Analysis of Resonance Characteristics of Bulk Acoustic Resonator with Acoustic Bragg Reflector for Biosensor Development

Abstract

As a basic study to develop a high sensitive biosensor using film bulk acoustic resonator, the mathematical model for analyzing the resonance characteristics of bulk acoustic resonator with acoustic Bragg reflectors was investigated. The simulation results due to the number of acoustic Bragg reflectors with low and high acoustic impedance materials were compared with the experimental results for 1, 2.25 and 5 MHz of PZT based bulk acoustic resonators with various acoustic Bragg reflectors. At the fabricated bulk acoustic resonator with an odd number of acoustic Bragg reflectors, low and high acoustic impedance materials in sequence under the bottom electrode showed better resonance characteristics than even number of acoustic Bragg reflectors. The changes of resonance frequencies due to the increase of number of acoustic Bragg reflectors by simulation and experiment, respectively showed approximately similar tendency but some differences in input impedance between the experiment and simulation were found. The derived mathematical model for describing the resonance characteristics of the bulk acoustic resonator with acoustic Bragg reflector will be available for analyzing the design parameters for development of biosensor using bulk acoustic resonator.

Keywords: Bulk acoustic resonator, Acoustic Bragg reflector, Biosensor, Resonance characteristics

1. 서론

바이오센서는 단단한 센서들이나 달리 측정하고자 하는 대상과 반응하여 신속하고 정확하게 대상 물질을 분석할 수 있기 때문에 보건, 의료, 식품, 생물공정, 환경 등의 다양한 분야에서 사용되고 있다. 바이오센서는 표면 탄성파(surface acoustic wave, SAW), 표면 플라즈몬 공명(surface plasmon resonance, SPR), QCM(quartz crystal microbalance) 등이 많이 사용되고 있다. 그러나 이들 방법들은 센서의 소형화, 경량화, 고감도화가 어렵다. 이러한 문제를 해결하기 위해 현재 다양한 연구가 진행되고 있으며 최근에는 압전 소자에서 발생하는 탄성파(acoustic wave)를 이용한 박막 체적탄성파 공진기(film bulk acoustic resonance, FBAR) 소자 기술을 이용한 연구가 주목 받고 있다. FBAR는 전기-기계적 선호 결합에 의한 응용공학적응용을 이용하는 소자로서 압전 물질 내의 응향 전파속도가 저자와의 속도보다 10^4~10^5배 정도 작기
때문에 동일한 주파수에 비해 음파의 파장이 매우 짧아지고 압전 재료 두께도 나노에서 미크로 단위까지 조절이 가능
하기 때문에 GHz 대역의 공진 주파수를 가지는 소자를 제작
할 수 있다. 이러한 FBAR 소자 기술은 주로 통신용 단말기
에서 팔로로 사용되었으나 최근 FBAR 소자의 공진특성을
장려설시, 가스센서, 바이오센서 등에 활용하기 위한 연구가
활발하게 진행되고 있다. 관련연구를 살펴보면, Yang 등
(2007)은 다중 타겟 마그네트론 스피커터법을 이용하여 ZnO-
FBAR 질량 센서를 제작한 다음 센서의 공진 면적과 다양한
전극 패턴을 적용하여 향상된 반응에 따른 공진 주파수의
변화를 측정하였다.

Weber 등(2006)은 무엇이 FBAR 소자를 이용하여 역
상에서의 향상한 반응에 따른 공진 주파수 변화를 측정한 다
음 QCM 바이오센서의 감도와 비교한 결과 FBAR 바이오센서
의 측정감도가 더 우수함을 확인하였다. Link 등(2007)은 830
MHz 대역에서 동작하는 형광진도도 모드 FBAR 바이오센서를 제
작하여 물질을 농도에 따른 FBAR의 공진 주파수 변화를 측정하여
전극에서 바이오센서로의 이용가능성을 보여주었다.

Wingqvist 등(2007)은 AIN-FBAR 면력 센서를 제작하여
반응 물질에 대한 공진 주파수 변화를 측정하였으며, Lin 등
(2008)은 SAW 센서보다 높은 주파수에서의 2.4 GHz FBAR
센서를 연구하였다.

지금까지의 FBAR 소자를 이용한 바이오센서 연구동향을
본체와도면의 바이오센서보다 측정감도는 상대적으로
매우 높은 반면 FBAR 소자 자체의 공진 주파수가 매우 높기
때문에 소자의 공진특성을 안정적으로 유지하는 많은 기술
적인 어려움이 있을 것으로 판단된다.

본 연구는 FBAR 바이오센서에 대한 기초 연구로서 안정
된 공진특성을 위하여 광학 분야에서 많이 사용되는 브래그
(Bragg) 반사층 응용을 FBAR 소자에 적용하여 공진특성을
개선하고 효율이 좋은 채득방식과 소자를 개발하기 위하여
실험하였다. 이를 위하여 음향 브래그 반사층을 가지는 채득
망상과 공진기 소자를 개발할 수 있는 시뮬레이션을 모델을
유도하여 음향 브래그 반사층의 물리적 특성에 따른 채득
망상과 공진소자의 공진특성을 분석하였다. 또한 유도된 시뮬
레이션 모델을 검증하기 위하여 실제 예측이 용이한 박막형
태가 아닌 박막형태의 채득망상과 공진소자를 제작하여 시뮬
레이션 결과와 비교하였다.

2. 이론적 배경

가. 채득망상의 공진기의 공진 특성을 위한 수학적 모델

채득망상과 공진기의 공진특성을 해석 모델을 유도하기 위해
여 그림 1에서와 같은 이상적인 채득망상과 공진기들을 가정하
였다. 그림 1에서 채득망상과 공진기 소자의 음향 발사 상
부에 사변전압원이 연결될 때, 음향 재료의 공진을 나타내는
방정식과 경계조건을 이용하여 공진모드 해석을 위한 수식을
육시출 수 있다(Yun, 2001).

![Fig. 1 Ideal model of bulk acoustic resonator(BAR) applied by time-variant voltage.](image)

이제 음향 박막이 정전들에 있을 경우 정전 장점과
전류의 바, 즉 입력 입자밀도(\(\rho_0\))를 구할 수 있는데, 채득
망상과 공진기 소자의 공진특성을 분석하기 위해서는 압전
재료에서 외부로 전파되는 입력 입자밀도의 변화를 수학적으
로 유도할 수 있어야 한다. 따라서 압전 재료에서 상하로
전달되는 탄성과 에너지를 나타낼 수 있는 운동방정식과 전
적 전기 에너지를 나타낼 수 있는 맥스웰(Maxwell) 방정식, 탄
성 에너지와 전기 에너지 사이의 상호 변환을 위한 전기-기계
구성방정식의 3가지 방정식을 이용하여 입력 입자밀도에 대
한 수식을 정리할 수 있다. 그림 1에서 사변전압에 의한 압전
재료에서 발생되는 탄성과의 속도는 z축 방향의 탄성파울 고
려할 경우 다음 식 (1)과 같이 나타낼 수 있다(Auld, 1990b).

\[
v = v_z \frac{z}{v_z} = \left(v_z \frac{z}{v_z} \left(\sigma + k_z \right) + v_z \frac{z}{v_z} \left(\omega + k_z \right) \right) \]

where,
\(v\) : particle velocity (m/s)
\(v_z\) : particle velocity of z axis (m/s)
\(\omega\) : angular velocity (rad/s)
\(k_z\) : wave vector of z axis

상기 식 (1)을 이용하여 압전 재료에 의해 발생되는 탄성파
에 대하여 운동방정식과 맥스웰 방정식을 z축 방향으로 고려
하여 나눌 수 있다. 이제 맥스웰 방정식에서는 중첩전차 지점,
공진소자 내에서 이동전차가 없다고 가정하면 다음 식 (2)~
(6)가 같이 나타낼 수 있다.
식 (9)을 기초로 하여 여러 가지 구조를 가지는 체적탄성파 공진기의 특성 분석

식 (9)를 이용하여 여러 가지 구조를 가지는 체적탄성파 공진기 소자에 대한 입력 임피던스를 나타낼 수 있다.

나. 음향 브래그 반사층 체적탄성파 공진기의 입력 임피던스

음향 브래그 반사층 체적탄성파 공진기는어떤 박막, 상부 전극, 하부 전극 아래로 음향 입피덤타가 큰 두 물질을 \(\lambda /4 \) 두께로 \(n \)개 적층한 음향 브래그 반사층으로 구성되며 그 구조는 그림 2와 같다(Chung et al., 2008).

\[
\Phi = \frac{1}{j \omega} \frac{e_{zz}}{e_{zz}^{E}} [v^{+} - v^{-}]
\]

\[
E = E_{zz} = \frac{1}{j \omega} \frac{e_{zz}^{E}}{e_{zz}} [v^{+} - v^{-}]
\]

\[
D = 0
\]

\[
S_{3} = - \frac{1}{V_{ph}} [v^{+} - v^{-}]
\]

\[
T_{3} = - \frac{1}{V_{ph}} \left(\frac{e_{E}}{e_{zz}^{E}} + \frac{e_{zz}^{E}}{e_{zz}} \right) [v^{+} - v^{-}]
\]

\[\text{where,} \quad \Phi : \text{potential of static electricity} \]
\[E : \text{electric field} \]
\[D : \text{electric flux density} \]
\[S_{3} : \text{mechanical strain of z axis} \]
\[T_{3} : \text{mechanical stress of z axis} \]
\[V_{ph} : \text{phase velocity (m/s)} \]
\[e_{zz}^{E} : \text{piezoelectric stress matrix} \]
\[e_{zz} : \text{permittivity matrix} \]
\[e_{zz}^{E} : \text{stiffness matrix} \]

\[
k_{t}^{2} = \frac{e_{zz}^{E}}{1 + \frac{e_{zz}^{E}}{e_{zz}^{E}}} \]

\[
C' = \left(S_{3} \right) \frac{e_{zz}^{E}}{h}
\]

\[
Z_{in} = \frac{2\phi_{in}}{I} = \frac{2\phi_{in}}{j\omega (S_{3}) e_{zz}^{E} A} = \frac{1}{j\omega C} \left[1 + k_{t}^{2} \tan(k_{t} d) \right] \Bigg|_{d = \frac{h}{2}}
\]

\[\text{where,} \quad k_{t}^{2} : \text{electro-mechanical coupling constant} \]
\[C' : \text{capacitance (F)} \]
\[S_{3} : \text{area of top and bottom electrode (m²)} \]
\[k : \text{wave vector} \quad (= \omega / V_{ph}) \]
\[d : \text{thickness of piezoelectric material (m)} \]

\[
Z_{n}^{(n)} = Z_{n}^{(n-1)} \cos(k h) + iZ_{n}^{(n-1)} \sin(k h)
\]

\[
Z_{n}^{(n)} = Z_{n}^{(n-1)} \cos(k h) + iZ_{n}^{(n-1)} \sin(k h)
\]

\[\text{where,} \quad Z_{n}^{(n)} : \text{input impedance of nth layers} \]
\[Z_{n}^{(n-1)} : \text{characteristic impedance of nth layers} \]
\[Z_{n}^{(n-1)} : \text{input impedance of (n-1)th layers} \]

식 (10)을 식 (9)에 대입하면 다층 구조의 음향 브래그 반사층을 가지는 체적탄성파 공진기의 입력 임피던스를 유도할
수 있다. 이때, 음향 브래그 반사층을 가지는 제격탄성과 소자의 구동을 위해서는 소자의 상하부 전극을 중합하게 되며 제격탄성과 소자가 발생하는 음파의 진동에 이러한 전극의 무게에서 발생하는 음향 하중 부하(acoustic mass loading)의 영향을 고려해야 한다. 이때 전극의 영향을 고려하면 상하부 전극은 같은 재료이며, 두개가 동일한 경우 상부 전극에 대한 입력 임피던스($Z_{in}^{(top)}$)는 식 (11)과 같이 표시되고 하부 전극에 대한 입력 임피던스($Z_{in}^{(bot)}$)는 식 (12)와 같이 표시된다.

$$Z_{n}^{(top)} = Z_{in}^{(top)} \frac{iZ_{in}^{(top)} \sin(k_{n}h_{t})}{Z_{in}^{(top)} \cos(k_{n}h_{b})}$$ \hspace{1cm} (11)

$$Z_{n}^{(bot)} = Z_{in}^{(bot)} \frac{iZ_{in}^{(bot)} \sin(k_{n}h_{t})}{Z_{in}^{(bot)} \cos(k_{n}h_{b})}$$ \hspace{1cm} (12)

\[\text{where,} \quad Z_{in}^{(top)} : \text{input impedance of top electrode} \]
\[Z_{in}^{(bot)} : \text{input impedance of bottom electrode} \]
\[Z_{in}^{(top)} : \text{characteristic impedance of top electrode} \]
\[Z_{in}^{(bot)} : \text{characteristic impedance of bottom electrode} \]
\[k_{n} : \text{wave vector of electrode} \ (= \omega / V_{phr}) \]
\[h_{t} : \text{thickness of electrode} \ (\text{m}) \]
\[V_{phr} : \text{phase velocity of electrode} \ (\text{m/s}) \]

압연 소자 자체의 입력 임피던스에 관한 식 (9)와 상하부 전극의 음향 하중 부하의 영향을 고려한 식 (11)과 식 (12)를 정리하면 상하부 전극을 가지는 압연 소자의 입력 임피던스를 식 (13)과 같이 정리할 수 있다.

$$Z_{n} = \frac{1}{Z_{p}} \left[k_{n} \frac{|Z_{in}^{(top)} + Z_{in}^{(bot)}|^{2} |Z_{in}^{(top)} \sin(k_{n}h_{t}) - Z_{in}^{(bot)} \cos(k_{n}h_{b})|^{2}}{|Z_{in}^{(top)} + Z_{in}^{(bot)}|^{2} |Z_{in}^{(top)} \sin(k_{n}h_{t}) + Z_{in}^{(bot)} \cos(k_{n}h_{b})|^{2}} \right]$$ \hspace{1cm} (13)

\[\text{where,} \quad Z_{p} : \text{characteristic impedance of piezoelectric material} \]

다음으로 음향 브래그 반사층에 대한 입력 임피던스 수식을 유도하면, 마찬가지로 전물성로 이론을 이용하여 유도할 수 있다. 이때 이론으로는 하부 전극 아래로 음향 입파현장이 낮은 재료를 먼저 중합하고 다음으로 음향 임피던스가 높은 재료를 중합하는 것이 입파 임피던스를 최소화 할 수 있다. 또한 음향 브래그 반사층의 각각의 수준 개수(2n+1)인 때와 적수 개(2n)일 때 각각 하부 전극으로 입력되는 입력 임피던스를 정리하면 식 (14)와 식 (15)와 같이 간단히 정리할 수 있다.

$$Z_{n}^{(2n)} = \left(\frac{Z_{a}}{Z_{0}} \right)^{2n} Z_{S}$$ \hspace{1cm} (14)

$$Z_{n}^{(2n+1)} = \left(\frac{Z_{a}}{Z_{0}} \right)^{2n} \frac{Z_{0}^{2}}{Z_{S}} \quad n = 1, 2, 3, \ldots$$ \hspace{1cm} (15)

\[\text{where,} \quad Z_{a}^{(n)} : \text{input impedance of acoustic Bragg reflector} \]
\[\text{each of } n \text{ layers} \]
\[Z_{a} : \text{low acoustic impedance material} \]
\[Z_{S} : \text{high acoustic impedance material} \]
\[Z_{S} : \text{substrate acoustic impedance} \]

이때, 음향 브래그 반사층 각각의 두개는 파장의 1/4배(4/\lambda)이며, 식 (14)와 식 (15)는 하부 전극에 관한 식 (12)에 대입하여 압연 소자에서 발생하는 탄성파가 하부 전극과 음향 브래그 반사층으로 전파될 때의 입력 임피던스로 나타낼 수 있다. 한편, 음향 브래그 반사층이 포함된 하부 전극에 대한 입력 임피던스($Z_{n}^{(n+1)}$)는 식 (16)과 같이 표시된다.

$$Z_{n}^{(n+1)} = \frac{Z_{a}^{(n)} \cos(k_{n}h_{t}) + iZ_{a}^{(n)} \sin(k_{n}h_{t})}{Z_{a}^{(n)} \cos(k_{n}h_{b}) + iZ_{a}^{(n)} \sin(k_{n}h_{b})}$$ \hspace{1cm} (16)

\[\text{where,} \quad Z_{a}^{(n)} : \text{input impedance of bottom electrode} \]
\[\text{with acoustic Bragg reflectors} \]
\[Z_{a}^{(n+1)} : \text{induced input impedance by Eqn. (14)} \]
\[\text{or (15)} \]

최종적으로 음향 브래그 반사층을 가지는 제격 탄성과 공전기의 입력 임피던스는 상부 전극에 대한 입력 임피던스를 나타내는 식 (11)과 음향 브래그 반사층이 포함된 하부 전극에 대한 입력 임피던스를 나타내는 식 (16)을 식 (13)에 대입하여 나타낼 수 있으며, 식 (17)과 같이 표시된다.

$$Z_{n} = \frac{1}{Z_{p}} \left[k_{n} \frac{|Z_{in}^{(top)} + Z_{in}^{(bot)}|^{2} |Z_{in}^{(top)} \sin(k_{n}h_{t}) - Z_{in}^{(bot)} \cos(k_{n}h_{b})|^{2}}{|Z_{in}^{(top)} + Z_{in}^{(bot)}|^{2} |Z_{in}^{(top)} \sin(k_{n}h_{t}) + Z_{in}^{(bot)} \cos(k_{n}h_{b})|^{2}} \right]$$ \hspace{1cm} (17)

3. 제조 및 방법

가. 음향 브래그 반사층을 가지는 제격탄성판 공전기 제작

바이오센서에 활용하기 위한 제격탄성과 공전기는 박막형태로 제작되어야 한다. 이에 따라 하부 전극에 부가된 음향 브래그 반사층의 두께를 수 μm 이하의 박막으로 제작해야 되기 때문에 일반적으로 미세 가공 기술(micro electro-mechanical system, MEMS)이 적용되어야 한다. 이러한 MEMS 공정은 많은 시간과 비용이 소요되기 때문에 본 연구에서는 비교적 구현이 용이한 밀크형태의 제격탄성과 공전기를 제작하였다. 공전 주파수는 각각 1 MHz, 2.25 MHz, 5 MHz의 3종류로
하였으며 PZT 소자를 이용하여 음향 브래그 반사층을 가지는 제적탄성파 공전기의 제작하였다. 전체적인 제적탄성과 공전기의 구조는 그림 2에서 보는 바와 같이 사용된 압전 공전소자, 전극, 음향 브래그 반사층에 대한 기본적인 물리적인 것은 표 (1)에서 보는 바와 같다.

나. 음향 브래그 반사층을 가지는 제적탄성파 공전기의 공전성 분석

상기에서 유도한 식(9), (13), (16), (17)을 이용하여 제적탄성과 공전기의 주요 설계 인자인 음향 브래그 반사층의 개수 및 순서 등에 따른 공전 특성의 분석하기 위해 시뮬레이션을 실시하였다. 본 연구의 시뮬레이션에서는 Matlab 소프트웨어 (Version 7.1, Mathworks inc., USA)를 이용하였다. 또한 시뮬레이션 결과와 실제 실험 결과를 비교하기 위하여 제작된 음향 브래그 반사층 제적탄성과 공전기의 공전특성을 측정하였다.

그림 3은 1 MHz, 2.25 MHz, 5 MHz의 공전 주파수를 가지는 음향 브래그 반사층 제적탄성과 공전기의 공전특성을 측정하기 위한 실험 장치를 나타낸다. 제작된 음향 브래그 반사층 제적탄성과 공전소자를 인피턴스 분석기 (HP 4194A, Agilent Inc., USA)에 연결하여 공진특성을 측정하고, 측정된 데이터는 USB/GPIB 인터페이스 (82357A, Agilent Inc., USA)를 통해 노트북으로 전송하였다. 이때 음향 브래그 반사층의 개수를 증가시켜 각각의 주파수 대역에서 제적탄성과 공진소자의 공전특성을 측정하였다.

4. 결과 및 고찰

그림 4~6은 각각의 음향 브래그 반사층 제적탄성과 소자에서 음향 브래그 반사층의 개수를 0에서 7까지 증가시켜 가면서 얻은 시뮬레이션과 실제 측정을 비교한 결과를 나타낸다. 이때 음향 브래그 반사층은 음향 인피턴스가 낮은 재료를 먼저 하부 전극에 접합하고 그 다음 음향 인피턴스가 높은 재료를 접합하는 순서로 제작하였다. 그림 4는 1 MHz 공전소자의 음향 브래그 반사층에 따른 공전 특성을 나타낸다. 특히, 음향 브래그 반사층 개수가 늘수록 개별 시뮬레이션 결과와 실제 측정 경향에 일치하고 있지만, 입력 인피턴스의 절대적인 값에서는 뚜렷한 차이를 보이고 있다.

또한 실제 측정에서는 압전 재료의 직경 대 두께 비에 따른 형상 효과의 영향에 따라 중량이 경도 뿐만 아니라 환경에 따라 경도의 경도에 따른 공진점들이 함께 나타났는데, 이는 1 MHz 뿐만 아니라 2.25 MHz, 5 MHz의 측정 결과에서도 동일한 결과를 나타내었다. 표 2에 공진 주파수가 1 MHz임 때 시뮬레이션 결과와 실제 측정 결과를 비교하여 나타내었다. 시뮬레이션 결과를 검토해 보면, 공진 주파수(fp)에서 음향 브래그 반사층이 없는 경우

![Fig. 3 Experimental measurement setup for resonance characteristics of bulk acoustic resonator with acoustic Bragg reflector.](image)
입력 임피던스가 439.54 Ω에서 7개의 음향 브래그 반사층의 경우 0.44 Ω으로 입력 임피던스가 크게 감소하는 것으로 나타났다. 특히, 입전 채로 하부에서 전파되는 제적탄성파가 음향 브래그 반사층의 개수가 증가함에 따라 입력 임피던스가 감소하였는데, 음향 브래그 반사층의 개수가 흡수 개발 때 입력 임피던스의 감소가 더 투명하게 나타났다. 이와 같이 음향 브래그 반사층의 개수가 증가함에 따라 제적탄성파의 입력 임피던스가 감소하는 것은 입전 소자에서 발생되며 전파되는 제적탄성파가 얕은 소자 하부에 음향 임피던스가 서로 다른 음향 브래그 반사층이 격동으로 구성될 경우 입전 소자와 음향 브래그 반사층 사이에 탄성 경련파가 형성됨에 따라 체적 탄성파가 음향 브래그 반사층으로 입력되기 보다는 오히려 입전 소자 쪽으로 반사시켜 입전 소자에서 발생된 체적탄성파가 오래 유지시킬 수 있는 구조를 형성하기 때문이다. 그러한 음향 브래그 반사층의 개수가 흡수 개발 때 시뮬레이션 결과 입력 임피던스는 진동 또는 공기와 같이 0에 가까운 값을 나타내었으며 실제 실험 결과 측정된 입력 임피던스는 음향 브래그 반사층의 개수가 흡수 개발 때 보다 흡수 개발 때 입력 임피던스는 상대적으로 감소하는 것으로 나타났다.

즉, 시뮬레이션 결과에서는 음향 브래그 반사층 효과를

Fig. 4 Changes of resonance and anti-resonance frequencies of 1 MHz bulk acoustic resonator due to the increase of number of acoustic Bragg reflectors with the order of low and high impedance materials. (B.E., L, H and ABR stand for bottom electrode, low acoustic impedance materials, high acoustic impedance materials and acoustic Bragg reflector, respectively.).

Table 2 Comparisons of resonance frequencies and input impedance between simulation and measurement due to the increase of the number of acoustic Bragg reflector layers with the order of low and high acoustic impedance materials at 1 MHz bulk acoustic resonator

<table>
<thead>
<tr>
<th>Number of layer</th>
<th>(f_r) (MHz)</th>
<th>(Z_a) (Ω)</th>
<th>(f_a) (MHz)</th>
<th>(Z_r) (Ω)</th>
<th>(f_r) (MHz)</th>
<th>(Z_a) (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>439.54</td>
<td>0.96</td>
<td>564.49</td>
<td>0.96</td>
<td>125.42</td>
</tr>
<tr>
<td>1</td>
<td>1.98</td>
<td>18.43</td>
<td>0.96</td>
<td>1233.0</td>
<td>0.96</td>
<td>99.33</td>
</tr>
<tr>
<td>2</td>
<td>0.45</td>
<td>567</td>
<td>1.00</td>
<td>465.35</td>
<td>1.00</td>
<td>110.06</td>
</tr>
<tr>
<td>3</td>
<td>0.45</td>
<td>567</td>
<td>0.96</td>
<td>84418</td>
<td>0.96</td>
<td>87.10</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>567</td>
<td>1.00</td>
<td>465.35</td>
<td>1.00</td>
<td>110.54</td>
</tr>
<tr>
<td>5</td>
<td>0.44</td>
<td>567</td>
<td>0.98</td>
<td>84462</td>
<td>0.98</td>
<td>75.98</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>567</td>
<td>1.00</td>
<td>465.35</td>
<td>1.00</td>
<td>98.85</td>
</tr>
<tr>
<td>7</td>
<td>0.44</td>
<td>567</td>
<td>0.98</td>
<td>84462</td>
<td>0.98</td>
<td>68.91</td>
</tr>
</tbody>
</table>

\(f_r \), \(f_a \) and \(Z_a \) stand for resonance frequency, anti-resonance frequency and input impedance, respectively.
비오센서 개발을 위한 음향 브레그 반사층을 가지는 체적탄성파 공진기의 공진특성 분석

0.44 \Omega \text{까지 감소하는 것으로 나타났지만, 실제 측정에서는 125.42 \Omega \text{에서 68.91 \Omega으로 약 50\% 정도 감소하여 체적탄성파 공진기에 대한 음향 브레그 반사층의 영향을 확인할 수 있}}

그림 5는 2.25 MHz 공진소자의 음향 브레그 반사층에 따른 공진특성을 나타낸다. 상기 1 MHz 공진소자와 마찬가지로 음향 브레그 반사층의 개수가 증가할 때 시뮬레이션 결과와 실제 측정 또한 입력 임피던스의 점이적인 값의 차이를 보이고 있지만, 공진 주파수의 경우 두 값이 크게 차이가 나지 않는 것으로 나타났다. 표 3은 2.25 MHz 공진소자에 대한 시뮬레이션 결과와 실제 측정 결과를 나타낸 것이다. 2.25 MHz 공진 주파수에서 음향 브레그 반사층의 증가에 따른 입력 임피던스에 대한 시뮬레이션 결과 값은 81.39 \Omega\text{에서 1.01 \Omega으로 약 99\%, 실제 측정값은 9.26 \Omega에서 4.15 \Omega으로 약 69\%로 각각 감소하여 음향 브레그 반사층의 개수 증가에 따라 체적탄성파 공진기 소자의 공진특성에 영향을 미치는 것을 확인할 수 있었다.}

5 MHz 공진소자의 경우도 그림 6 및 표 4에서 보는 바와 같이 1 MHz 및 2.25 MHz와 마찬가지로 공진 주파수에 대한 시뮬레이션 결과 측정값은 비교적 일치하는 것으로 나타났다. 반면 반공진 주파수의 경우 공진 주파수와 반공진 주파수의 간격의 측정값에서 약 1.5 MHz 정도로 크게 나타났다. 이라

![Fig. 5 Changes of resonance and anti-resonance frequencies of 2.25 MHz bulk acoustic resonator due to the increase of number of acoustic Bragg reflectors with the order of low and high impedance materials.](image)

Table 3 Comparisons of resonance frequencies and input impedance between simulation and measurement due to the increase of the number of acoustic Bragg reflector layers with the order of low and high acoustic impedance materials at 2.25 MHz bulk acoustic resonator

<table>
<thead>
<tr>
<th>Number of layer</th>
<th>Simulation</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>f_r (MHz)</td>
<td>Z_r (\Omega)</td>
</tr>
<tr>
<td>0</td>
<td>2.29</td>
<td>81.39</td>
</tr>
<tr>
<td>1</td>
<td>3.5</td>
<td>2271</td>
</tr>
<tr>
<td>2</td>
<td>103.88</td>
<td>85.62</td>
</tr>
<tr>
<td>3</td>
<td>1.01</td>
<td>35919</td>
</tr>
<tr>
<td>4</td>
<td>1.01</td>
<td>36020</td>
</tr>
<tr>
<td>5</td>
<td>103.88</td>
<td>85.62</td>
</tr>
<tr>
<td>6</td>
<td>1.01</td>
<td>26020</td>
</tr>
<tr>
<td>7</td>
<td>2.29</td>
<td>2.24</td>
</tr>
</tbody>
</table>
한 이유로는 5 MHz 공진소자의 경우 두께 대 직경비가 1 MHz 및 2.25 MHz 보다 상대적으로 크기 때문에 나타나는 현상으로 생각되며 실제 소자의 제작 시 두께 대 직경 비율 적절하게 조절하여 즉, 직경을 줄임으로써 반공진 주파수와의 갭을 줄일 수 있을 것으로 생각된다. 표 4에서 나타난 바와 같이 5 MHz 공진소자에서의 입력 응답은 응용 브 레그 반사층의 개수가 증가함에 따라 시뮬레이션 값은 18.96 Ω에서 0.16 Ω으로 약 99% 정도 감소하는 것으로 나타났으나 실제 측정값은 1.17 Ω에서 0.64 Ω으로 약 65% 정도 감소하는 것으로 나타났다.

시뮬레이션 및 실제 측정 실험에 사용된 체적탄성과 공진기의 공통적인 공진특성은 하부 전극 아래로 응용 응답이 낮은 재료(Acrylic Resin)의 응용 응답이 높은 재료(SUS 304)를 순차대로 작동했을 때, 응용 브레그 반사층이 흡수 개일 때 시뮬레이션 결과와 실제 측정의 공진특성이 유사하게 나타났다. 한편, 응용 브레그 반사층이 적수 개의 경우 시뮬레이션 값에서는 실험에 사용된 3종류의 체적탄성과 공진기 모두에서 설계된 주파수에서 공진특성이 나타나지 않았으며 그 외의 다른 주파수 대역에서 공진하는 것으로 나타났는데, 이는 응용 브레그 반사층이 적수 개일 때 입력되는 입력 응답이 수식은 식 (14)가 공진 주파수 대역에서는 성수로써 수렴하기 때문에 공진특성이 나타나지 않은 것으로 사

![Simulations and Measurements](image)

Fig. 6 Changes of resonance and anti-resonance frequencies of 5 MHz bulk acoustic resonator due to the increase of number of acoustic Bragg reflectors with the order of low and high impedance materials.

Table 4 Comparisons of resonance frequencies and input impedance between simulation and measurement due to the increase of the number of acoustic Bragg reflector layers with the order of low and high acoustic impedance materials at 5 MHz bulk acoustic resonator

<table>
<thead>
<tr>
<th>Number of layer</th>
<th>Simulation</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>f_r (MHz)</td>
<td>Z_r (Ω)</td>
</tr>
<tr>
<td>0</td>
<td>18.96</td>
<td>24.10</td>
</tr>
<tr>
<td>1</td>
<td>0.81</td>
<td>468.97</td>
</tr>
<tr>
<td>2</td>
<td>23.83</td>
<td>19.99</td>
</tr>
<tr>
<td>3</td>
<td>0.16</td>
<td>1035</td>
</tr>
<tr>
<td>4</td>
<td>23.83</td>
<td>19.99</td>
</tr>
<tr>
<td>5</td>
<td>0.16</td>
<td>1035</td>
</tr>
<tr>
<td>6</td>
<td>23.83</td>
<td>19.99</td>
</tr>
<tr>
<td>7</td>
<td>0.16</td>
<td>1035</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>f_a (MHz)</th>
<th>Z_a (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.32</td>
<td>4.92</td>
</tr>
<tr>
<td>1</td>
<td>4.42</td>
<td>1.17</td>
</tr>
<tr>
<td>2</td>
<td>4.27</td>
<td>1.01</td>
</tr>
<tr>
<td>3</td>
<td>4.30</td>
<td>2.52</td>
</tr>
<tr>
<td>4</td>
<td>4.27</td>
<td>0.87</td>
</tr>
<tr>
<td>5</td>
<td>4.40</td>
<td>0.76</td>
</tr>
<tr>
<td>6</td>
<td>4.32</td>
<td>0.87</td>
</tr>
<tr>
<td>7</td>
<td>4.27</td>
<td>0.64</td>
</tr>
</tbody>
</table>

![Table 4](image)
로된다. 또한 예측 할 수 없는 다른 주파수대역에서 공진특성
이 나타나는 것은 본 연구의 설계 공진 주파수의 공진특성에
는 영향을 미치지 않는 것으로 판단된다.

5. 요약 및 결론

본 연구는 통신용 필터 소자로서 각광받고 있는 FBAR 소
자와 우수한 공진특성을 이용하여 고감도 바이오센서를 개발
하기 위한 기초 연구로서 음향 브레그 반사층 체적탄성파 공
진기의 특성을 시뮬레이션하고 공진 주파수가 각각 1, 2.25, 5
MHz인 공진소자를 제작하여 음향 브레이크 반사층의 개수에
따른 공진특성의 변화를 고찰하였다. 구체적인 연구결과는
다음과 같다.

1) 유도된 체적탄성파 공진기의 수학적 해석 모델을 이용
하여 상-하부 전극에 대한 음향 흐름 방향 효과가 공진
특성을 미치는 영향과 음향 브레그 반사층의 개수에 따
른 체적탄성파 공진기의 공진특성 변화를 확인할 수 있
였다.

2) 음향 브레그 반사층의 개수가 올수록, 빨리 압박 소자
의 하부 전극 아래로 음향 입피던스가 낮은 채로와 높
은 채로를 반복하여 적응하는 것이 공진소자의 입력 입
피던스를 크게 감소시킬 수 있는 것으로 나타났다. 결
과적으로 체적탄성파 공진기의 공진특성이 음향 브레
그 반사층이 없을 때보다 홍수 층으로 증가할수록 음
향 브레이크 반사층에 대한 입력 입피던스 감소가 크게
나타나다고 할 수 있다.

3) 시뮬레이션 결과와 실제 측정값을 비교한 결과 입력 입
피던스가 감소하는 경향은 대체적으로 일치하는 것으
로 나타났다. 반면 반공진 주파수의 경우 시뮬레이션
값과 측정값에서 반공진 주파수와 입력 입피던스 차이
가 크게 나타났는데 이러한 이유로는 공진소자의 종양
향 진동뿐만 아니라 횡방향 진동특성까지 함께 나타난
결과로 생각되며 GHz 대역의 고감도 바이오센서 개발
에 사용할 경우 압력 소자의 두께 대 적정 바이로 적합하
게 조절하여 이러한 문제들을 개선하여 암호화 공진특
성을 내재적으로 해야 할 것으로 생각된다.

4) 최종적으로 GHz 대역의 박막 형태의 체적탄성파 공진
기를 이용하여 고감도 바이오센서를 개발하는데 필요
한 이론적 해석 모델의 타당성을 확인할 수 있었으며
향후 본 기초 연구 결과를 수 마이크로미터 수준의 박
막 체적탄성파 공진기 구조의 바이오센서를 개발하는
데 적용할 예정이다.

1. Auld, B. A. 1990a. Acoustic Fields and Waves in Solid:
 York City, USA.

 Fabrication and frequency response of solidly mounted resonators with 1/4λ,

 S. Kao. 2008. Highly sensitive mass sensor using film bulk

 and P. Alnot. 2007. Sensing characteristics of high-frequency
 shear mode resonators in glycerol solutions. Sensors and

8. Weber J, W. M. Albers, J. Tuppurainen, M. Link, R. Gabl,
 W. Wersing and M. Schreiter. 2006. Shear mode FBARs as
 highly sensitive liquid biosensors. Sensors and Actuators A.
 128:84-88.

 and I. Katardjiev. 2007. Shear mode AIN thin film electro-acoustic
 resonant sensor operation in viscous media. Sensors and
 Actuators B. 123:466-473.

 thin film using FBAR. Information and Communications
 University, Daejeon, Korea.

 Y. Wang, S. Feng, L. Lai and J. Chen. 2007. Material and
 device properties of ZnO-based film bulk acoustic resonator
 for mass sensing applications. Surface Science 253:9372-9380.