기술논문

GPS를 이용한 무인항공기 추적안테나 시스템 시험
노민석*, 조경례**, 이대우**

Test of a UAV Tracking Antenna System Using GPS
Min-Shik Roh*, Kyeum-Rae Cho** and Dae-Woo Lee**

ABSTRACT

The tracking antenna must always point to track moving vehicle for data link. In this paper, we determine pointing angle from the geometric relationship of antenna and UAV(Unmaned Aerial Vehicle) to let an antenna be toward a moving vehicle. The pointing angle of antenna is set through GPS measurement data installed in antenna and UAV. We verify the performance of this system from the fixing a camcoder on the antenna.

초 록

이동체와의 통신을 항상 안테나가 이동체의 방향을 지향하고 있어야 한다. 본 연구에서
는 안테나가 이동체를 지향하기 위해서 사용되는 방식을 이동체의 위치를 측정하여 이동
체와 안테나 사이의 거리에 따라 위치관계로부터 안테나의 지향각을 결정하는 방법을 사용
하였다. 안테나와 무인항공기의 각각 GPS를 설치하여 각각의 위치를 측정하고 계산된 지
향각을 이용하여 안테나를 구동하였다. 안테나의 지향각과 일치시키는 캐마라를 사
용하여 무인항공기를 활용하여 추적 안테나 시스템의 성능을 검증하였다.

Key Words : GPS(지구위치측정시스템), Tracking Antenna(추적안테나), UAV(무인항공
기), Pointing Angle(지향각), Data Link(데이터 링크)

1. 서 론

항공기, 선박 자동차와 같은 이동체 사이에 정
보를 주고받는 이동무선통신은 고정통신과는 다
른 개념으로 설계된다. 이동체 사이의 Data Link
를 유지하기 위해서 안테나는 항상 이동항공기의
방향을 지향하고 있어야 한다.

현재 쓰이고 있는 안테나의 추적 방식은 전파
수신강도 변화의 변화를 이용하는 방식이 주로
쓰이고 있다. 이때 비콘 신호가 최대로 수신되는
곳을 안테나의 포인팅 각으로 하여 안테나를 회
전축에 대하여 연속적이거나 단계별로 방향을 바
꾸어 가며 전파수신강도를 측정하고 전파수신강
도가 강한방향으로 안테나가 방향으로 구동하는
다, 이를 단계 추적(step-track) 또는 연속등반
(hill-climbing) 방법이라 한다. 전파수신강도의
증감에 따라 단계별 안테나 방향을 바꾸게
되는데 이러한 방식은 다음과 같은 제한점이 가
진다.

* 2006년 10월 13일 접수 ~ 2007년 1월 10일 심사완료
* 정회원, 부산대학교 항공우주공학과 대학원
** 정회원, 부산대학교 항공우주공학과
연락처, E-mail : krcho@pusan.ac.kr
부산광역시 금정구 장진동 산 30번지
선박과 같은 이동체에 설치되는 안테나 시스템은 일반적으로 ACU (Antenna Control Unit), PCU (Pedestal Control Unit), SAP (Stabilized Antenna Pedestal)의 3부분으로 구성되는데 ACU는 대상 이동체의 위치와 지향각 계산하며 SAP는 안테나가 외란에 의해 지향각이 비켜지 않도록 유지하도록 제어하며 PCU는 ACU로부터 받은 방위각과 고도각 값을 안테나 플랫폼을 제어한다. 본 논문에서는 지상에 고정되어 설치되는 추적안테나를 대상으로 하므로 SAP를 필요로 하지 않고 ACU와 PCU를 하나의 제어기로 사용하였다. 본 시스템은 그림 3에서 보는 것과 같이 무인기와 안테나의 GPS 좌표를 수신 받아 처리하는 GPS 처리모듈과 PCU로 이루어져 있다[1][4].

일반적으로 GPS는 WGS84 경위도 좌표계를 사용하고 있는데 지구의 구면에 의한 왜곡을 무시할 수 있을 정도의 범위에서 사용할 경우 직교 좌표계로 변환하여 사용하는 것이 일반적이다. 본 논문에서는 그림 4에서 보는 것과 같이 안테나가 설치된 지점을 중심으로 동쪽을 X, 북쪽을

그림 3. 추적안테나시스템

그림 1. 전파수신에 영향을 주는 환경적요인

그림 2. 위치정보를 이용한 안테나의 지향

그림 4. 위치계산에 사용된 좌표계
Y로 놓고 경도와 위도차이를 \(\text{Scaler} \)를 사용하여 거리로 계산하였다. 아래 철자 A는 안테나를 나타내며 아래 철자 V는 이동체를 나타낸다. \(r \) 은 지구 중심으로부터의 거리이며 \(h \)는 GPS 고도이다.

\[
\Delta \text{Longitude} = \text{longitude}_V - \text{longitude}_A \\
\Delta \text{Latitude} = \text{latitude}_V - \text{latitude}_A \\
\Delta X = r_c \cos(\text{longitude}_A) \times \text{Scaler} \\
\Delta Y = r_c \times \Delta \text{Latitude} \times \text{Scaler} \\
\text{Azimuth} = \tan^{-1} \left(\frac{\Delta Y}{\Delta X} \right) \\
\text{Elevation} = \tan^{-1} \left(\frac{h_v - h_a}{r_c \sqrt{\Delta X^2 + \Delta Y^2}} \right)
\]

2.2 설계된 안테나의 구성

2축 안테나 시스템은 일반적으로 구형좌표계로 표시되며 지향 각은 방위각(Azimuth)과 고도각 (Elevation)에 의해 정의된다. 안테나의 지향 각은 안테나와 이동체사이의 상대좌표에 의해 결정된다. 그림 5는 안테나 시스템의 방위각과 고도각을 나타낸다[3].

GPS process module은 이동국과 고정국에서 받은 두 가지의 GPS 정보에서 PCU의 지향각 계산에 필요한 정보를 PCU로 전송한다.

PCU는 그림 6에서 보여준 것과 같이 인터럽트루턴과 메인루턴을 가지고 있으며 인터럽트루턴은 안테나와 이동체의 GPS 위치 데이터를 수신하여 버퍼에 저장한다. 메인루턴에서는 인터럽트루턴에서 받은 GPS 정보를 읽어 이동체와 안테나에 설치된 GPS의 상태를 확인하고 안테나의 구동요를 결정한다. 모터 구동 후 현재 안테나의 지향각을 모니터링 컴퓨터로 전송한다.

안테나의 컨트롤러는 3개의 하드웨어적인 파트로 구성되어있다. 이동국과 안테나의 GPS 정보를 전달받아 PCU에서 안테나의 지향각의 계산에 필요한 정보를 넘기는 GPS Process Module과 GPS Process Module로부터 받은 이동체와 안테나의 GPS 좌표를 이용하여 지향각을 계산하고 모터구동 명령을 만들어내는 PCU 그리고 PCU로부터 받은 명령으로부터 안테나의 모터를 구동시키는 Motor driver로 이루어져 있다. 그림 7은 안테나 컨트롤러의 모습과 각 파트의 사전이다.

2.3 실험 및 결과

비행실험에서 이동국으로 사용된 무인항공기는 World model의 Frontier 40으로 그림 8의 오
도면 사진과 같다. 실험에 사용된 무인항공기의 비행속도는 최대 25m/s로 약 90km/h정도로 비교적 빠른 속도로 가진다.

이동공으로서 무인항공기를 사용하며 무인항공기에는 GPS수신기와 RF data-modem이 설치되었다. 안테나 플랫폼의 성능을 확인하기 위하여 planar 안테나 면에 카메라를 설치하여 안테나의 지향방향과 카메라의 영상의 중심이 일치하도록 하였다.

먼저 무인항공기에 설치된 GPS수신기와 RF data-modem 그리고 추적 안테나 시스템의 동작을 확인하기 위해 지상에서 이동하며 안테나를 구동시키면서 안테나에 설치된 카메라와 별도의 카메라로 영상을 촬영하였다.

비행시험을 하기 전에 지상에서 그 작동을 확인해 보 필요가 있다. 본 실험에서 시험자가 안테나의 서쪽으로 20m 떨어진 거리에서 남북으로 약 25km/h의 속도로 이동하면서 안테나의 거동을 살폈다. 그림 10은 시험장면을 짧은 영상을 일부이며 시험 중 안테나에 설치된 카메라로 시험자의 영상을 획득한 것의 일부를 연속으로 나열한 것이다. 매우 가까운 거리에서 이루어진 시험이기 때문에 시험자보다 안테나가 조금 느리게 움직이지만 시험자의 방향을 지향 하는 것을 확인하였다.

지상에서 시험을 완료한 후 비행시험을 진행하였으며 비행시험을 진행하는 동안 안테나에 설치된 카메라로 비행체의 영상을 촬영하였다. 안테나의 서쪽에서 남북방향으로 무인항공기를 비행하여 안테나가 무인항공기를 추적하는 것을 확인하였다. 무인항공기는 안테나로부터 서쪽에서 남북으로 시계반대 방향으로 비행하였으며 비행 범위는 남북으로 800m 동서로 350m 이며 무인항공기가 안테나에 접근할 때에는 평균 50m 정도의 거리를 유지 하였다.

그림 10은 지상시험 영상
그림 11. 무인항공기의 궤적

그림 12. 안테나의 고도각과 방위각

그림 13. 안테나에 설치된 카메라로 찍은 영상
테나 시스템의 지향각 오차는 더욱 줄어들 것이 다.

III. 결 론

본 논문에서는 이동체와 지상과의 Data Link 유지하기 위한 추적 안테나 시스템 개발을 목표로 하고 있으며 2축 안테나의 지향각을 결정하기 위해 이동체를 추적하는 방식 중 이동체와 안테나 사이의 기하학적 위치 관계를 이용하였다. 각각의 위치는 GPS를 사용하여 측정하고 2축 안테나와 무인항공기를 사용하여 비행시험을 진행하였다. 성능 시험에서 안테나에 설치된 카메라를 사용하여 얻은 안테나의 지향 방향의 영상에 기록된 무인항공기의 이미지로부터 안테나가 무인 항공기를 지속적으로 지향하는 것을 확인하였다.

차후 계속 수행되며 실험에서는 2축 안테나의 정확도를 높이기 위한 알고리즘 개발 및 성능 평가에 관한 연구가 이루어질 것이다.

후 기

이 논문은 부산대학교 자유과계 학술연구비(2년)에 의하여 연구되었습니다.

참고문헌

4) 김충권, 조경래, 이대우, 장철순, “Fuzzy-PID 제어기를 이용한 이동체간 추적 안테나 시스템의 서보제어기 설계에 관한 연구” 한국항학회 논문지 제 9권 제 1호, pp. 19-27.
5) 김충권, 우경배, 조경래, 이대우, 장철순, “임베디드 리눅스를 이용한 이동체 추적 안테나 시스템에 관한 연구”, 한국항학회 논문지 제 8권 제 1호, pp. 49-56.