Characterization of Insulin-like Growth Factor-free Interaction between Insulin-like Growth Factor Binding Protein 3 and Acid Labile Subunit Expressed from Xenopus Oocytes

Kyung-Yi Choi, Yoon-Joo Kyung, Chul Young Lee* and Dong-Hee Lee*

Department of Life Science, University of Seoul, 90 Jeonnon-Dong, Seoul 130-743, Korea
*Regional Animal Industry Research Center, Jinju National University, Jinju, 150 Chilam-Dong 660-758, Korea

Received 2 April 2003, Accepted 23 June 2003

The acid-labile subunit (ALS) is known to interact with the IGF binding protein (IGFBP) in the presence of insulin-like growth factors (IGFs). Studies, however, indicate that ALS forms a doublet with IGFBP3, independent of IGFs. To characterize the structural domain required for the IGF-free ALS-IGFBP3 interaction, seven recombinant human IGFBP3 mutants were generated: three deletion mutants and four site-specific mutants that had altering N-terminal regions of IGFBP3. ALS and IGFBP3 mRNAs were co-injected into Xenopus oocytes, and their products were cross-linked and immunoprecipitated using antisera against ALS or IGFBP3. Among the deletion mutants, the mutant of D40 (deleted in 11-40th amino acids) exerted no effect in the interaction with ALS, while D60 (Δ11-60) demonstrated a moderate reduction. D88 (Δ11-88), however, showed a significant decrease. In the case of site-specific mutants, the mutation that altered the IGF binding site (codons 56 or 80) exerted a significant reduction in the interaction, whereas codons 72 or 87 showed no significant change in the interaction with ALS. The stability of the ALS-IGFBP3 interaction was analyzed according to a time-dependent mode. Consistent with the binding study, mutants on the IGF binding sites (56 or 80) consistently show a weakness in the ALS-IGFBP3 interaction when compared to the mutants that covered the non-IGF binding sites (72 or 87). This study suggests that the N-terminal of IGFBP3, especially the IGF binding site, plays an important role in interacting with ALS as well as in stabilizing the dual complex, independent of IGFs.

Keywords: Acid-labile subunit, IGF Binding Protein 3, Insulin-like growth factor, Protein interaction, Xenopus oocyte

Introduction

The insulin-like growth factors (IGFs) and their binding proteins (IGFBPs) circulate in the vascular system as ternary complexes with the acid-labile subunit (ALS), a glycosylated 85-kDa member of the leucine-rich repeat superfamily. ALS associates with the insulin-like growth factor (IGF)-I or -II and with the IGF binding protein-3 (IGFBP-3) to form a 150-kilodalton complex in the circulation. As a component within the high molecular complex, IGFs can remain in the pool of growth factors for tissues without their potential hypoglycemic effects (Baxter and Dui, 1994). This complex may regulate the serum IGFs by restricting IGFs in the vascular system and prolonging their endocrine actions (Firth et al., 1998).

ALS is known to interact with the IGF binding protein (IGFBP) in the presence of IGFs. Recent reports, however, showed that IGFBP and ALS form a dual complex that is free of IGFs (Lee and Rechler, 1995; Hashimoto et al., 1997; Choi and Lee, 2002) and that IGF-free ALS-IGFBP complexes are plentiful in adult rat serum (Lee and Rechler, 1996). Although the IGF-dependent interaction between ALS and IGFBP has been extensively studied, little is known about how IGFBP directly interacts with ALS to form a dual complex, regardless of IGFs. The human IGFBP group consists of six members named IGFBP1 to IGFBP6, among which IGFBP-3 is the most abundant. IGFBP-3 is composed of N-and C-terminal conserved regions and a highly variable central region (Ueki et al., 2000). The C-terminal conserved region is believed to harbor major structural determinants that are required for binding to ALS (Firth et al., 1998). Studies using truncation variants, however, indicate that the C-terminal deleted IGFBP3 still binds to ALS. This implies that additional binding points may exist in other regions.

In the circulatory system, a significant fraction (more than 10%) of IGFBP3-ALS complexes is found as IGFs-free (Firth et al., 1998). These doublets probably recruit IGFs poorly,
therefore, the storage function of each binding protein would be greatly hampered (Lee and Rechler, 1996). Increasing the fraction of the IGF-free binary complex might even represent pathological ramifications. Under these circumstances, this study is to focus upon the mechanism concerning the interaction between IGFBP3 and ALS that are independent of IGFs.

This study focuses on the significance of the N-terminal consensus region in binding with ALS under IGF-free conditions. The central domain of IGFBPs exhibits low homology among members and contains cleavage sites for specific proteases. IGFBP-3 was mutagenized to generate three deletion and four site-specific variants. For this study, we utilized Xenopus oocyte since they have demonstrated efficiency and fidelity in the translation, processing, and functional expression of foreign proteins (Melton et al., 1984). Xenopus oocytes resemble plant seeds, considering a very inert system not translating internal messages until the embryonic stage of midblastula (Shih et al., 1979). This translational inertness makes it feasible to exclusively express injected messages, which enables the study of the interaction between foreign proteins. Using the Xenopus oocyte system, this study investigates whether the N-terminal consensus region in IGFBP3 plays an important role in the intermolecular interaction with ALS to form dual complexes under IGF-free conditions.

Materials and Methods

Production of Synthetic mRNAs The synthetic mRNAs of IGFBP3 and ALS were prepared from pSP6 harboring respective cDNA according to Ceriotti et al. (1991). To prepare a mutant IGFBP3, human recombinant IGFBP3 cDNA was inserted into the EcoRI site of pAlter (Promega, Madison, USA) for mutagenesis. For N-terminal deletion mutants, 5 primers containing accccagaacttctcc and gacgctgacggctgac were used to delete codons 11-40, 11-60, and 11-88, respectively. The resulting mutants were named D40, D60, and D88. To generate a site-specific mutant, the 56-57(I-Y), 72-73(D-E), 80-81(L-L), and 80, and pSPΔ87. To abolish the known ALS binding site in the C-terminus, codons 228-232 (KGRKR), a 15mer of AagGaGgGGGAgGcG, was used to generate a MDGEA amino acid sequence in the C-terminus. The binding study utilized double mutant altering, both at the N-terminal region and the C-terminus ALS binding site (Fig. 1). For the stabilization experiment, single mutants with an altered N-terminus were employed. For transcription in vitro, CAP (m7GpppG) was supplemented in the 10X molar excess of GTP to ensure the effective capping of the RNA transcript during the initial 45-min incubation. GTP was added to the concentration equivalent of CAP. The DNA templates were removed by incubating for 15 min at 37°C with RNase-free DNase I. The RNA transcript was purified by phenol extraction and ethanol precipitation.

Microinjection An ovary was manually excised from an adult Xenopus. The ovary was copiously washed in OR2 (82.5 mM NaCl, 2.5 mM KCl, 1.0 mM CaCl2, 1.0 mM MgCl2, 3.8 mM NaOH, 1.0 mM Na2HPO4, 5.0 mM HEPES, pH 7.8) and incubated in fresh OR2 at 14°C until injection. Stage V-VI oocytes were manually defolliculated with a pair of forceps and injected with 50 nl of an injection mixture containing mRNA and labeling isotope, [35S]methionine/cysteine by Eppendorf Micromanipulation System. The injected oocytes were incubated in a modified OR2 (MOR2: 25 mM NaCl, 1.0 mM KCl, 1.0 mM CaCl2, 2.0 mM NaOH, 1.0 mM Na2HPO4, 5.0 mM HEPES, pH 7.8) at 20°C.

Assay on protein synthesis and accumulation Synthesis of IGFBP3 or ALS was analyzed according to the accumulation of each labeled protein in the medium. The oocytes were injected with synthetic mRNA (25 ng) and [35S]methionylcysteine (0.5 mCi; 1170 Ci/mmol) in a 50 nl injection mixture. The injected oocytes were incubated in MOR2. The IGFBP3 accumulation in the medium was measured at 0, 1, 2, 3, 6, and 12 h following injection. The oocytes were chased in MOR2 containing 9.0 mM cold methionylcysteine after 1 h of pulse labeling. The secretion was monitored up to 12 h following chase. Following injection, the oocytes were incubated at 20°C in OR2, followed by immunoprecipitation using antisera against human IGFBP3 (Upstate Biotech, Lake Placid, USA) or an affinity-purified polyclonal antibody against recombinant ALS (IDS Ltd, Boldon, UK), as previously described (Lee et al., 2001). Immunoprecipitation was performed at 15°C for 4 h in a BIPPP buffer (150 mM NaCl, 1 mM PMSF, 1 mM EDTA, 1% Triton X-100, 0.5% deoxycholate, 0.1% SDS, 10 mM Tris-HCl, pH 7.4). The precipitants were separated on a reducing 5% SDS/PAGE and visualized by autoradiography (Brennan et al., 2002). The intensity of the proteins was measured by scintillation, counting each band that was excised from the gel.

Analysis of IGFBP3-ALS binding in solution The association between the IGFBP3 and ALS was analyzed in MOR2 media following secretion of IGFBP3 and ALS. For the experiment, injected mRNA included double mutations: the putative C-terminal ALS binding site along with each N-terminal mutation (Fig. 1). The mRNA (25 ng) for ALS or IGFBP3 was injected with [35S]methionylcysteine (0.5 mCi) in a 50 nl injection per oocyte at the equator. Typically, 2 oocytes were injected and incubated in 200 μl MOR2 per experiment. As a negative control for the specific interaction, the oocytes were injected with 10 ng ovalbumin (Oval) mRNA along with that of ALS. Following incubation and cross-linking with 0.25 mM disuccinimidyl suberate (DSS, Pierce, Rockford, USA), the IGFBP3-ALS complex was immunoprecipitated by adding antisera against IGFBP3 (Upstate Biotech) in 1:500 dilution. Ovalbumin was immunoprecipitated using affinity-purified polyclonal antibodies (Sigma, St. Louis, USA) against ovalbumin (Kim et al., 2001).

Stability of ALS-IGFBP3 complex The stability of the IGFBP3-ALS doublet was analyzed on the basis of time-dependent mass of the dual complex in solution. In contrast to the previous binding assay, this study utilized mutations with an alteration only on the N-terminal region. Thus, the C-terminal consensus region was intact in the mutations that were employed. Following injection and incubation for 3 h in 100 μl MOR2 per oocyte, the oocytes were
removed and the aliquot of the media was subjected to cross-linking with 0.25 mM DSS. The IGFBP3-ALS complex was then immunoprecipitated using antisera against IGFBP3. The remainder of the media was incubated at 20°C. The aliquots of the media were sampled at 3 and 6 h time points following a 3-h incubation in MOR2 media. The doublets were probed as previously described.

Results

This study investigated whether the N-terminus of IGFBP3 plays a role in the IGF-free interaction between IGFBP3 and ALS. More importantly, this study focused on the potential N-terminal structural determinants of IGFBP3 in the intermolecular association between ALS and IGFBP3. Following the secretion of IGFBP3 and ALS that was expressed in the Xenopus oocytes into the medium, the interaction of the ALS or IGFBP3 was analyzed according to the ALS-IGFBP3 doublet formation and the stability of the doublet.

Accumulation of IGFBP3 in a linear pattern

The rate of protein synthesis and accumulation was determined following the IGFBP3 injection. Figure 2 shows that IGFBP3 variants accumulate in media. Unless injected with foreign messages such as IGFBP3 and ALS, the oocytes do not appear to secrete any significant protein product. Despite the different translational machinery, the oocytes correctly processed IGFBP3 and its variants and secreted the protein product into the media. Following the co-injection of IGFBP3 and ALS mRNAs, the accumulation of labeled IGFBP3 or ALS was measured up to 12 h after the injection. When the rate of protein accumulation in media was measured against time, IGFBP3 accumulated at a constant rate once the secretion was detected from the media. The oocytes appeared to synthesize and secrete the proteins in a linear fashion for at least 6 h. A prompt response to the dilution of the labeling [35S]met/cys was obvious by a comparison of [35S]met/cys incorporation into IGFBP3 between the pulse and chase periods. In the presence of cold met/cys, however, the incorporation of [35S]met/cys was significantly reduced within 0.5 h chase, and virtually eliminated within 1 h of chase. This period may represent the time that was taken for the absorption of the cold amino acids and secretion of proteins into the media. This clearly indicates that oocytes synthesize and secrete the injected messages in a linear and a very sensitive mode.

N-terminal domain interacting with ALS independent of IGFs

The oocytes were co-injected with the mRNAs of ALS and IGFBP3. ALS and IGFBP3 were expressed with each specific molecular weight and formed a binary complex with varied affinities. Following incubation for 3 h, the media were subjected to cross-linking and immunoprecipitation. Figure 4 shows the interaction between ALS and IGFBP3. In the presence of ALS, lane C shows that the N-terminal intact IGFBP3 still forms ALS-IGFBP3 doublets, despite the mutation on the known binding site for ALS (KGRKR). The level of ALS-IGFBP3 doublet formation appears to be 20% when compared to the wild-type IGFBP3 (lane W).
complex is well preserved by cross-linking treatment. Ovalbumin did not bind with ALS, which was different than the IGFBP3-ALS interaction. Figure 4-A shows that ALS was still included in the lanes containing the IGFBP3-ALS complex. Considering the fact that ALS is missing in the other lanes that only show IGFBPs, then the anti-IGFBP3 antisera did not pull down the ALS, due to cross reactivity. Rather, this ALS likely originated from the IGFBP3-ALS complex, either insufficiently or else never cross-linked. The ALS fraction was separated during the process, post to immunoprecipitation. Based on this assumption, the ratio of IGFBP3-ALS doublets vs. free IGFBP3 monomers seems less meaningful in representing the tendency for the formation of IGFBP3-ALS doublets (data not shown). Figure 4-A indicates that the minor truncated variant, D40, still forms doublets with ALS that are similar to the single mutant that is only on the C-terminal. In contrast, other truncated variants exhibited a significant reduction in the formation of doublets. This result implies that the critical determinant may reside in the rest of the N-terminal consensus sequence (i.e., codons 41-88).

In addition to the truncated mutation, four site-specific mutants were tested for their ability to form doublets with ALS. Figure 4-B shows that, among the four mutants, the mutant on codons 72 & 73 did not appear to affect the binding with ALS (lane 3). This is consistent with the outcome from the deletion study. Similar to the mutant on 72 & 73, the mutations on 87 & 88 produced comparable results (lane 4). On the other hand, the mutants on the putative IGF binding sites showed a lack of binding with ALS. The mutant on 56 & 57 showed less interaction with ALS (lane 1). A similar level of inhibition was apparent for the mutant on 80 & 81 (lane 2). This result may be an indication that the ALS-IGFBP3 interaction occurs at multiple sites other than the C-terminal site. The N-terminal is also important in the binding. The IGF binding sites may serve as contacting sites for the ALS-IGFBP3 interaction.

N-terminal domains stabilize ALS-IGFBP3 interaction
This experiment employed the mRNA with the intact C-terminal consensus region and each N-terminal mutation, which differs from the interaction in the previous study. The oocytes were incubated for 3 h following the injection. When
the media containing the IGFBP3 variants and ALS was incubated for 3 or 6 h more, then the difference was evident in the stability of the IGFBP3-ALS doublets (Fig. 5). A reverse relationship was evident in the relative IGFBP3 mass between the free and ALS-bound forms when compared to D88 and Δ8788 (lanes 3 and 7). This pattern remained consistent for the other mutants (data not shown). Among the deletion mutants, the deletion spanning codon 11-40 appeared unaffected by the alteration. In terms of site-specific mutants, panels 4 and 5 show that the mutants on the putative IGF binding site (Δ5657 and Δ8081) appeared less stable in maintaining the direct interaction between ALS and IGFBP3.

This result strongly indicates that the N-terminal plays an important role in stabilizing the IGFBP3-ALS doublets following their formation. With the deletion of the region that spanned the putative IGF binding site in IGFBP3, IGFBP3-ALS doublets become less stable, even in the presence of intact binding by the C-terminal region (KGRKR).

Discussion

The IGFBP3 and ALS play crucial roles in modulating the endocrine effect of IGFs by sequestering the surplus in the circulation. Previous studies claimed that the two proteins interacted with each other, primarily in the presence of IGFs. This study negates this claim and shows that the N-terminal of IGFBP3 bears a significant ramification in the IGF-free interaction with ALS. In addition, the IGF binding motifs were more significant than the non-IGF binding region in the N-terminal region.

The messages of ALS and IGFBP3 are translated correctly within the oocytes, and the protein products interact to form doublets following secretion into the incubation media. The present study shows that the Xenopus oocyte expression system is an effective alternative for expression of biologically active IGFBP3 and ALS. This is the first study that reports that IGFBP and ALS can interact in solution without the purification process. Recombinant IGFBP-3 and ALS that are expressed and secreted from the Xenopus oocyte have comparable biological activities in the binding assays.

Wild-type IGFBP3 associates with ALS to form a binary complex in the media, despite their different physiological conditions. The interaction is highly specific, considering the fact that IGFBP3 formed no complex with ovalbumin. In the presence of the mutation on the C-terminal ALS binding site, we compared the binding affinity of various N-terminal versions of IGFBP3 with that of the wild-type protein. The slightly deleted N-terminal variant D40 showed a binding affinity that was equivalent to that of the wild-type IGFBP3. D60 and D88, however, produced little or no ALS-IGFBP3 doublet with the C-terminal domain altered. These results indicate that the intermolecular interaction between ALS and IGFBP3 involves N-terminal domains along with the C-terminal region. This N-terminal structural integrity was significantly disrupted by deletion in D60 or D88.

Site-specific mutations that altered the IGF binding sites showed a reduced affinity for the IGFBP3-ALS interaction, while those that did not mutate the IGF binding sites appeared unaffected. The results in the present study strongly imply that the structural determinants concerning the ALS-IGFBP3 interaction occur on the IGF binding sites without the mediation of IGFs. The IGF binding sites are the prime candidates for the ALS-IGFBP3 interaction, in addition to the C-terminal. Human ALS harbors a region of acidic residues of DDDADEV in the N-terminal region which interact with its highly basic counterpart of KGRKR (Leong et al., 1992). An unidentified motif that interacts with the N-terminal of IGFBP3 should exist elsewhere in ALS. The interaction between residues may be abolished as the result of the mutation, considering the fact that the ALS binding is known to be sensitive to increased ionic strength (Holman and Baxter, 1996).

The significance of the N-terminal region was also supported in the stabilization experiment. Following doublet formation, the ALS-IGFBP3 doublets gradually dissociated from each other in a time-dependent manner. The dissociation rate varied with the different rates, according to the N-terminal status, despite the intact C-terminal domain (KGRKR). Faster dissociation was evident among doublets that consisted of IGFBP3 mutants covering IGF binding sites.

Various expression systems were employed to produce recombinant IGFBPs and ALS. These recombinant proteins were well expressed in *E. coli* and with a considerable amount of soluble protein. The *E. coli*-expressed proteins, however, do not represent native IGFBPs and ALS, due to the lack of post-translationally modification. Mammalian systems modify recombinant IGFBPs correctly, although yields of
recombinant IGFBPs are lower than the yields from E. coli. The study of the IGFBP-ALS interaction, however, has been challenging since the purity of the recombinant proteins is not easily assured following overexpression.

According to the electrophoretic mobility, the media contains a distinctive mixture of proteins. All of the mobility corresponds with the three N-linked glycosylation sites in the IGFBP-3 and ALS sequences. A major protein of the molecular weight is equivalent to fully glycosylated IGFBP-3 and ALS. This study, however, did not research the significance of the glycosylation for the direct interaction between IGFBP3 and ALS. The effect of deglycosylation on the interaction should be further studied.

In summary, this study has shown that mutations on the N-terminal of IGFBP3 appear to undermine the interaction with ALS in the absence of IGFs. Thus, the significance of the N-terminal region and IGF binding site, in particular, is significant for this interaction. Together with the ALS-IGFBP3 binding study and stability study for the IGFBP3-ALS doublet, this study suggests that ALS interacts with IGFBP3 in the absence of IGFs, based on the N-terminal structural domains in the IGFBP3 as well as the C-terminal determinants. Further study is necessary to investigate the extent of the IGF-free IGFBP3-ALS doublet formation in the presence of a sufficient level of IGFs.

Acknowledgments This work was supported by the 2001 University of Seoul Intramural Fund. It was also supported by the 1998 UOS New Facility Project Fund.

References

