변화향량효과를 고려한 논 면적 예측 모형의 개발

Development of a Paddy Field Estimation Model Considering Shift-share Effects

장우석*·정남수**·박기욱***

Jung, Woo-Suk*·Jung, Nam-Su**·Park, Ki-Wook***

Abstract

Estimations of paddy field area are important for agricultural water supply planning. Especially these estimations have to be excused by drainage basin. In this research, we developed a paddy field estimation model considering shift-share effects such as national growing, structural, local effects. National growing effects are estimated by adopting the result of KREI-ASMO model which predict farm land area in national level. Paddy field structural effects are estimated using statistical data about farmhouse numbers and cultivation areas. Local allocation effects are calculated by differences of estimations and real data. The results using data from 1998 to 2003 show that developed model estimates 2006 paddy field areas in each province in 5% error and is applicable to predict future change of paddy field.

Keywords: Rural paddy field, Shift-share effects

1. 서 론

변화량양효과를 고려한 논 면적 예측 모형의 개발

Economic Institute - Agricultural Simulation Model (김정덕 등, 1999)를 발표하였다. KREI-ASMO 모형은 크게 국제 쌀 수급모형과 국내농업모형으로 구분되고, 다시 국내농업모형은 재배업부문모형과 축산부문모형으로 구성되어 이들 결과로부터 농산물값을 합한 수입개발 시나리오에 따른 대안별 국내생산 및 수입량을 분석하였다. 이중 논면적 변화예측을 위한 개별 국가모형을 제시하였고, 현재면적, 실질농가수취가, 기간 등으로 향후 논면적을 예측하기 위한 매개변수를 산정하였다. 한국 농업부문 연간 전망모형인 KREI-ASMO는 매년 자료 갱신과 더불어 개별 형태관계식 및 모형구조에 대한 지속적인 유지, 보완을 위하여 매년 발전해 나가고 있다. 그러나, 현재의 통계적 모델은 전국단위의 경지 면적 예측에 제한이 있으며 개별지구 단위 예측에 활용되지 못하고 있다.

본 연구에서는 장래 논 면적 변화를 논도별로 예측하기 위하여 한국농촌경제연구원에서 개발한 KREI-ASMO 모형의 전국단위 예측자료를 바탕으로 도 단위적으로 예측에 도달할 예정을 검토하고, 이를 보완하기 위한 방안으로 변화량 예측 효과를 고려한 논 면적 예측 모형을 개발하고자 한다.

II. 논 면적 예측모델의 개발

1. 농경지 결정모형

KREI-ASMO 모형은 한국 농업의 변화를 포괄적으로 판단하기 위하여 농업부문 장기예측 모형(1988)을 수정·보완한 모형이다. 이 모형은 국제미가를 예측하는 국제 쌀 수급모형, 경종작물과 과수 등을 포함하는 재배업모형, 축산물 수급을 예측하는 축산모형 및 이들의 전망치를 통합하여 농업소득과 부가가치 등을 산출하는 총량모형의 4개 모형으로 구성되어 있으며, 이 중에서 농경지 결정모형이 포함된 재배업부분 모형은 재배업 모형은 농업생산요소, 가격 결정방식, 경제주변환수, 단수환수, 수요환수(요수환수)등으로 구성된다(김정덕 등, 1999). 여기에 대한 농업생산물에 대한 농업생산요소, 가격 결정방식 수수로부터 농업투입가격, 농업비용, 임차료, 농업생산요소가 산출된다. 산출된 농업생산요소 가격은 경제주변환수가 입력되어 생산량을 결정하게 되고, 최종적으로 총량모형에 입력 자료로 사용된다. 경제주변환수에서 농업생산요소 가격과 농경지 결정모형에서 산출되어 각 품목별 재배면적을 산출한다.

2. 농경지 결정모형의 농촌지역 적용의 한계

KREI-ASMO는 과거의 경지면적을 기반으로 미래의 경지를 예측하는 내생변수와 외생변수를 모두 사용하는 방법이었는데, 2005년으로 넘어오면서 농산물가격, 농업노임 등 외생변수만을 활용하는 것으로 바뀌었고, 시나리오를 추가하여 외생변수가 변화할 때 농지변화를 예측할 수 있도록 하였다. 그러나 이를 단위적으로 내리게 되면 지역별로 변별력을 갖출 수 있는 충분한 외생변수를 확보할 수 없고, 확보하더라도 내생변수가 발생시키는 자체적인 각지역성의 외생변수의 보편성을 추적하게 되므로 지역별 변별력을 식별하기가 된다. 따라서 자체적인 내생변수로 경지의 변화를 예측하는 모형의 개발이 필요하다고 판단된다.
3. 변화할당효과를 고려한 논 면적 예측 모형의 개발

변화 할당 효과를 고려한 논 면적 예측모형 개발을 위한 연구의 방법은 Fig. 1과 같다. 논 면적변화에 영향을 주는 변화할당효과에는 경지성장효과, 경지구조효과, 지역할당효과로 분류 할 수 있다. 변화할당효과를 고려한 논 면적 예측 모형에서는 경지구조효과와 지역할당효과 위주로 경지면적변화를 분석하고, 성장효과를 보정하여 N 년 후의 논 면적을 예측하였다. 또한 개발된 모델의 적용을 위하여 1998년부터 2003년까지의 논 면적변화 분석을 통하여 3년 후인 2006년 논 면적을 예측하였다.

\[N_s = V_i(o) \times \left(\frac{V(t) - V(o)}{V(o)} \right) \] \hspace{1cm} (2)

where, \(V_i(o) = \text{year}(0) \text{ paddy field variance in } j \text{ region with } i \text{ size} \)

\[V(o) = \text{year}(0) \text{ paddy field total national variance} \]

\[V(t) = \text{year}(t) \text{ paddy field total national variance} \]

경지 구조 효과는 일정기간 j 지역 i 면적의 변화 또는 총 증가량 중에서 국가 전체의 모든 면적의 평균 변화로 발생하는 증감량을 말한다. 이것은 어떤 도시나 지역의 특정 규모별 농경지 면적의 변화는 전국의 논 면적변화와 무관한 상태에서 이루어 질 수 없으며, 전국의 논 면적의 변화에 영향을 받는다는 사실을 근거로 한다. 경지 성장효과는 식 (2)로 나타낼 수 있다.

4. 논 면적 예측모형의 변화할당효과

변화할당효과를 고려한 논 면적 예측모형에서 총 경지 면적 변화는 분석 기간 동안 특정 지역 특정 규모 논 면적의 총 증가, 감소의 합을 의미한다. 따라서 이 값이 (+) 혹은 (-)의 값을 가짐에 따라 분석기간 동안 그 지역의 규모별 경지 면적 변화여부를 판단할 수 있다. 총 변화량은 식 (1)으로 나타낼 수 있다(윤대식, 1998).

\[\text{Total variance} = Ng + Im + Rs \] \hspace{1cm} (1)

where, \(Ng = \text{National paddy field growing effect} \)

\(Im = \text{paddy field structural effect} \)

\(Rs = \text{local allocation effect} \)

경지 성장 효과는 일정기간 j 지역 i 면적의 변화 또는 총 증가량 중에서 국가 전체의 모든 면적의 평균 변화로 발생하는 증감량을 말한다. 이것은 어떤 도시나 지역의 특정 규모별 농경지 면적의 변화는 전국의 논 면적변화와 무관한 상태에서 이루어 질 수 없으며, 전국의 논 면적의 변화에 영향을 받는다는 사실을 근거로 한다. 경지 성장효과는 식 (2)로 나타낼 수 있다.

\[Im = V_i(o) \times \left(\frac{V(t) - V(o)}{V(o)} \right) \] \hspace{1cm} (3)

where, \(V_i(t) = \text{year}(t) \text{ paddy field variance in } j \text{ region with } i \text{ size} \)

\(V_i(o) = \text{year}(0) \text{ paddy field variance in } j \text{ region with } i \text{ size} \)

지역 할당 효과는 전국의 다른 지역에 대비한 특정 지역의 경쟁적 위치를 나타내는 것으로 그 지역이 지니고 있는 입지적 특성, 인구 유입, 농경지 입지 요건 등 그 지역의 다른 지역에 대한 상대적 경쟁력을 의미한다. 이는 전국의 경지 면적 변화량에 대비하여 + 값을 가질 수도 있으며 - 값을 가질 수도 있다는 것을 의미한다.

\[Rs = V_i(o) \times \left(\frac{V_i(t)}{V_i(o)} - \frac{V(t)}{V(o)} \right) \] \hspace{1cm} (4)
where, \(V_{ij}(t) = \text{year}(t) \text{ paddy field variance} \) in \(j \text{ region with } i \text{ size} \)

III. 적용 및 비교

1. 경지성장효과의 산정

경지성장효과는 국가 전체의 모든 면적의 평균 변화로 발생하는 증감량을 말한다. 그러나, 경지성장효과는 이미 전국 경지면적통계 등의 자료로 반영되고 있으며, 성장효과 결과 값이 실측치와 일치함으로써 이를 무시할 수 있을 것이라 판단된다. Table 1은 1997년부터 조사된 전국의 총 경지면적변화량이며 미래의 경지성장효과는 전국단위로 개발된 KREI-ASMO 모형의 추정치를 활용할 수 있다.

<table>
<thead>
<tr>
<th>Year</th>
<th>Total paddy field area of Korea</th>
<th>Increase and decrement</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>1,103,809</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>1,099,319</td>
<td>-4,490</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>1,095,827</td>
<td>-3,492</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>1,093,090</td>
<td>-2,737</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>1,090,682</td>
<td>-2,408</td>
<td>real data</td>
</tr>
<tr>
<td>2002</td>
<td>1,083,874</td>
<td>-6,808</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>1,074,009</td>
<td>-9,865</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>1,063,911</td>
<td>-10,098</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>1,054,518</td>
<td>-9,393</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>1,034,643</td>
<td>-19,875</td>
<td>KREI-ASMO estimation data</td>
</tr>
<tr>
<td>2010</td>
<td>953,798</td>
<td>-80,845</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>953,774</td>
<td>-24</td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>953,749</td>
<td>-25</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2 Average paddy field change in each areas

눈의 경우 농업의 세분화로 농작물 가격의 하락이 그 원인으로 볼 수 있다.

중규모 농장은 해당 규모에 비하여 적정 수익을 올리지 못하는 이유로 인하여 경지를 팔거나 농사를 포기함으로써 면적이 계속해서 줄어들고 있는 것으로 판단되며, 여기에는 중규모 농의 소 규모화 또는 대규모 경지로의 흡수에 대한 요소도 포함되어 있다. 대규모 농의 경우 농업의 소득을 극대화하기 위하여 점차적으로 규모가 대규모화되는 것으로 판단된다.

3. 지역 할당 효과의 산정

지역 할당 효과에서는 각 도 논 면적의 년별 평균 변화량을 예측할 수 있다. 이것은 Fig. 3에 나타낸 바와 같다. 지역적할당효과를 고려하면 경기도, 강원도, 전라북도, 제주도 지역의 논 면적은 계속해서

Fig. 3 Paddy field changes of each region
감소하는 추세이며, 그 외 충청남도, 전라남도, 경상북도, 경상남도 지역은 논 면적이 증가하는 추세이다. 앞서 고려한 경치 구조 효과와 지역 함당 효과의 총합은 0에 가까운 값을 나타내고 있으므로 도별 평균 논 면적 변화량은 전국적으로 논 면적이 감소하는 범위 안에 있다고 판단할 수 있다.

4. 산정된 변화 함당 효과의 검증

산정된 변화 함당 효과를 검증하기 위하여 Table 2와 같이 1998년부터 2003년까지의 지역할당효과와 경지구조효과를 산술평균 하여 3년 후인 2006년도별 논 면적을 예측하였다. 그 결과 Table 2에 나타난 바와 같이 도별 최대 오차 5.5%, 평균 오차 2.5%로 예측이 가능하였다.

5. 변화 함당 효과를 고려한 미래 논 면적 예측 응용

산정된 경지생성효과와 경지구조효과, 지역할당효과를 활용하여 2010, 2020, 2030년의 논 면적을 예측한 결과는 Table 3과 같다.

6. 변화 함당 효과를 고려한 논 면적 예측 모형의 고찰

KREI-ASMO 모형은 일반적으로 논 면적과 농산물 가격을 국가 전체에 적용하여 전체를 비극으로 화폐하여 구하는 방법이기 때문에 국가적 차원에서 논 면적 예측은 가능하지만 도 단위 이하는 적용하기가 곤란하다.

| Table 2 Comparison of estimation and real data in 2006 (unit : ha) |
|---------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| change rate year | area | 2003 year paddy | 2006 estimation | paddy field growing | 2006 year real data | error rate (%) |
| -929.67 | Gyeonggi | 121,627 | 118,838 | 117,189 | 111,004 | -5.57 |
| -98.75 | Gangwon | 49,383 | 49,067 | 48,406 | 47,751 | -1.37 |
| -326.38 | Chungbuk | 63,264 | 62,285 | 61,421 | 58,498 | -5.00 |
| 22.71 | Chungnam | 184,640 | 184,708 | 182,145 | 181,897 | -0.14 |
| -82.59 | Jeonbuk | 161,825 | 161,577 | 159,335 | 158,639 | -0.31 |
| 113.75 | Jeonnam | 219,849 | 223,250 | 220,152 | 211,740 | -3.97 |
| 592.11 | Gyeongbuk | 156,777 | 158,553 | 156,353 | 151,825 | -2.96 |
| -310.24 | Gyeongsan | 116,450 | 115,519 | 113,916 | 112,958 | -0.85 |
| Total | | 1,073,818 | 1,059,917 | 1,034,342 | | -2.52 |

| Table 3 Comparison with KREI-ASMO model (unit : ha) |
|---------------------------|-----------------|-----------------|-----------------|-----------------|
| | without paddy field growing effect | with paddy field growing effect | |
| | 2010 | 2020 | 2030 | 2010 | 2020 | 2030 |
| Gyeonggi | 105,752 | 92,623 | 79,493 | 97,489 | 85,380 | 73,268 |
| Gangwon | 47,577 | 47,143 | 46,709 | 43,860 | 43,457 | 43,051 |
| Chungbuk | 56,528 | 51,602 | 46,677 | 52,111 | 47,567 | 43,022 |
| Chungnam | 183,766 | 188,440 | 193,113 | 169,407 | 173,704 | 177,990 |
| Jeonbuk | 139,913 | 162,702 | 165,461 | 147,445 | 149,978 | 152,503 |
| Jeonnam | 214,761 | 222,312 | 229,863 | 197,980 | 204,927 | 211,862 |
| Gyeongbuk | 153,785 | 158,608 | 163,432 | 141,788 | 146,205 | 150,633 |
| Gyeongnam | 112,471 | 111,255 | 110,088 | 103,683 | 102,555 | 101,421 |
| Total | 1,034,643 | 1,004,686 | 1,034,789 | 953,798 | 953,774 | 953,749 |

KREI-ASMO 99 estimation 953,798 953,774 953,749 < KREI-ASMO estimation
개발된 변화-협상 효과를 고려한 도 단위 논의 면적 예측 모형은 경지성장효과를 KREI-ASMO 모델의 전국 단위 논의 면적 변화로 판단하였으며, 경지구조효과를 고려하기 위하여 농가수를 평균 면적으로 곱하여 규모별 논 면적으로 환산하여 활용하였으며, 예측치와 실측치의 잔차를 이용하여 지역합당효과를 산정하였다. 산정 과정에서 규모별 논 면적은 실측치가 아닌 예측치 이용으로 일정부분 오차를 포함하고 있으 며 년도별 논 면적 규모별 농가 수에 대한 통계자료의 조사단위 일부가 일치하지 않은 한계정도가 있고 있다. 또한 산정된 변화-협상 효과의 시간적 변화에 고려없이 산출평균하여 장래 논 면적 변화를 예측에 활용한 점과 지가 변동, 간척 및 개간 등 논 면적의 증가에 대한 요소를 고려하지 못한 부분도 모델의 한계로 지적될 수 있다.

그러나, 기존의 모델에서 논 면적 비율을 활용하여 산출적으로 분석하는 방식에 비하여 변화-협상의 개념을 도입하여 경지성장효과, 경지구조효과, 지역항달효과의 3가지 요소를 고려하는 본 연구의 모델은 도 단위의 경지구조효과와 지역항달효과를 산정하여 지역별 논 면적을 장기예측하고 이 자료와 전국단위로 추정된 KREI-ASMO모형의 차이로 경지성장효과를 보정함으로써 지역별 특성을 반영할 수 있다는 점과 함께 전국단위 논 면적 예측도 부합하는 결과를 얻을 수 있었다.

Ⅳ. 요약 및 결론

장래 농촌지역 논 면적 변화 예측 모형을 개발하기 위하여 기존의 KREI-ASMO 모형의 한계와 적용성 을 검토하고, 변화-협상 효과를 고려한 논 면적 예측 모형을 개발하는 것을 목적으로 하였다. 기존의 KREI-ASMO은 국가단위의 논 면적 예측은 가능하지만 도 단위로 내려가게 되면 충분한 변수를 확보하더라도 내생변수가 발생시키는 자체적인 무작위성이 외생변수의 보편성을 추월하게 되므로 도 이하 지역에는 적용하기 힘들다고 판단하였다.

개발된 모델은 지역의 논 면적 변화 예측을 위하여 경지 성장효과, 경지 구조효과, 지역 항달효과의 3가지 변화-협상효과를 고려하여, 논 면적의 전국 성장 요소, 구조별 변화요소, 지역항달요소를 추정하였다. 이 요소중에서 97년부터 2003년까지의 구조별 변화 요소, 지역항달요소를 산출평균하여 도별 논 면적 변화를 추정하였으며 KREI-ASMO에서 전국단위 예측치와의 차이를 보정하여 도별 추정면적을 보정하였다. 계산된 결과는 지역별 차별화된 변수와 함께 전국단위 논 면적 예측도 부합하는 결과를 얻을 수 있었다.

매년 농촌경제연구원에서는 전국 경지예측모델을 개선하고 있는데 농업용수수요량 추정 등 응용연구에서는 향후 전국의 논 면적을 예측하는 KREI-ASMO 모형이 변형하더라도 이를 전국성장효과로 취급할 수 있기 때문에 용수구역단위에 적용하는데 문제 가 없을 뿐만 아니라, 국내 논 규모의 경우 응용단위까지 통계조사가 시행되기 때문에 용수구역단위를 산정할 수 있을 것으로 기대된다.

그러나 현재 개발된 논 면적 예측모형에서 경지구조효과의 경우 규모별 논 면적통계가 농가수로 조사되는 것에 그치고 있어 이를 논 면적으로 환산하는 데 오류를 포함할 수 있으며, 통계 조사되는 면적이 2000년까지는 10단계에서 2004년 이후 12단계로 수정되는 등 통계조사의 면적이 통일되지 않아 이 오차는 향후 통계청에서 각 도의 규모별 논에 대한 면적과 통일화 통계자료를 발표하게 된다면 해소될 수 있을 것으로 판단된다. 또한, 통계적인 자료의 처리는 사회의 변화에 따른 논 면적 감소 등 일반적인 경향에 대한 추정이므로 개인이나 간척 등 농업특산업을 통한 논 면적의 증가요소는 별도로 구비하여 산정하여야 할 것으로 판단된다.

Reference

1. 김경덕, 김태종, 전성문, 이정환, 1999, 농업전망 시뮬레이션모형 KREI-ASMO99, 농촌경제연구원
2. 김명환, 이대성, 김제훈, 김병수, 조영수, 이용호, 윤태언, 2006, 농업부문 전망모형 KREI-ASMO 2006 보완 및 응용에 관한 연구, 농촌경제연구원

88

한국농학회논문집 제50권 제3호, 2008
4. 대한국토·도시계획학회, 2000, 국토·지역계획론, 보상각
5. 윤태식, 윤성순, 1998, 도시계획론, 홍익사
7. 통계청, 2007, 경지 면적 통계, 통계청