Information Fusion of Photogrammetric Imagery and Lidar for Reliable Building Extraction

DongHyuk Lee*, KyoungMu Lee**, SangUk Lee**

ABSTRACT

We propose a new building detection and description algorithm for Lidar data and photogrammetric imagery using color segmentation, line segments matching, perceptual grouping. Our algorithm consists of two steps. In the first step, from the initial building regions extracted from Lidar data and the color segmentation results from the photogrammetric imagery, we extract coarse building boundaries based on the Lidar results with split and merge technique from aerial imagery. In the second step, we extract precise building boundaries based on course building boundaries and edges from aerial imagery using line segments matching and perceptual grouping. The contribution of this algorithm is that color information in photogrammetric imagery is used to complement collapsed building boundaries obtained by Lidar. Moreover, linearity of the edges and construction of closed roof form are used to reflect the characteristic of man-made object. Experimental results on multisensor data demonstrate that the proposed algorithm produces more accurate and reliable results than Lidar sensor.

Keyword : Lidar, 광학영상, 융합, coarse building boundary, precise building boundary, building extraction

I. 서론

최근 전산 환경의 발전 및 취득 기술의 발달에 따라 다양한 센서를 이용한 정밀한 3차원 영상 정보에 대한 수요가 민간 목적 및 군사 목적 등으로 증가되고 있으나, 민간에서는 도시
계획 및 지리 정보체계 확립 등에 이용될 수 있고, 군사 목적으로는 단일 센서의 한계를 극복한 지능형 정보화 시스템의 신뢰성을 높이기 위한 목적이므로 사용될 수 있다. 항공영상으로부터 인공지물의 자동으로 추출하고 묘사하는 기술은 사전 투영이나 컴퓨터 비전 분야의 주요 연구 주제이다. 인공지물 중 구조물은 그 수가 많고 복잡하면서 도 도시계획, 목표물 추출 등과 같이 그 활용도가 높아하므로, 3차원 구조물 재구성을 위한 연구가 이루어져 왔다. 본 논문에서는 다양한 센서와 광학 영상 정보를 융합하여 정밀한 3차원 지형정보 및 도시 모델을 추출하는 것을 목적으로 한다.

항공 영상에서 구조물은 적외선이 가장 잘 잡는 특징이므로, 사람의 시각에 의존하여 수동적인 방법으로 구조물 을 추출하는 방법이 가장 정확한 방법이지만, 많은 시간과 비용이 소요되기 때문에 다양한 데이터에 광학 영상 정보를 융합하여 자동화된 구조물 추출 기법의 개발이 필요하다. 이를 위해, 센서 연구자들은 다양한 방법을 제안하였다. 

본 논문에서는 다양한 센서로부터 자동화된 데이터로부터 최신 영상의 컴퓨터 비전 기술을 사용하여 자동적으로 구조물 추출하고 복원하기 위해, 각 센서의 특성을 관찰하고, 센서 특성에 따른 특징 feature를 추출하여, 각 센서의 강화점을 상호 보완하고자 한다. 이를 위해, 특징 feature를

![Diagram](image_url)
의 정보를 응용하는 형태의 구조물 추출 방법을 제안한다. 우선 광학 영상의 각 정보를 사용하여 성능을 1차적으로 보완하였고, 여기서 얻은 1차적인 결과(coarse building boundary)를 에지 정합 및 다면체 구성으로 통해 더 정확한 구조물 외곽선(precise building boundary)을 추출한다. 기존의 방법들은 구조물에 대한 과도한 가정(구조물의 유연체 형태, 평행성)으로 인해 구조물 형태가 실제에 비해 왜곡된 결과를 얻었지만, 본 논문에서는 이러한 가정들을 가급적 배제하고 실제 형태에 충실한 구조물 외곽선을 추출하고자 한다. 또한 registration 과정에서 내/외부 인자가 없다고 가정함으로써, 가장 일반적인 환경에서의 구조물 추출 및 복원 과정을 수행하고자 한다. 이를 포함한 전체적인 둘은 그림 1의 전체흐름도로 나타낼 수 있다.

II. 제안하는 방법

1. 다중 센서로부터 초기 결과물 추출


2. Split and merge로 의한 coarse building boundary 추출

본 논문에서는 광학 영상의 각 결과와 Lidar 초기 구조물 추출 결과를 응용하여 중간 단계로서 coarse building boundary를 추출하는 방법을 제안한다. 이는 과도하게 세그멘테이션된 세그멘트들을 Lidar에서 추출된 구조물 영역을 기반으로 하여 merge 과정을 수행함으로써 보편화, 형태의 의구조물 외곽선을 보완할 수 있음을 뿐만 아니라 실제 인공 지물에 가까운 형태의 외곽선을 추출하는 방법이다. 이를 위해 광학 영상에서 추출된 세그멘트가 구조물 영역으로의 편입 여부를 판단할 수 있는 기준이 필요하나, 이는 아래

![그림 2](attachment:image.png)

Fig. 2. Extracting coarse building region. (a) Color segmentation result by Mean-shift method, (b) Building extraction result of Lidar data.
수식 (1)과 같이 Lidar에서 추출된 구조물 영역(그림 2(a))과 광학 영상에서의 각 세그먼트들(그림 2(b))이 일치하는 데의 비율로 결정할 수 있다.

\[ \text{ratio} = \frac{L_a \cap S_a}{S_a} \]  

여기서, \( L_a \)는 Lidar에서 추출된 구조물 영역이고, \( S_a \)는 광학 영상에서 추출된 구조물 세그먼트 영역을 나타낸다. 본 논문에서는 ratio 값이 0.8 이상이면 구조물 세그먼트 라 판단하고, 이러한 세그먼트들을 merge하여 그림 4(a) 결과를 얻는다.

3. Precise building boundary 추출

앞서 서술한 coarse building boundary 추출 과정에서 Lidar 구조물 추출 결과에서 잘못 추출된 구조물 영역 또는 구불구불한 구조물 외곽선을 바로잡는 역할을 수행할 수는 있으나, 지각적인 구조물 외곽선을 얻지는 못한다. 본 논문에서는 광학 영상에서 예지를 추출하여 coarse building boundary에 부합하는 예지를 선택하여, 지각적 그룹화에 의한 후처리를 통해 다면체 형태의 구조물 외곽선 추출 결과 얻는다.

3.1 Coarse building boundary의 정돈

광학 영상에서의 예지 정보를 활용하기 위해, 전처리 과정 없이 coarse building boundary를 직접적인 입력으로 활용하기 어렵다. 예지 정합 및 인공 지질의 특성을 반영하기 위한 적성 형태의 외곽선 지정을 위해, 수산의 길이를 이용하여 반복적으로 구조물의 모니지를 추출하는 Douglas Peucker 알고리즘을 사용하였다.
3.2 구조물 주변 예지의 탐색
가장 심고 간단하게 구조물 외곽선 후보 예지를 제한하는 방법은 Ladar에서 추출한 구조물 외곽선 예지에서 한정된 거리 이내에 존재하는 예지를 한정하는 것이다. 본 연구에서는 homography에 의한 registration 오차(최대 약 20화소)를 감안하여 coarse building boundary에서 구조물 외곽선 양쪽 방향으로 거리값이 20화소 이내인 예지를 구조물 외곽선 후보 예지로 사용하였다.

3.3 높이 적합성
Lidar 데이터의 고도 정보의 활용은 구조물 외곽선 후보 예지를 추출의 신뢰성을 크게 높여 줄 수 있다. 구조물 외곽선 예지에 가장 중요한 특징은 외곽선을 경계로 양방향의 고도값이 크게 달라지기 때문이다. 본 논문에서는 이러한 특징을 구체화하기 위해, 각각 외곽선을 중심으로 한 양쪽 방향의 섬플 움드오의 고도 평균값을 이용하였다. Homography로 인한 레이저스트리레이션 예지가 발생할 수 있으므로 이를 감안하여, 예지로부터 10-20화소 거리만큼 떨어진 영역의 평균값을 계산하여 그 평균의 차이가 임계값보다 큰 예지를 구조물 후보 예지로 선택하였다. 다시 말해, 중심 예지로부터 임정 거리 떨어진 섬플 움드오 영역내의 고도 평균값의 차이를 구조물 후보 예지 선택의 기준으로 활용하였다. 여기서 임계값으로는 건물의 최소 높이값인 7m를 사용하였다.

3.4 구조물 특징 예지의 정합
하나의 적신라인으로 이루어진 실제 구조물 외곽선에 대응하는 추출된 구조물 외곽선 후보 예지는 하나 또는 여러 개가 존재한다. 따라서 구조물 외곽선 후보 예지 및 coarse building boundary의 score 함수에 의한 1:1 정합 과정을 통해 좀 더 정밀하고 신뢰성 있는 구조물 외곽선을 표시할 수 있다. 이러한 정합 과정을 수행하기 위해 예지의 유사성

\[
E_d = \left( (\sum d_{ij}) / n + (\sum d_{ij}) / m \right) / 2.
\]  
(2)

여기서, \(E_d\)는 예지 사이의 거리를 나타내고, 수식(2)의 첫 번째 멤에서 \(d_{ij}\)은 한 예지(index)와 다른 예지(indices)와의 최소 거리값을 나타낸다. \(n, m\)은 인접 예지 사이의 최소 거리값을 나타낸다. 또한, homography에의 한 레이저스트리레이션 예지를 잠재적으로 레이저스트리레이션 데이터에서 적절히 일정 거리 이내에는 대응하는 예지가 존재하여야 한다. 이들 세 가지 유사성 점수를 이용하여 추정한 함수는 아래 수식

\[
Score = w_1 \frac{\text{Length}}{\text{Length}^2 + w_2 \frac{(15 - \text{angle})}{15}} + w_3 \frac{(20 - E_d)}{20} \quad (\text{Length}^2 \geq \text{Length}).
\]  
(3)

\[
E_d = \left( (\sum d_{ij}) / n + (\sum d_{ij}) / m \right) / 2,
\]  
(2)
(3)와 같다.

수식 (3)에서 첫 번째 열은 Lidar의 구조물 외곽선과 광학 영상 구조물 외곽선 후보 에지의 길이의 비로서, 둘 중의 길이가 큰 것을 분모로 둔다. 따라서 유사할수록 1에 가깝게 되고 비의 차이가 클수록 0에 수렴한다. 두 번째 열은 각도의 비 즉 방향성의 유사도를 나타낸다. 각도의 차이가 15도 이상 낮아지면 후보에 제외된다. 마찬가지로 각도가 유사하면 1에 수렴하게 되고 달라지면 0에 가까워진다. 세 번째 열은 에지 평균거리가 20 화소 거리 이내에 존재하는 광학 영상의 에지들을 구조물 외곽선 후보 에지로 계산하고 거리가 작을수록, 즉 가까운수록 1에 수렴하고 멀수록 0에 가까워진다. 본 논문에서는 각각의 중치 (weight)로 각도의 비는 2, 나머지는 1씩 할당하였다. 실제로 구조물 형태를 결정짓는 가장 큰 요소가 에지 방향성 이기 때문이

3.5 각각의 에지 그룹핑을 이용한 다면체의 구성

선형 방정식의 결과만으로는 완전한 구조물의 외곽선이라 고 할 수 없다. 구조물은 단한 형태의 다면체로 이루어진 구조물이기 때문에 어떠한 형태의 지각적 정보를 사용하는 나에 따라 구조물의 형태가 달라질 수 있다. 따라서 1:1로 대부분의 광학 영상에서 추출된 에지들의 결과를 연결하여 단일 형태의 다면체 형태로 만들 수 있는 과정이 필요하다. 하지만 단순한 결과 연결보다는 구조물 외곽선의 지각적인 정보를 이용하여 보완하는 방법으로 정확성을 높일 수 있다. 본 논문에서는 두 모서리 에지의 각이 45도보다 높은 경우에는 두 에지의 교점을, 45도보다 작을 경우에는 두 에지의 교점을 추정해주는 새로운 에지 추정을 추가하는 방법을 제안한다. 45도보다 작을 경우에 두 에지의 교점을 사용하지 않는 이유는 두 에지의 각이 0도에서 가까운 경우 교점을 예상하지 못한 곳에서 형성되는 것을 막기 위함이다.

III. 실험 결과 및 평가

일반적으로 두 센서의 데이터 융합에서는 두 센서의 해치스트레이션이 되어있는 상황이 가정한다. 그러나 본 논문은 광학 영상과 Lidar센서의 해치스트레이션이 되어 있지 않다고 가정하였고, 사용 가능한 각 센서의 내/외부

이론과 관련된 분야에서 는 데이터 취득이 있어서 상당한 경제적인 비용이 소모되기 때문에 데이터 또한 공유되기 어렵다. 따라서 일반적으로 정성적인(qualitative) 성능평가에 의존하는 바가 크다. 본 논문에서는 정량적인(quantitative) 성능 평가를 위해 단일 센서의 결과를 비교한다. 이를 위해 두 가지 형태의 성능 평가 방법을 사용하였다. 첫 번째에는 여러 가지 방법에 의해 추출된 구조물 외곽선 결과와 ground truth의 구조물 외곽선 주변에 20 화소 너비의 비표를 사용하여 결함의 정 도를 비율로 나타낸 것이다. 비교 평가를 위해 고해상도 광학 영상으로부터 사람이 직접 구조물 외곽선을 추출한 결

ground truth로 사용하였다.

평가 방법에 의한 결과는 표 1과 같다. 표 1에서 Lidar는 Lidar 데이터로부터 구조물 외곽선 추출 결과를, Lidar + Precise building boundary는 Lidar 구조물 외곽선 추출 결과를 조금으로 에지 정합 및 단일 형태의 다면체 구조에 의한 결과를 나타내고, Coarse + Precise building boundary

은 coarse building boundary와 에지 정합 및 단일 형태의 다면체 구조에 의한 결과를 나타낸다. 표 1에서 본 수 있듯이, 제한된 방법에 의해 약 12-13% 정도의 구조물 외곽선

표 2. Chamfer distance에 의한 결과 평가

Table 2. Evaluation by Chamfer distance

<table>
<thead>
<tr>
<th>방법</th>
<th>Data set</th>
<th>set1</th>
<th>set2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lidar (%)</td>
<td></td>
<td>89.10</td>
<td>88.87</td>
</tr>
<tr>
<td>Lidar + Precise building boundary (%)</td>
<td></td>
<td>95.05</td>
<td>90.74</td>
</tr>
<tr>
<td>Coarse +Precise building boundary (%)</td>
<td></td>
<td>65.00</td>
<td>69.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>95.05</td>
<td>90.74</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>방법</th>
<th>Data set</th>
<th>set1</th>
<th>set2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lidar (%)</td>
<td></td>
<td>35.56(1.07m)</td>
<td>35.46(1.44m)</td>
</tr>
<tr>
<td>Lidar + Precise building boundary (%)</td>
<td></td>
<td>45.55(0.85m)</td>
<td>35.24(0.62m)</td>
</tr>
<tr>
<td>Coarse +Precise building boundary (%)</td>
<td></td>
<td>22.55(0.44m)</td>
<td>35.54(0.68m)</td>
</tr>
</tbody>
</table>
추출 정확도 향상 결과를 얻었다. 두 번째 정확도 평가 방법으로 Chamfer distance를 사용하였다. Chamfer distance는 두 예시의 거리값을 나타낼 수 있는 방법으로 하나의 예시에 대해 다른 예시 화소들의 최소 거리값의 평균을 유클리디안 거리 값으로 나타낸 것이다. 표 2에서 볼 수 있듯이, 평가 결과에 의한 데이터 단위는 화소 거리를 나타내고, 같은 화소의 매스노드에 따른 실제거리의 나타난다. 마찬가지로 3\% 화소 거리(0.6m)의 구조물 외곽선 정확도 향상 결과를 얻었다. 그림 5는 제안한 방법에 의한 구조물 외곽선 추출 결과를 나왔다. 그림 5(a)는 세그멘테이션에 의한 coarse building boundary를 바탕으로 예시 정렬에 의한 결과를 나타낸다. 그림 5(b)는 예시 정렬 결과를 제안한 방법에 의한 단일 형태의 단면체로 구성한 결과를 보여준다. 그림 6은 제안한 방법에 의한 구조물 추출 결과를 기반으로 한 3차원 복원 결과를 나타낸다. 이를 위해, 지면 근사 DEM을 추출하기 위한 수리형태학적 모델 및 3차원 택스쳐 매핑 기법을 사용하였다. 그림에서 볼 수 있듯이, 본 논문에서 제안한 방법에 의해 보다 실제에 근접한 구조물 외곽선이 추출되었음을 확인할 수 있다.

IV. 결론

본 논문에서의 Lidar와 광학 영상으로부터 복잡한 형태

그림 5. Precise building boundaries 추출 결과 (a) 정렬된 예시 추출 결과, (b) 일반 형태의 단면체 구성
Table 5. Extracted precise building boundaries. (a) Corresponded edges, (b) constructing closed polygon loop

그림 6. 3차원 구조물 복원 결과, (a) set1 데이터 결과, (b) set2 데이터 결과
Table 6. 3D building reconstruction, (a) the result of set1 data, (b) the result of set2 data
의 구조들을 추출하기 위해 새로운 방법이 제안되었다. 먼저, 정보 응용에 의한 구조물 추출 및 복원을 위해 먼저 각 센서의 장단점을 분석하고, 단일 센서에 의한 구조물 추출 및 복원의 한계점을 파악하고 이를 보완할 수 있는 알고리즘들을 제안하였다. 이를 위해, 칼라 정보, 예지, 중 레벨 특성 등의 그룹핑 방법 등을 사용하였다. 또한 성능 평가를 위해 바파와 Chamfer distance를 이용한 두 가지 방법을 제안하였다. 평가 결과에서 확인할 수 있듯이, LIDAR 단일 센서에 의한 결과보다 약 50% 향상된 복원 및 추출 결과를 보였다.

본 논문에서는 광학 영상과 LIDAR의 메시스트레이션에 되어 있지 않은 상대적 기반, 내외부 인자가 추여지지 않았다고 가정한다. 이를 극복하기 위해, 칼라 정보 및 예지를 정합 절차를 수행하였다. 또한 예지를 적절히 담당 형태의 다양체 형태를 고려함으로써, 인공 지질의 특성을 반영하였다.

제안한 방법에서는, 넓은 지역의 데이터가 많은 계산량을 요구하기 때문에, 각 부분의 프로세스가 독립적으로 진행되었다. 그러나 전산 환경의 발전으로 인해, 각각의 미세에서는 좀 더 빠르고 자동화된 처리가 가능할 것으로 기대된다. 또한 이러한 시스템의 발전으로 인해 본 논문은 가장 환경, 3차원 도시 모델링 등 많은 부분에 기여할 것으로 기대된다.

참고문헌


저자 소개

이 동 혘
- 2001년 : 서울대학교 전기공학부 학사
- 2003년 : 서울대학교 전기-전자공학부 석사
- 2008년 : 서울대학교 전기-전자공학부 박사
- 2008년 : 현재 : 서울대학교 전기-전자공학부 박사후 과정

주관심분야 : 3차원 구조물 추출 및 복원, 컴퓨터 비전, 영상 처리
자 소개

이 경 무

- 1984년 : 서울대학교 재학 중 공학과 학사
- 1986년 : 서울대학교 재학 중 공학과 석사
- 1993년 : 미국 Univ. of Southern California, 전기공학과 박사
- 1995년 : Automation Research Center, Samsung Co. Ltd.
- 2001년 : 홍익대학교 전기전자 공학과 부교수
- 2003년 ~ 현재 : 서울대학교 전기·컴퓨터 공학부 부교수
- 주관실분야 : 컴퓨터 비전, 물체 인식, 자율로봇 비전

이상옥

- 1973년 : 서울대학교 전기공학부 학사
- 1976년 : 미국 Iowa 주립대 전기공학과 석사
- 1980년 : 미국 Univ. of Southern California, 전기공학과 박사
- 1981년 : General Electric Co. 연구원
- 1983년 : M/A-COM Research Center 산업연구원
- 1985년 ~ 현대 : 서울대학교 전기공학부 교수
- 주관실분야 : 영상처리, 컴퓨터 비전