Abstract
This study aims to estimate the optimal probability distribution of daily electricity generation by wind power, in order to contribute in rural green-village planning. Wind power generation is now being recognized as one of the most popular sources for renewable resources over the country. Although it is also being adapted to rural area for many reasons, it is important to estimate the magnitudes of power outputs with reliable statistical methodologies while applying historical daily wind data, for correct feasibility analysis. In this study, one of the well-known statistical methodology is employed to define the appropriate statistical distributions for monthly power outputs for specific rural areas. The results imply that the assumption of normal distributions for many cases may lead to incorrect decision-making and therefore lead to the unreliable feasibility analysis. Subjective methodology for testing goodness of fit for normal distributions on all the cases in this study, provides possibilities to consider the other various types of statistical distributions for more precise feasibility analysis.

Keywords: Wind power generation, Maximum likelihood estimation, Statistical distributions, Feasibility, Green-village
농촌 그린빌리지 계획을 위한 일별 풍력발전량의 적정확률분포 추정

너지로 각광 받고 있다. 그러나 설치에 따른 용지매수, 환경 문제 등의 요인으로 일부 지역에서 문제가 제기되고 있는 것으로 알려져기도 하다. 풍력발전은 대체 전력생산을 대량으로 생산하는 대규모와 마을단위 이하에서 사용되는 소규모로 구분하여 사업이 이루어진다. 대규모 사업의 경우에는 대부분 발전사업용으로 설치되고 있으며, 200KW를 초과하는 용량이 대다수를 차지하고 있는 것이 특징이다. 세계적으로 연평균 28%씩 성장하고 있는 풍력시장은 2MW이상의 대용량 개발로 이어지고 있으며, 우리나라도 최근 3MW급 설비로 설치 중에 있을 뿐만 아니라 해상풍력발전으로 확대되고 있다. 소규모 사업의 경우에는 마을단위의 그린빌리지 조성 또는 가로등 수준의 전력 대체 등을 위하여 활용되고 있다. 풍력발전을 고려한 그린빌리지 계획 사례는 다수의 연구에서 발견할 수 있는데(김명래, 윤재옥, 2006), 실제 운행 중인 사례는 제주도의 서북쪽 한경면 신창리를 대표적으로 들 수 있다. 여기서 설치된 풍력발전기는 현재 6기로서, 이 중에서 2기는 850kW급으로서, 여기서 발생된 전력은 신창리 일원의 마을에 그린빌리지 정책의 일환으로 대체전력을 사용하고 있으며, 나머지 4기는 1.5MW급으로 여기서 생산된 전기는 한국남부발전소로 송전되고 있고, 추가 사업으로 현재 3MW급 5기가 건설 중에 있다. 기타 소규모로 운영되고 있는 풍력발전의 활용 사례로서, 서울 월드컵 경기장 옆에 위치한 하늘공원(구 난지도)의 풍력발전은 지난 2002년 환경 부대의 대비 정책을 추구하여 설치되었다. 공원 내의 조경에 중점을 두고 설치하였으며, 한강천과 연계형으로 20kW가 평화의 공원에 2기, 한강변 3기가 설치되었다. 생산된 전기는 공원 내 가로등 220여 개와 태양방사.band이 등에 활용되고 있다. 또한 울릉도의 부속도서 중 유일한 농업인 육도에 울릉도 개척 125년 만에 순수전원에너지 사용을 위한 공원을 설치했다. 전력발전기 486MW 8백만원을 들여 완공한 이 시스템은 10kW 풍력발전기 1대, 5kW 태양광발전기 1대, 비상발전기 0.6kW 1대 등으로 구성되어 있다(농림부, 2007).

본 연구에서는 농촌지역에 있어서 신재생 에너지의 지속가능한 활용 차원에서 풍력발전시설의 도입 가능성을 타진하기에 앞서, 그 경제적 타당성 분석에 기초적 자료가 될 수 있는 풍력발전 잠재력을 일별로 추정하였다. 풍력의 잔도는 기본적으로 지역, 계절적 변동이 존재하며, 특히 일일 풍력밀도는 그 지역의 특성 및 기상적 기후에 의하여 달라질 수 있다. 월별, 연평균 풍력밀도의 경우 일일풍력의 분포가 확정적으로 정규분포가 아닌 다른 분포의 특성을 가질 때, 월 또는 연 단위의 단순 기하평균은 진정한 모수를 대표할 가능성이 적으므로, 진정한 풍력발전 잠재력을 파악할 뿐만 아니라 과소추정을 초래하여 결과의 정확성에 의문을 갖게 된다. 특히, 월일 풍력발전에 대한 분포가 정규분포가 아닌 다른 분포의 특성을 가질 때, 단순 평균을 그 분포의 대표값으로 설정하여 월풍력 생산량을 추정한 결과 역시 편향된 정보가 되므로, 해당 풍력시설에 대한 왜곡된 정망을 유발하게 됨으로, 그 분포의 특성을 고려하여 진정한 풍력발전 잠재력을 정확하게 추정하는 것이 바람직하다.

II. 이론적 모델의 개요

1. 풍력발전량의 계산

각 기상관측소의 풍속 측정 높이는 지역에 따라 차이가 있고, 풍력발전소의 설치 높이와 다르므로 측정된 풍속을 풍력발전소의 해발높이로 보정할 필요가 있다. 풍속의 고도 보정에 가장 많이 사용하는 식은 다음과 같다.

\[V_z = V_0 \left(\frac{h_z}{h_0}\right)^n \]

여기서, \(V_z \)는 관측 풍속(m/s), \(h_z \)는 풍속측정 높이(m), \(V_0 \)는 높이 \(h_0 \)(m)로 보정한 풍속(m/s)이고, \(n \)은 지표면의 형상에 따라 결정되는 지수로서 일반적
으로 평원이나 해안에서는 0.1~0.14, 전원에서는 0.17~0.25, 시가지에서는 0.25~0.5의 값을 갖는다. 본 연구에서는 농업시설 설계에 일반적으로 사용하는 \(\nu \)을 0.25로 적용하였다(김문기 등, 2002). 풍속에 대한 출력특성은 성능곡선 또는 출력곡선에 의해 풍력발전시스템의 성능을 나타내고 있다. 풍력발전기 제조사의 성능곡선에 따라 연간 풍력발전량 \(E_w \)은 다음과 식으로 구할 수 있다. 여기서, \(V_i \)는 풍속계급 \(i \)의 발전출력(kW)이며, \(P_i \)는 풍속계급 \(i \)의 출현율을 나타낸다.

\[
E_w = \sum (V_i \times P_i \times 8760(h)) \text{ (kWh)} \tag{2}
\]

Table 1 Specifications of wind turbine system (after Nam and Kim, 2008)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 kW</td>
<td>750 kW</td>
</tr>
<tr>
<td>Cut-in wind speed</td>
<td>2 m/s</td>
</tr>
<tr>
<td>Rated wind speed</td>
<td>10 m/s</td>
</tr>
<tr>
<td>Cut-out wind speed</td>
<td>25 m/s</td>
</tr>
<tr>
<td>Rated power</td>
<td>5 kW</td>
</tr>
<tr>
<td>Rotor diameter</td>
<td>5.1 m</td>
</tr>
<tr>
<td>Height of hub</td>
<td>30 m</td>
</tr>
</tbody>
</table>

2. 통계분석 및 확률분포형

III. 모델의 적용

1. 대상 농촌 마을의 선정

2. 추정 결과

본 연구에서는 풍력이라는 자연현상의 불확실성이 포함된 통계 분포에 대한 보다 신뢰성 있는 추정을 위하여 실제 해당 지역의 월별 풍력 발전량을 근간으로 적정 분포를 추정하기 위하여, 1977년부터 2006년까지 30년간의 관측자료를 사용하였다. 또한 어느 이상의 풍속에서만 작동하는 풍력발전기의 특성상, 풍속의 확률분포형과 이로부터 생성되는 전력의 확률분포형은 다른 특성을 가질 것이므로, 본 연구에서는 전력이 생산되는 풍속과 전력량으로부터 기동일수(전력발생일수, working day for electronic generation, WDEG)를 계산하고, 이로부터 기동확률(전력발생일수에 대한 전력 발생일수 비율, probability of WDEG, PWDEG)이라는 개념을 도입하였다. 이를 Table 2에 지역별 풍속시설별 기동일수 및 기동확률을 요약하여 나타내었다.

Table 2에 지역별 풍속시설별 기동일수 및 기동확률을 요약하여 나타내었다. 3개의 대상마을 중 부상리의 월 기동일수보다 5kW급 및 750kW급의 기동일수에서 연중 가장 양호한 것으로 나타났으며 망현리의 조건이 가장 열악한 것으로 나타났다. 예를 들어, 부상리의 30년간 월 기동일수는 1월 중 5kW급의 풍속시설이 기동할 수 있는 일수가
표 2 일별 풍력발전량의 적정확률분포형 추정

<table>
<thead>
<tr>
<th>Village</th>
<th>Spec. (kW)</th>
<th>Items</th>
<th>Month</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Makhyun</td>
<td>5</td>
<td>WDEG</td>
<td>1</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>271</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>332</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>342</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>244</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>PWDEG</td>
<td>1</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>0.20</td>
</tr>
<tr>
<td>Boojang</td>
<td>5</td>
<td>WDEG</td>
<td>1</td>
<td>496</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>483</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>637</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>664</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>640</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>489</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>551</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>443</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>332</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>443</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>447</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>PWDEG</td>
<td>1</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>0.48</td>
</tr>
<tr>
<td>Soso</td>
<td>5</td>
<td>WDEG</td>
<td>1</td>
<td>302</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>355</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>488</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>531</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>448</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>308</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>365</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>341</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>226</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>292</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>PWDEG</td>
<td>1</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>0.37</td>
</tr>
</tbody>
</table>
| note) 1) WDEG: working day for electronic generation, 2) PWDEG: probability of WDEG

표 3 풍력생산량의 적정확률분포형 (5kW)

<table>
<thead>
<tr>
<th>Items</th>
<th>Month</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>parameters (\gamma=5.23)</td>
<td>(\beta=5.05)</td>
<td>(\alpha=1.45)</td>
<td></td>
<td></td>
<td>(\mu=10.14)</td>
<td>(\sigma=15.50)</td>
<td>(\alpha=2.04)</td>
<td>(\beta=11.39)</td>
<td></td>
<td></td>
<td>(\lambda=7.99)</td>
<td>(\gamma=11.39)</td>
</tr>
<tr>
<td>(\chi^2)</td>
<td>24.83</td>
<td>35.62</td>
<td>36.16</td>
<td>35.37</td>
<td>21.70</td>
<td>20.87</td>
<td>47.89</td>
<td>20.32</td>
<td>13.90</td>
<td>25.03</td>
<td>15.87</td>
<td>28.42</td>
<td></td>
</tr>
<tr>
<td>ND*</td>
<td></td>
<td>TV*</td>
<td>(\alpha=0.025)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>variance ((\sigma^2))</td>
<td>9.91</td>
<td>8.98</td>
<td>9.96</td>
<td>10.09</td>
<td>5.88</td>
<td>5.79</td>
<td>4.73</td>
<td>6.49</td>
<td>5.30</td>
<td>5.47</td>
<td>7.17</td>
<td>8.10</td>
</tr>
<tr>
<td></td>
<td>skewness</td>
<td>2.88</td>
<td>2.09</td>
<td>3.03</td>
<td>3.40</td>
<td>2.33</td>
<td>2.23</td>
<td>1.92</td>
<td>2.34</td>
<td>1.83</td>
<td>2.45</td>
<td>2.18</td>
<td>1.85</td>
</tr>
<tr>
<td></td>
<td>(\chi^2)</td>
<td>4.91E+05</td>
<td>9432.00</td>
<td>7.71E+08</td>
<td>1.93E+09</td>
<td>101.40</td>
<td>146.70</td>
<td>8.186.00</td>
<td>134.50</td>
<td>186.80</td>
<td>1.957.00</td>
<td>2.47E+04</td>
<td>175.80</td>
</tr>
</tbody>
</table>

496일이며, 이때의 기동확률은 53%로 계산되었다. 월 기동확률은 풍력을 생산할 수 있는 확률임으로, 월별 적정 풍력의 분포가 도출되면 해당 분포의 대 표값에 해당 월의 일수를 곱한 후 이 값이 월 기동 확률을 급함으로써, 해당 월의 풍력생산량의 적절한 기대치를 추정하는 데 이용될 수 있다. 확률분포형을 추정한 결과 Table 3-8과 같이 나타났다. 결과의 적정분포형은 적정통계량을 분석대상으로 선정한 주요 통계분포 이외에도 Evans 외(1993)에서 소개된 36개의 분포에 대한 추정을 시도한 후,
Table 4 Optimal probability distribution of wind power generation for each month at village of Makhyun (750kW)

<table>
<thead>
<tr>
<th>Items</th>
<th>Month</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD</td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td></td>
<td>1,311.56</td>
<td>1,242.18</td>
<td>1,305.84</td>
<td>1,623.87</td>
<td>800.80</td>
<td>841.75</td>
<td>628.87</td>
<td>891.87</td>
<td>799.77</td>
<td>809.22</td>
<td>900.79</td>
<td>1,072.31</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
<td>μ=1,039</td>
<td>α1=0.54</td>
<td>μ=1,029</td>
<td>α1=0.48</td>
<td>μ=555.32</td>
<td>α1=0.28</td>
<td>μ=635.88</td>
<td>α1=0.51</td>
<td>α1=0.46</td>
<td>α1=0.36</td>
<td>α1=0.40</td>
<td>α1=0.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>σ=2,111</td>
<td>σ=6.38</td>
<td>σ=5,801</td>
<td>σ=2,37</td>
<td>σ=336.81</td>
<td>σ=2,60</td>
<td>σ=330.0</td>
<td>σ=3,30</td>
<td>σ=3,36</td>
<td>σ=1.68</td>
<td>σ=0.46</td>
<td>σ=0.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>χ²=20.43</td>
<td>40.17</td>
<td>13.44</td>
<td>24.89</td>
<td>7.86</td>
<td>7.14</td>
<td>19.59</td>
<td>5.55</td>
<td>4.34</td>
<td>24.95</td>
<td>15.92</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td></td>
<td>1,204.03</td>
<td>1,241.17</td>
<td>1,174.02</td>
<td>1,141.31</td>
<td>800.80</td>
<td>843.55</td>
<td>632.98</td>
<td>891.86</td>
<td>799.46</td>
<td>803.06</td>
<td>907.02</td>
<td>1,050.79</td>
</tr>
<tr>
<td>variance (σ²)</td>
<td></td>
<td>1,235.18</td>
<td>1,153.74</td>
<td>1,261.76</td>
<td>1,309.88</td>
<td>668.05</td>
<td>645.58</td>
<td>461.93</td>
<td>768.59</td>
<td>550.49</td>
<td>651.17</td>
<td>786.23</td>
<td>905.12</td>
</tr>
<tr>
<td>skewness</td>
<td></td>
<td>3.02</td>
<td>2.08</td>
<td>3.18</td>
<td>3.58</td>
<td>2.54</td>
<td>2.40</td>
<td>2.67</td>
<td>2.06</td>
<td>1.79</td>
<td>2.10</td>
<td>2.58</td>
<td>1.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5,434.00</td>
<td>1,860.00</td>
<td>9.66E+06</td>
<td>1.12E+07</td>
<td>66.69</td>
<td>166.60</td>
<td>1426.00</td>
<td>55.14</td>
<td>12.73</td>
<td>37.85</td>
<td>4,738.00</td>
<td>105.20</td>
</tr>
<tr>
<td>TV</td>
<td></td>
<td>0.025</td>
<td>23.34</td>
<td>24.74</td>
<td>26.12</td>
<td>21.92</td>
<td>16.01</td>
<td>19.02</td>
<td>16.01</td>
<td>11.14</td>
<td>12.83</td>
<td>20.48</td>
<td>20.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.01</td>
<td>26.22</td>
<td>27.69</td>
<td>29.14</td>
<td>24.73</td>
<td>18.48</td>
<td>21.67</td>
<td>18.48</td>
<td>15.09</td>
<td>23.21</td>
<td>23.21</td>
<td></td>
</tr>
</tbody>
</table>

Note: * TD: Type of distribution, OD: Optimal distribution, ND: Normal distribution, TV: Threshold value, ** LN: log normal, GB: generalized beta, IG: Inverse Gaussian.

Table 5 Optimal probability distribution of wind power generation for each month at village of Boobang (5kW)

<table>
<thead>
<tr>
<th>Items</th>
<th>Month</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD</td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td></td>
<td>17.96</td>
<td>19.66</td>
<td>18.73</td>
<td>29.02</td>
<td>18.11</td>
<td>14.96</td>
<td>20.22</td>
<td>19.20</td>
<td>17.61</td>
<td>16.75</td>
<td>16.62</td>
<td>17.77</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
<td>α=2.20</td>
<td>β=19.16</td>
<td>μ=14.86</td>
<td>λ=11.60</td>
<td>γ=5.18</td>
<td>β=8.40</td>
<td>α=1.41</td>
<td>μ=10.51</td>
<td>λ=11.60</td>
<td>γ=5.18</td>
<td>β=8.40</td>
<td>α=1.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.219</td>
<td>1.284</td>
<td>1.160</td>
<td>1.41</td>
<td>1.051</td>
<td>1.84</td>
<td>1.43</td>
<td>1.06</td>
<td>1.43</td>
<td>1.06</td>
<td>1.43</td>
<td>1.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>χ²=56.03</td>
<td>28.64</td>
<td>48.33</td>
<td>66.80</td>
<td>45.42</td>
<td>31.96</td>
<td>44.45</td>
<td>22.09</td>
<td>11.56</td>
<td>20.12</td>
<td>22.45</td>
<td>31.87</td>
</tr>
<tr>
<td>ND</td>
<td></td>
<td>16.68</td>
<td>18.35</td>
<td>18.73</td>
<td>20.22</td>
<td>17.01</td>
<td>14.96</td>
<td>20.24</td>
<td>17.61</td>
<td>15.42</td>
<td>16.44</td>
<td>16.12</td>
<td>16.74</td>
</tr>
<tr>
<td>skewness</td>
<td></td>
<td>2.34</td>
<td>2.54</td>
<td>2.43</td>
<td>2.72</td>
<td>2.50</td>
<td>2.00</td>
<td>2.94</td>
<td>3.31</td>
<td>3.22</td>
<td>2.96</td>
<td>2.24</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.66E+07</td>
<td>7.90E+06</td>
<td>2.37E+05</td>
<td>3.09E+05</td>
<td>4.78E+03</td>
<td>3.11E+06</td>
<td>4.67E+03</td>
<td>1.10E+07</td>
<td>1.28E+05</td>
<td>1.58E+05</td>
<td>8.73E+10</td>
<td>1.22E+05</td>
</tr>
<tr>
<td>TV</td>
<td></td>
<td>0.025</td>
<td>35.48</td>
<td>35.48</td>
<td>38.08</td>
<td>39.36</td>
<td>38.08</td>
<td>35.48</td>
<td>36.78</td>
<td>34.17</td>
<td>31.53</td>
<td>31.53</td>
<td>34.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.01</td>
<td>38.93</td>
<td>38.93</td>
<td>41.64</td>
<td>42.98</td>
<td>41.64</td>
<td>38.93</td>
<td>40.29</td>
<td>37.54</td>
<td>38.41</td>
<td>37.57</td>
<td>37.57</td>
</tr>
</tbody>
</table>

이 중 χ² 검정 결과 가장 작은 것을 우등한 분포로 도출하여 선정하였다. 동시에 정규분포를 가정할 때의 모수 및 검정통계량을 함께 제시함으로써, 두 분포의 통계적 신뢰성에 대한 비교가 가능하도록 나타내었다.

결과에서 나타나는 바와 같이, 금산군 진산면 막현

Journal of the Korean Society of Agricultural Engineers, 50(6), 2008. 11
Table 6 Optimal probability distribution of wind power generation for each month at village of Boojang (750kW)

<table>
<thead>
<tr>
<th>Items</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD†</td>
<td>LN²</td>
</tr>
<tr>
<td>mean</td>
<td>1,527.80</td>
<td>1,728.85</td>
<td>1,654.25</td>
<td>2,198.57</td>
<td>1,400.33</td>
<td>1,265.67</td>
<td>1,769.49</td>
<td>1,764.61</td>
<td>1,371.77</td>
<td>1,242.67</td>
<td>1,482.59</td>
<td>1,483.63</td>
</tr>
<tr>
<td>T²</td>
<td>2.281</td>
<td>1.05</td>
<td>4.45</td>
<td>10.45</td>
<td>1.13</td>
<td>1.06</td>
<td>3.93</td>
<td>4.45</td>
<td>1.06</td>
<td>1.13</td>
<td>1.05</td>
<td>4.45</td>
</tr>
<tr>
<td>LN²</td>
<td>1,429.85</td>
<td>1,609.03</td>
<td>1,654.20</td>
<td>1,894.64</td>
<td>1,400.36</td>
<td>1,272.63</td>
<td>1,769.45</td>
<td>1,543.78</td>
<td>1,371.77</td>
<td>1,093.62</td>
<td>1,325.60</td>
<td>1,371.43</td>
</tr>
<tr>
<td>TV²</td>
<td>18.42</td>
<td>15.09</td>
<td>35.38</td>
<td>37.25</td>
<td>25.02</td>
<td>33.93</td>
<td>44.91</td>
<td>16.04</td>
<td>16.96</td>
<td>10.93</td>
<td>27.30</td>
<td>37.66</td>
</tr>
<tr>
<td>Note: * TD: Type of distribution, OD: Optimal distribution, ND: Normal distribution, TV: Threshold value, ** LN: log normal, IG: Inverse Gaussian, GB: generalized beta</td>
<td></td>
</tr>
</tbody>
</table>

Table 7 Optimal probability distribution of wind power generation for each month at village of Soso (5kW)

<table>
<thead>
<tr>
<th>Items</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD†</td>
<td>IG²</td>
<td>PV²</td>
<td>PV²</td>
<td>PV²</td>
<td>LN²</td>
<td>LN²</td>
<td>LN²</td>
<td>LN²</td>
<td>LN²</td>
<td>LN²</td>
<td>LN²</td>
<td>LN²</td>
</tr>
<tr>
<td>T²</td>
<td>1.19</td>
<td>1.05</td>
<td>2.21</td>
<td>2.51</td>
<td>3.65</td>
<td>1.95</td>
<td>3.61</td>
<td>2.55</td>
<td>3.14</td>
<td>2.64</td>
<td>2.41</td>
<td>2.21</td>
</tr>
<tr>
<td>TV²</td>
<td>3.72</td>
<td>41.52</td>
<td>31.97</td>
<td>54.58</td>
<td>24.29</td>
<td>60.70</td>
<td>40.14</td>
<td>61.27</td>
<td>20.16</td>
<td>28.53</td>
<td>37.12</td>
<td>42.56</td>
</tr>
<tr>
<td>Note: * TD: Type of distribution, OD: Optimal distribution, ND: Normal distribution, TV: Threshold value, ** IG: Inverse Gaussian, PV: Pearson V, LN: log normal, LL: log logistic</td>
<td></td>
</tr>
</tbody>
</table>
Table 8 Optimal probability distribution of wind power generation for each month at village of Soso (750kW)

<table>
<thead>
<tr>
<th>Items</th>
<th>Month</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD'</td>
<td></td>
<td></td>
<td>GB</td>
</tr>
<tr>
<td>mean</td>
<td>1,583.12</td>
<td>1,655.19</td>
<td>1,498.90</td>
<td>1,199.07</td>
<td>788.73</td>
<td>873.62</td>
<td>784.11</td>
<td>822.08</td>
<td>712.68</td>
<td>829.44</td>
<td>1,048.54</td>
<td>1,235.05</td>
<td></td>
</tr>
<tr>
<td>mean (µ)</td>
<td>1,584.93</td>
<td>1,653.64</td>
<td>1,498.89</td>
<td>1,199.07</td>
<td>788.73</td>
<td>873.62</td>
<td>784.30</td>
<td>822.08</td>
<td>712.69</td>
<td>829.44</td>
<td>1,048.60</td>
<td>1,232.91</td>
<td></td>
</tr>
<tr>
<td>ND'</td>
<td></td>
<td></td>
<td>GB</td>
</tr>
<tr>
<td>variance (σ²)</td>
<td>1,763.82</td>
<td>1,797.23</td>
<td>1,651.81</td>
<td>1,436.31</td>
<td>593.59</td>
<td>906.55</td>
<td>695.44</td>
<td>781.45</td>
<td>606.34</td>
<td>823.36</td>
<td>1,047.16</td>
<td>1,197.51</td>
<td></td>
</tr>
<tr>
<td>skewness</td>
<td>2.87</td>
<td>2.20</td>
<td>2.44</td>
<td>4.55</td>
<td>3.89</td>
<td>2.78</td>
<td>3.13</td>
<td>3.14</td>
<td>2.50</td>
<td>2.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TV'</td>
<td></td>
<td></td>
<td>GB</td>
</tr>
<tr>
<td>α=0.025</td>
<td>25.12</td>
<td>27.49</td>
<td>30.19</td>
<td>30.19</td>
<td>27.49</td>
<td>23.34</td>
<td>24.74</td>
<td>23.34</td>
<td>20.48</td>
<td>21.92</td>
<td>24.74</td>
<td>24.74</td>
<td></td>
</tr>
<tr>
<td>α=0.01</td>
<td>29.14</td>
<td>30.58</td>
<td>33.41</td>
<td>33.41</td>
<td>30.58</td>
<td>26.22</td>
<td>27.69</td>
<td>26.22</td>
<td>23.21</td>
<td>27.69</td>
<td>27.69</td>
<td>27.69</td>
<td></td>
</tr>
</tbody>
</table>

Note: * TD: Type of distribution, OD: Optimal distribution, ND: Normal distribution, TV: Threshold value, ** GB: generalized beta, IG: Inverse Gaussian

한편 정규분포를 가정할 때의 모수는 $\mu=1,286.59$이며, $\lambda=497.82$이며, 정규분포가 정규분포의 평균값(단순평균)을 이용하여 풍력을 계산한다면, 추정결과의 과대추정(overestimation)을 초래할 수 있음을 의미한다. 이 상과 같은 방식으로 당진군 우강면 부장리 및 당진군 합덕읍 소소리의 경우도 마찬가지 방식으로 해석할 수 있다.

단순평균을 해당 월의 대표값으로 간주할 때 지역별로 과소추정 또는 과대추정의 위험이 초래될 수 있다고 한다면, 1977년부터 2006년까지의 일일 평균 관측치를 이용한 본 분석의 주요 결과는 다음과 같다. 금산군 진산면 막현리의 5kW급 시설에서는 12개월 중 5개월(1월, 2월, 3월, 4월, 12월)의 사례로부터, 정규분포를 가정하여 그 평균을 해당 월의 대표값으로 적용한다면, 본 분석에서 제시된 적정 분포에 비해 과소추정의 위험이 있는 것으로 나타났다. 같은 방식으로 5개월(5월, 6월, 7월, 8월, 9월)에 대해서는 과대추정과의 위험이 있는 것으로 나타났다. 750kW 발전기에서는 7개월(1월, 2월, 3월, 4월, 9월, 10월, 12월)의 사례에서, 정규분포를 가정하여 그 평균을 해당 월의 대표값으로 적용한다면, 본 분석에서 제시된 적정 분포에 비해 과대추정의 위험이 있는 것으로 나타났다. 같은 방식으로 3개월(6월, 7월, 11월)에 대해서는 과대추정과의 위험이 있는 것으로 나타났다.
타났다. 같은 방식으로 7개월(3월, 4월, 5월, 6월, 8월, 9월, 10월)에 대해서는 그 대표값이 거의 비슷한 수준이나 통계 분포의 신뢰성에 있어서는 차이점을 보인 것으로 나타났다. 이는 적정분포나 정규분포의 대표값은 동일하나, 그 분포의 형태는 확연히 다르다는 것을 의미하므로, 해당 월의 일일 전력생산량의 세부적인 분포를 활용할 때에 유의해야 할 것을 시사하고 있다.

당진군 합덕읍 소소리의 5kW급 시설에서는 12개월 중 9개월(1월, 2월, 4월, 5월, 8월, 9월, 10월, 11월, 12월)의 사례에서 정규분포를 가정하여 그 평균을 해당 월의 대표값으로 적용할 때, 적정 분포에 비해 과소추정의 위험이 있는 것으로 나타난. 750kW 시설에서는 6개월(1월, 2월, 4월, 8월, 11월, 12월)의 사례에서 정규분포를 가정하여 그 평균을 해당 월의 대표값으로 적용할 때, 적정 분포에 비해 과소추정의 위험이 있는 것으로 나타난. 같은 방식으로 2개월(6월, 10월)에 대해서는 과대추정의 위험이 있는 것으로 나타났다.

IV. 요약 및 결론

본 연구에서는 농촌의 그린빌리지 조성에 활용할 수 있는 일별 풍력발전량에 대하여, 적정 확률 분포 형을 추정하였다. 이를 위하여 농촌마을에 적용할 수 있는 소규모의 5kW와 750kW급 풍력발전기를 분석 대상으로 설정하였으며, 대상 농촌마을을 세 종류의 유형분류를 고려하여 중산간지역의 전형적인 농촌마을로서 금산군 진산면 막현리, 해안지역의 평야지대 농촌마을은 당진군 우강면 부장리, 축산농가를 포함하는 북한농중기지역의 농촌마을은 당진군 합덕읍 소소리로 선정하였다. 적정 확률 분포형을 추정하기 위한 근거 및 과정을 요약하면 다음과 같다.

농촌지역의 풍력발전시설의 도입가능성을 탐지하기에 앞서, 그 경제적 타당성 분석에 기초적 자료가 될 수 있는 풍력발전 잠재력을 일별로 추정하고, 확률분포형은 월별로 추정하였다. 월별 풍력밀도의 경우 일일 풍력의 분포가 항상 정규성을 갖지 않기 때문에 단순히 월 또는 연 평균 풍력을 해당 풍력발전 시설의 잠재력을 평가할 때 적용하는 것은 바람직하지 않다. 왜냐하면 풍력의 발생 분포가 확률에 의존하는 정규분포가 아닌 다른 분포의 특성을 가질 때, 월 또는 연 단위의 단순 가하평균은, 정진한 모수를 대표할 가능성에 비해, 정진한 풍력발전 잠재력을 과대추정 혹은 과소추정하게 될 위험을 내포하게 된다. 이러한 경우에는 해당 지역의 풍력 생산량에 대한 적절한 통계분포를 가정하여 모수를 추정한 후 이에 대한 적합도 검정을 통하여 적정 대표값을 추정하였다.

분석결과, 세 지역의 대상농촌마을에서 단순평균값을 분포의 평균으로 간주하고 있는 정규분포의 경우, 본 연구에서 분석한 적절 통계분포의 모수에 비해 과대평균 혹은 과소평균한 위험이 존재하였으며, 동 시에 통계적 적합도 검정에서도 열등한 것으로 판정되었다. 또한 지역별로 풍력의 적정 분포의 형태도 다양하게 나타내고 있음을 발견되었다. 이러한 분석 결과는 향후 풍력발전시설이 입지하기에 앞서 사업의 타당성을 검토할 때, 해당 지역에 따라 풍력 분포의 정확하고 세밀한 분석이 선행되어야만 사업 타당성 분석의 신뢰성이 제고될 수 있을 것을 시사한다. 특히, 본 연구에서 분석된 결과는 향후 풍력이라는 자연현상의 불확실성을 감안한 풍력 발전시설의 경제성 검토 분야에도 유용하게 활용될 수 있을 것으로 판단된다.

References

1. 김문기, 남상운, 서원명, 윤용철, 이석건, 이현우, 2002, 생물환경조절공학, 도서출판청솔.
2. 김명래, 윤재옥, 2006, 풍력발전을 주 에너지원으로 적용한 그린빌리지 디자인, 한국생태환경건축학회 학술발표대회논문집 6(2), pp. 139-147.
5. 농림부, 2007, 농촌마을 리모델링 기법개발에 관한 연구 - 농촌마을 신재생에너지 활용방안 연구, 한국농촌공사 농어촌연구원.