Cytokine Synergism in Apoptosis: Its Role in Diabetes and Cancer

Myung-Shik Lee*

Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine and National Research Laboratory of Cell Death and Diabetes Research, Seoul 135-710, Korea

Received 15 September 2001

The effects of individual cytokine on apoptosis have been extensively studied. However, the effect of the cytokine combination, or the synergistic effect of cytokines on cell death, has not been widely studied, though synergism between cytokines has been documented in a variety of biological situations. In our effort to identify the final death effector molecule(s) in autoimmune diabetes, we inadvertently became interested in the cytokine synergism. We discovered that IFNγ/TNFα synergism, rather than the Fas ligand as currently believed, is responsible for the apoptosis of pancreatic islet cells both in vitro and in vivo. We also studied similar cytokine synergism in cancer cell deaths, and noted the similarities and dissimilarities between cancer cell death and islet cell death.

Keywords: Apoptosis, Diabetes, Cancer, Cytokine, Synergism

The role of the Fas ligand in pancreatic β-cell death and diabetes

Previous adoptive transfer experiments have clearly shown that autoreactive T lymphocytes are the most important, as well as the final effector cells in autoimmune diabetes (Wicker et al., 1986; Haskins and McDuffie, 1990; Wang et al., 1991). Effector T cells induce apoptosis of insulin producing pancreatic β-cells. This then leads to absolute insulin-deficiency and clinically manifest diabetes, at least in the murine model of the autoimmune diabetes-NOD (nonobese diabetic) mice. However, it was not clearly demonstrated which effector molecule(s) on the effector T lymphocytes exert cytotoxicity on pancreatic β-cells. Recent works have demonstrated that effector T lymphocytes exert cytotoxicity upon target cells using mainly two independent arms. One is the perforin-granzyme B pathway, and the other is the Fas-mediated pathway. Both of them eventually lead to apoptosis of the target cells (Henkart, 1994; Ju et al., 1994; Kagi et al., 1994). The perforin pathway has been implicated in both the natural and artificial autoimmune diabetes models (Kagi et al., 1996; Kagi et al., 1997). Evidence suggesting the involvement of Fas-mediated apoptosis in the development of autoimmune diabetes was also reported (Yamada et al., 1996; Chervonsky et al., 1997; Itoh et al., 1997). However, the involvement of Fas-mediated apoptosis in the development of autoimmune diabetes is controversial. Previous reports that lymphocytes from diabetic NOD mice were unable to induce diabetes in Fas-deficient NOD-Ifn-γ mice were regarded as evidence that Fas-mediated apoptosis is necessary for β-cell apoptosis and diabetes in NOD mice (Chervonsky et al., 1997; Itoh et al., 1997). However, NOD-IFN-γ mice are not the optimal recipients for diabetes transfer because of the artificial effect of the Fas knockout. Massive accumulation of abnormal B220+, CD4−, CD8− cells that constitutively express the Fas ligand (FasL) (Chu et al., 1995; Watanabe et al., 1995), and their persistence after sublethal irradiation (Reap et al., 1997), will constitute an adverse environment for the transferred lymphocytes and affect the outcome of lymphocyte transfer. Thus, experiments that obviate such artificial effects should be carried out to show the role of Fas in autoimmune diabetes. Thus, we employed the strategy of administering a blocking type anti-FasL antibody to NOD mice that does not involve artificial effects of the Fas knockout. Then, the K10 anti-FasL antibody administration did not affect the diabetes incidence in NOD mice after an adoptive transfer of diabetogenic lymphocytes or cyclophosphamide administration. This strongly indicates that FasL is not the dominant effector molecule in pancreatic β-cell apoptosis by autoreactive T cells (Kim et al., 1999).

In order to confirm that the absence of Fas on β-islet cells does not affect their autoimmune destruction, not only in accelerated diabetes but also in natural diabetes of NOD mice, the pancreata from neonatal NOD-IFN-γ mice were transplanted under the kidney capsule of the diabetic NOD mice. Grafted pancreata were almost completely destroyed 4 weeks after the transplantation with massive lymphocyte infiltration into the graft and abortive islet formation. This indicates that Fas on islet cells is not necessary for the
autoimmune destruction of β-cells (Kim et al., 1999). This neonatal islet graft model has the advantage of obviating abnormal artificial effects of the Fas knockout, such as a massive accumulation of double-negative T cells that was observed when the NOD-lpr/lpr mouse model is employed.

Thus, our results are contrary to other papers that report the crucial role of Fas-FasL interaction in pancreatic β-cell apoptosis of autoimmune diabetes. To resolve this paradox on the role of Fas-mediated apoptosis in autoimmune diabetes, we conducted an investigation that was based on the hypothesis that the resistance to diabetes transfer in NOD-lpr/lpr mice that was observed by others is due to abnormal (double-negative) lymphocytes in the NOD-lpr/lpr mice (Wofsy et al., 1984). First, we addressed why diabetes cannot be transferred to the NOD-lpr/lpr mice, despite our observation of the non-essential role of Fas in b-cell apoptosis. We noticed that lymphocytes from the NOD-lpr mice were constitutively expressing a huge amount of FasL on the abnormal double-negative lymphocytes in the NOD-lpr/lpr mice. A decrease in the number of FasL+ lymphocytes by neonatal thymectomy facilitated the development of insulitis. Furthermore, co-transfer of FasL+ expressing lymphocytes from the NOD-lpr/lpr mice completely abrogated diabetes after an adoptive transfer of lymphocytes from the diabetic NOD mice. The inhibition of diabetes by co-transferred lymphocytes was reversed by an anti-FasL antibody. This conclusively suggests that FasL on abnormal lymphocytes from the NOD-lpr/lpr mice was responsible for the inhibition of the diabetes transfer, and that FasL is not an effector molecule in islet cell death (Fig. 1) (Kim et al., 2000).

From these results, we could show that FasL is not the major apoptotic effector molecule in pancreatic β-cell apoptosis. We could also address why other investigators reached the conclusion that FasL is the main apoptotic effector in autoimmune diabetes. However, our data was more than a simple resolution of the previous paradox. Because the FasL-expressing abnormal double-negative lymphocytes could inhibit diabetes development after an adoptive transfer of splenocytes, FasL could be visualized as a potential therapeutic agent against autoimmune diabetes by perhaps inducing apoptosis on autoreactive T cells. However, the FasL-expressing cells themselves could not be used as therapeutic agents, because such cells induced hepatitis in the recipient mice. These results were expected from previous reports that showed fulminant hepatitis after an injection of an agonistic anti-Fas antibody, and unusual vulnerability of hepatocytes to the Fas-mediated apoptosis. Thus, we employed the strategy of ex vivo treatment of diabetogenic lymphocytes with soluble FasL that has the advantage of obviating in vivo administration of FasL. Consistent with our hypothesis and expectation, pretreatment of lymphocytes with human soluble FasL (sFasL) significantly inhibited diabetes transfer without causing hepatitis (Kim et al., 2000). These results suggest the potential therapeutic role of soluble FasL in autoimmune disorders that include but are not limited to autoimmune diabetes. Our data also suggest that (human) sFasL has some effect on unmanipulated peripheral lymphocytes, contrary to previous reports that Fas on unmanipulated peripheral lymphocytes is nonfunctional. We further investigated the immunological mechanism of the sFasL-mediated prevention of autoimmune diabetes. sFasL is cleaved from membrane-bound FasL by matrix metalloprotease. Human sFasL has an apoptotic activity, while the murine one has no apoptotic activity. The physiological role of human sFasL has not been clarified, while the pathological consequence of sFasL overproduction was reported (hepatitis in some forms of leukemia) (Tanaka et al., 1996). However, it makes no sense that the human lymphoid system would elaborate functional sFasL in order to cause systemic tissue injury since this does not occur in the mouse lymphoid system. In our effort to resolve this issue, we found that the sFasL treatment significantly decreased the CD45RB+ ‘memory’ CD4+ lymphocyte fraction, and increased propidium iodide (PI)+ apoptotic CD45RB+CD4+ lymphocytes among murine peripheral lymphocytes. This suggests that sFasL induces apoptosis on the CD4+CD45RB+ memory cells. However, the sFasL treatment neither decreased the CD45RO+ ‘memory’ CD4+ lymphocyte fraction, nor did it increase the PI+ CD45RO+CD4+ lymphocytes, among human peripheral lymphocytes. This suggests that the deletion of memory cells by sFasL had already occurred in vivo (Kim et al., 2001). These results suggest that the physiological function of human sFasL is to delete the potentially autoreactive ‘memory’ lymphocytes, which complements the membrane FasL (mFasL)-mediated deletion of autoreactive cell in human beings, but not in mice.
IFNγ/TFNα synergy in pancreatic β-cell death

Next, we studied which cytokine (combination) could lead to pancreatic β-cell death if FasL is not the main death effector in pancreatic β-cell apoptosis. FasL was found to have no effect on the islet cell viability in vitro. This is consistent with our in vivo findings described previously (Lee et al., 1999). A combination of IFNγ and TNFα, but not either of the cytokines alone, induced a classical apoptosis in murine insulinoma and pancreatic islet cells. This is indicated by the Hoehst staining, DNA ploidy assay, as well as the EM and DNA fragmentation pattern. Furthermore, pan-caspase inhibitors abrogated insulinoma cell death by the IFNγ/TNFα combination and caspase substrate cleavage was observed using DEVD-AMC. This suggests that the IFNγ/TNFα-induced insulinoma cell death is a classical caspase-dependent apoptosis. IL-1β had a negligible effect on islet cell death. The IFNγ treatment conferred susceptibility to TNFα-induced apoptosis on otherwise resistant insulinoma cells by STAT1 activation, followed by the induction of STAT1 and IRF-1 (Fig. 2A). Transfection of phosphorylation-defective STAT1 abrogated islet cell apoptosis by the IFNγ/TNFα combination, which suggests that the STAT1 phosphorylation plays a critical role in mediating IFNγ-induced induction of TNFα susceptibility (Fig. 2B) (Suk et al., 2001a). However, the transfection of STAT1 failed to induce TNFα susceptibility, which indicates that STAT1 itself, without the STAT1 δ chains, is insufficient for TNFα susceptibility, contrary to a previous report (Kumar et al., 1997). Possible downstream events that follow the STAT1/IRF-1 activation were studied (Kano et al., 1999). An RT-PCR analysis demonstrated that the expression of caspases-1 and -11 was induced by IFNγ, while the constitutive expression of other caspases (caspases-2, -3, -7, -8, -9) was unaffected by the cytokine treatment (Suk et al., 2001a). TNFα alone appeared to induce the expression of caspase-11, but not caspase-1. A western blot analysis also showed that caspase-1 was induced at the protein level by IFNγ, but not by TNFα. Although caspase-1 has been regarded as a proinflammatory caspase, its involvement in apoptosis has also been described in a number of instances including TNFα-mediated apoptosis (Tamura et al., 1995; Enari et al., 1996). Caspase-11 is essential for the activation of caspase-1 by physically interacting with procaspase-1 (Wang et al., 1998). The induction of caspase-11 by IFNγ alone or IFNγ/TNFα, as observed in this study, might be essential for the apoptosis that is mediated by caspase-1, which itself was induced by IFNγ. Recent papers reported that caspase-11 activated caspase-3, as well as caspase-1 (Kang et al., 2000). Furthermore, caspase-11-deficient mice were partly resistant to the induction of experimental allergic encephalomyelitis (Hisahara et al., 1997), and to the development of stroke after middle cerebral artery occlusion (Kang et al., 2000). Thus, the IFNγ-induced caspase-11, as noted in our experiment, may play an important role in the activation of caspase-3 during the apoptosis of β-cells.

STAT1 and IRF-1 were expressed in pancreatic islets of the diabetic NOD mice, and co-localized with apoptotic cells. Moreover, an anti-TNFα antibody inhibited the development of diabetes after an adoptive transfer (Fig. 3) (Suk et al., 2001a). Based on the results presented here, we propose that CD4+ T lymphocytes (a major source of IFNγ) act in collaboration with macrophages (a major source of TNFα) to induce β-cell death through a delayed-type hypersensitivity (DTH)-like reaction (Fig. 4). This type of cooperative immune response between the innate and adaptive immune responses may also be responsible for organ-specific autoimmune diseases other than autoimmune diabetes. Altogether, these results indicate that IFNγ/TNFα synergism is responsible for autoimmune diabetes in vivo, as well as β-cell apoptosis in vitro, and suggest a novel signal transduction in IFNγ/TNFα synergism.
Next, we studied IFNγ to see if it could confer a similar susceptibility to TNFα-mediated apoptosis on otherwise resistant cancer cells, because IFNγ/TNFα synergism has been reported in numerous tumor cell death models, even before apoptosis itself became a popular topic (Fransen et al., 1986). IFNγ/TNFα synergistically induced the apoptosis of ME-180 human cervical cancer cells, accompanied by DNA fragmentation, characteristic morphological changes in EM, and sub-G1 DNA ploidy. The IFNγ pretreatment rendered ME-180 cells sensitive to TNFα-induced apoptosis. The IFNγ induced phosphorylation of STAT1 and up-regulation of IRF-1. Transfection of phosphorylation-defective STAT1 inhibited IFNγ/TNFα-induced apoptosis, while IRF-1 transfection was sufficient for the induction of TNFα susceptibility. Thus, we postulated that the signal transduction pathway in IFNγ/TNFα synergism seems to be relevant to the cytokine-induced ME-180 cancer cell apoptosis model as well as to autoimmune diabetes. However, the roles played by caspases in the ME-180 cancer cell death were different than those in autoimmune diabetes. Caspase substrate assays demonstrated that caspase-3 and -8 were activated by the IFNγ/TNFα combination. However, the inhibition of caspases by z-VAD-fmk or BD-fmk did not inhibit the IFNγ/TNFα-induced apoptosis. Instead, caspase inhibitors directed the ME-180 cells to undergo necrosis by IFNγ/TNFα, which was demonstrated by the Hoechst 33258/propidium-iodide staining and electron microscopy (Fig. 5). These results suggest that IFNγ/TNFα synergism appears to execute cell death by unidentified mechanisms other than caspase activation. Caspase activation may merely dictate morphology of cell death. Besides IFNγ, IFNα that could activate STAT1 also sensitized ME-180 cells to TNFα-mediated apoptosis (Suk et al., 2001b). We then studied the role of NF-κB activation, which could be proapoptotic or antiapoptotic in different situations, in ME-
Myung-Shik Lee

180 cell death by IFNγ/TNFα. MG132, a proteasome inhibitor that blocks IκBα degradation, sensitized ME-180 cells to TNFα. ME-180 cells were treated with either MG 132 (0.5 mM) alone, or in combination with TNFα (10 ng/ml) for 48 h. The cell viability was then assessed by MTT assays. (B) Inhibition of NF-κB by transfection of the dominant-negative mutant IκBα (DN IκBα) also rendered ME-180 cells sensitive to the TNFα treatment. Viability of the ME-180 cells that were co-transfected with the dominant-negative IκBα and lacZ, was significantly decreased by the TNFα treatment (24 h) in contrast to the cells that were co-transfected with an empty vector (pcDNA3) and lacZ. (C, D) NF-κB reporter assays revealed that pretreatment (24 h, 100 U/ml) of the ME-180 cells with IFNγ inhibited the TNFα-induced NF-κB activity (C). The IFNγ treatment (48 h) also inhibited the NF-κB reporter activity that was induced by the p65 transfection (NF-κB p65) (D). Transiently transfected cells were treated with cytokines for the indicated time period before NF-κB reporter assays (C, D). (From J. Biol. Chem. 276, 13153, 2001 with permission)

Fig. 6. Inhibition of cytoprotective NF-κB by IFNγ. (A) Inhibition of NF-κB by a proteasome inhibitor MG 132 sensitized ME-180 cells to TNFα. ME-180 cells were treated with either MG 132 (0.5 mM) alone, or in combination with TNFα (10 ng/ml) for 48 h. The cell viability was then assessed by MTT assays. (B) Inhibition of NF-κB by transfection of the dominant-negative mutant IκBα (DN IκBα) also rendered ME-180 cells sensitive to the TNFα treatment. Viability of the ME-180 cells that were co-transfected with the dominant-negative IκBα and lacZ, was significantly decreased by the TNFα treatment (24 h) in contrast to the cells that were co-transfected with an empty vector (pcDNA3) and lacZ. (C, D) NF-κB reporter assays revealed that pretreatment (24 h, 100 U/ml) of the ME-180 cells with IFNγ inhibited the TNFα-induced NF-κB activity (C). The IFNγ treatment (48 h) also inhibited the NF-κB reporter activity that was induced by the p65 transfection (NF-κB p65) (D). Transiently transfected cells were treated with cytokines for the indicated time period before NF-κB reporter assays (C, D). (From J. Biol. Chem. 276, 13153, 2001 with permission)

Concluding Remarks

While most studies in the apoptosis field focus on cell death by a single death effector, most cancer cells or normal cells may not be easily susceptible to a single cytokine, or single death effector in vivo. Otherwise, cancer cells will die too early to become a clinical tumor, and the host organism may be unusually prone to many diseases such as diabetes because of the death of normal tissues. Thus, death by multiple death effectors might be a more common phenomenon occurring in vivo. While we have studied only IFN/TNF synergism, other combinations such as IFN/TRAIL, FasL/IFN, and FasL/TNF
synergism have been reported (Quirk et al., 1998; Kontny et al., 2001). While synergism between multiple death effectors confounds investigators and contradicts the reductionist view, such cytokine synergism, or even a combination of three or more, might be occurring in reality for effective cancer surveillance or pathological death of normal tissues in vivo. In the case of autoimmune diabetes, even the IFN/TNF synergism might be too simple. FasL or perforin has been shown to kill pancreatic β-cells in some circumstances (Kagi et al., 1997; Amrani et al., 1999). They may be effector molecules for pancreatic β-cell death at a specific stage of disease progression on a specific subset of lymphocytes, while they may not be the dominant death effectors in the majority of diabetogenic lymphocytes. For example, perforin on CD8+ T cells might play a critical role at an early stage of the disease progression (Kagi et al., 1997). The in vivo killing of cancer cells or normal tissues might be a very complicated process that requires different (multiple) death effectors at various stages of the disease progression.

References

