[
\frac{\mu}{\mu_0} = a_5 + a_6 C + a_7 C^2 + a_8 C^3 \ldots \]

여기서, \(a_1, a_2, \ldots, a_8 \)은 물의 밀도와 점성의 농 도변수로 정의되는 변수이며, \(C \)는 농도이다.
Darcy 속도는 다음과 같이 정의된다.
\[V = -K \cdot \left(\frac{\rho_b}{\rho} \nabla h + \nabla z \right) \] ...(7)

가. 초기조건
호름방정식에 대한 초기조건은 식 (8)로 주어진다.
\[h = h_f(x, y, z) \text{ in } R \] ...(8)
여기서, \(R \)은 대상영역이며 \(h_f \)는 식 (2)를 정상상태 방정식으로 풀거나 현장측정에 의해 얻을 수 있다.

나. 경계조건
호름방정식에 대한 경계조건은 다음 식들로 주어진다.
(1) Dirichlet 조건
\[h = h_d(x, y, z), t) \] ...(9)
(2) Gradient flux 조건
\[-n \cdot K \cdot \left(\frac{\rho_b}{\rho} \nabla h \right) = q_n(x, y, z, t) \] ...(10)
(3) Flux 조건
\[-n \cdot K \cdot \left(\frac{\rho_b}{\rho} \nabla h + \nabla z \right) = q_c(x, y, z, t) \] ...(11)
여기서, \((x, y, z, t)\)는 경계조건에서의 특정좌표이며, \(h_d\)는 Dirichlet의 함수값, \(n\)은 외부방향으로의 단위법선벡터이다.

2. 이송에 대한 기본방정식
이송에 대한 기본 방정식은 질량과 플러스의 연속방정식을 기초로 유도된다. 주제산과정은 이류, 분산/확산, 휘감, 강세, 생물분해와 유입/유출이다.
\[\theta \frac{\partial C}{\partial t} + \rho_b \frac{\partial S}{\partial t} + V \cdot \nabla C - \nabla (\theta V \nabla C) = \\
- \left(\frac{\partial h}{\partial t} + \lambda \right)(\theta C + \rho_b S) - (\theta K_w C + \rho_b K_s S)_+ \\
m - \frac{\rho^*}{\rho} qC + \left(\frac{\alpha^*}{\rho} \nabla h + \frac{\rho^*}{\rho} V \cdot \nabla \left(\frac{\rho^*}{\rho} \right) - \frac{\partial h}{\partial t} \right) C \] ...(12)
여기서, \(\theta \)는 습윤농도, \(\rho_b \)는 마른층의 단위체적밀도, \(C \)는 물체 녹았을 때의 물질농도, \(\alpha^* \)은 지층의 압축률, \(\lambda \)는 감쇠상수, \(S \)는 혼합점에서의 물질농도로서 목적에 따라 다음과 같은 형태를 취한다.
\[S = K \phi C \text{ (linear isotherm)} \] ...(13)
\[S = \frac{S_{max}KC}{1+KC} \text{ (Langmuir isotherm)} \] ...(14)
\[S = KC^* \text{ (Freundlich isotherm)} \] ...(15)

식 (12)에서 분산계수 텐서\(D \)는 \(\theta V = \theta V | V | \delta \)으로부터 구한다.

가. 초기조건
이송방정식에 대한 초기조건은 식 (16)으로 주어진다.
\[C = C_f(x, y, z) \text{ in } R \] ...(16)
여기서, \(R \)은 대상영역, \(C_f \)는 초기경계면에서의 초기농도값이다.

나. 경계조건
이송방정식에 대한 경계조건은 다음 식들로 주어진다.
(1) Dirichlet 조건
\[C = C_d(x, y, z) \text{ on } B_d \] ...(17)
(2) Gradient flux 조건

\[n \cdot (- \theta D \cdot \nabla C) = q_n(x, y, z, t) \text{ on } B_n \] (18)

(3) Flux 조건

\[n \cdot (VC - \theta D \cdot \nabla C) = q_c(x, y, z, t) \text{ on } B_c \] .. (19)

여기서, \(C_d \)는 Dirichlet 경계에서의 농도, \(C_v \)는 가변경계에서의 물의 농도, \(\theta \)는 습윤농도, \(B_d \)는 Dirichlet 경계, \(q_n \), \(q_c \)은 각 플러스 경계에서의 흘 필러스이다.

IV. 적용 및 고찰

1. 적용모델 구성

본 연구에서는 대창지역의 해수침투 모의를 수행하기 위하여 Fig. 3과 같은 수치 지형자료를 이용하여 가로 약 2.2 km, 세로 2.8 km의 지역을 대상으로 개념모델을 설정하였다(Oude Essink and Boekelmann, 1996).

설정된 개념모델에 Fig. 4와 같이 2D 격자를 100 m 간격으로 나누어 생성하였다.

시추 sàng도를 이용하여 연구대상지역을 다시 3개의 층 즉, 점토(Clay loam), 모래(Sand loam), 화강암(Granite)층으로 구분하고 각 층마다 5개의 면으로 구성되는 프리즘요소로 3D 격자를 생성하여 Fig. 5(a)는 생성된 3D 격자망도이며, Fig. 5의 (b), (c)는 각각 정면도와 측면도로서 총 요소 10,088개, 절점 6,129개로 구성되어 있다.
Fig. 6 Numbering scheme for element faces

Fig. 6은 요소 및 절편의 번호를 부여하는 방법을 제시한 것으로 절편번호는 요소번호를 기준으로 반시계 방향으로 붙여진다.

2. 경계조건의 적용

경계조건으로는 Fig. 4의 측측은 해안과 직접 맞닿은 부분으로 지표면에서 수직으로 잘려있다고 가정하였다. 해수의 밀도는 1.025 kg/m³, 해수의 염분농도는 35,000 mg/l로 설정하였으며 내륙쪽에 해당하는 우측면의 담수농도는 C=0으로 하였다. 대수중의 하부와 상부 및 측면부는 각각 불투수 경계면으로 설정하였다.

3. 모델의 민감도 분석

본 연구에서 사용된 수리매개변수들은 외국의 연구결과 및 기존의 조사자료들을 이용하였기 때문에 모델링결과는 매우 정확할 수 있다. 이번 연구에서 매개변수들은 3D-FEMWATER 모델을 이용하여 수리학적 결과를 탐색하고 이를 바탕으로 모델링결과의 수리학적 값을 의존으로서 대량의 현장을 미치는 것으로 나타났다 (Park and Lee, 1997). 따라서 모델링결과가 수리학적 값을 따라 얼마나 민감한지로 조사하였다.

BH-2 관측점의 양수심도를 통해 조사된 수리학적 요소는 6.3×10⁻⁴ cm/s로 제시되었다. 그러나 수리학적 요소는 트로양류와 대수중의 구조에 따라서 매우 다양한 범위의 값을 갖는다. 따라서 Freeze and Cherry (1979)가 제안한 관측층류에 따른 수리학적 요소를 취하여 평균, 평균의 100배 및 평균의 1/100배의 3가지 경우를 조합하여 총 27 가지 조합에 대하여 1년간 수치모의실험을 실시하였다. 모의실험결과 제간된 TDS 농도값을 수리학적 모델법의 평균값으로 제간했을때의 농도값을 기준으로하여 상대농도값의 최대값과 최소값의 차이를 제간결과의 오차범위로 설정하였다. Fig. 7은 제간결과 각 조합별 TDS 농도값의 변화폭을 나타내고 있으며 -1,336~+107 mg/l의 오차범위를 갖는 것으로 조사되었다.

4. 해수침투 범위 추정

기존 관측점의 점 자료를 이용하여 해수침투범위의 공간분포 양상을 효과적으로 추정할 수 있는지를 검토하고자 하였다.

관측점에서의 실험자료가 대수중에서 담수와 염수의 경계가 평행상태에서의 측정자료임에 착안하여 수치모의 실험의 시간범위를 설정하고 그때의 TDS 농도의 공간분포를 해수침투범위로 추정하였 다. 즉, 시간변화에 따른 해수침투의 진행 범위가 관측점의 TDS 농도 범위에 들어올때까지 모의를 수행하였다. 모의결과 1,440일을 모의하였을 때 모
의값이 BH-1 관측정의 실측값에 도달하였다. Fig. 8은 모의 결과 대장지역의 해수침투 분포도를 나타내고 있다. Fig. 8(a)는 관측정으로부터 축정된 자 연지하수위 2.85 m 지점에서의 해수침투 분포도를 나타낸 것이며, 전반적으로 TDS 농도는 해안선부 근 200 m내에 10,000 mg/ℓ 이상의 염수대가 형성되어 있고, 그 외의 대부분 영역에서는 해수와 닿수가 혼합되어 있는 반염수대(Brackish water zone)를 나타내고 있다. 또한, B-B’상의 1,000 mg/ℓ의 동농도선을 제외하는 해안선을 따라 균일하게 침투되는 양상을 보였다.

Fig. 8(b)는 Fig. 8(a)에서 A-A’단면의 XZ의 수직평면상의 동농도선을 살펴본 결과이다. 그림에서 알 수 있는 바와 같이 Clay loam 층에서는 심도 40 m 깊이까지는 Ghyben (1889)과 Herzberg (1901)의 이론식과 유사한 침투 양상을 보였으나 화강암 층에서는 Ghyben (1889)와 Herzberg (1901)의 이론식과 다른 침투양상을 보였다. 이는 Ghyben-Herzberg의 이론식이 밀도차와 정수압 평형조건만을 고려한 반면 3D-FEMWATER는 서로서로 지층에 대한 수리역학 변수들을 상호작용까지 고려한 결과라고 사료된다. 이러한 사실은 Fig. 8(a)의 B-B’단면을 나타내는 Fig. 8 (c)에서 더 자세히 확인될 수 있는데, 1,100 mg/ℓ의 동농도선까지는 Fig. 8 (b)와 유사한 침투양상을 보이나, 1,000 mg/ℓ의 동농도선에는 다른 침투양상을 보이고 있다.

본 연구결과를 이용하면 Fig. 8의 A-A’, B-B’ 단면 외에도 확인하고자 하는 지층에서의 수직단면도를 살펴볼 수 있으며 이를 통하여 염수침투에 대한 이해와 검토가 용이할 것으로 사료된다.

또한, Fig. 9 (a), (b), (c), (d)에서 보는바와 같이 모의된 결과로부터 심도별 해수침투범위를 추정할 수 있다. 심도별 해수침투범위는 평의상 10 m, 30 m, 60 m, 90 m의 4가지 경우만을 살펴보았으나 원하는 심도별 해수침투범위도 추정할 수가 있다.

4가지 심도별 해수침투 범위를 살펴본 결과 모두 해안선을 따라 급격하게 침투되는 양상을 보였으나 10 m 이후 Sand loam층과 Granite층의 심도에서선 해안쪽으로 많이 나온 봉우리부분(수평거리 200~400 m 지점)에서 염분농도가 증가하는 양상을 보였다. 전반적으로 해수침투 범위는 해안선에서 200 m거리내에서 10,000 mg/ℓ 이상의 염수대
어질수록 염수단의 침투구는 감소하는 것으로 나타났다. 임의의 단면에 대한 수직평면도 뿐만 아니라 심도에 따른 수평평면도를 활용하면 해수침투 범위와 공간분포를 이해하는데 큰 도움이 될 것으로 사료된다.

V. 결 론

본 연구에서는 3D-FEMWATER 모델을 이용한 수치모의를 통하여 3차원 공간분포에 따른 해수침투의 양상과 범위를 살펴보았다. 모형에 적용된 수리매개변수들 중 해수침투범위 추정에 상대적으로 큰 영향을 미치는 수리전도도의 민감도분석 결과 각 조합별 TDS 농도값의 변화폭은 -1,336~+107 mg/l 의 오차범위를 갖는 것으로 조사되었다.

관측점에서 실측자료를 이용하여 시간변화에 따라 해수침투의 진행 범위가 관측점의 TDS 농도 범위에 들어올 때까지 모의를 수행하였다. 수치모의 수행결과 1,440일을 모의하였을 때 BH-1 관측점의 실측값에 도달하였다.

전반적으로 TDS 농도는 해안선부근 200 m내에 10,000 mg/l 이상의 염수단이 형성되어 있고, 그 외의 대부분 영역에서는 해수와 담수가 혼합되어 있는 반염수단을 나타내고 있다. 또한, 해안선을 따라 균일하게 침투되는 양상을 보였다. 수직평면상의 해수침투과정에 따르면 심도 40 m 까지까지는 Ghyben-Herzberg의 이론식과 유사한 침투양상을 보였으나 Granite층에서는 Ghyben-Herzberg의 이론식과 다른 침투양상을 보였다. 이는 Ghyben-Herzberg의 이론식이 밀도차와 수압이 평형조건만을 고려한 반면 3D-FEMWATER은 서로다른 지층에 대한 수리매개변수들의 상호작용까지 고려한 결과라고 사료된다.

감사의 글

*이 논문은 2005년도 충북대학교 학술연구지원
References

of salt water intrusion in 3D", *14th salt water intrusion meeting*, Malmö.

