Aromaticity of Tyr-202 in the α4-α5 Loop Is Essential for Toxicity of the Bacillus thuringiensis Cry4A Toxin

Walairat Pornwiroon, Gerd Katzenmeier, Sakol Panyim and Chanan Angsuthanasombat*
Laboratory of Molecular Biophysics, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand

Received 18 August 2003, Accepted 28 August 2003

The current model for the mechanism of action of the Bacillus thuringiensis Cry δ-endotoxins involves the penetration of the α4-α5 hairpin into the target midgut epithelial cell membranes, followed by pore formation. In this study, PCR-based mutagenesis was employed to identify a critical residue within the α4-α5 loop of the 130-kDa Cry4A mosquito-larvicidal protein. Alanine substitutions of two charged (Asp-198 and Asp-200) and four polar (Asn-190, Asn-195, Tyr-201 and Tyr-202) residues in the α4-α5 loop were performed. Like the wild-type, all of the mutant toxins were over-expressed as inclusion bodies in Escherichia coli. When E. coli cells expressing each mutant toxin were bioassayed against Aedes aegypti larvae, larvicidal activity was completely abolished for the substitution of only Tyr-202, while replacements at the other positions still retained a high level of toxicity. Further replacement of Tyr-202 with an aromatic side chain, phenylalanine, did not affect the toxicity. These results revealed a crucial role in toxin activity for the conserved aromatic residue at the 202 position within the α4-α5 loop of the Cry4A toxin.

Keywords: Aromaticity, Bacillus thuringiensis, δ-Endotoxin, α4-α5 loop, Larvicidal activity, Mutagenesis

Introduction

Bacillus thuringiensis (Bt), a Gram-positive soil bacterium, produces crystalline inclusions during sporulation. These inclusions are composed of one or more proteins, known as δ-endotoxins, that are highly toxic to various insect larvae, and have been widely used as biological insecticides (Aronson et al., 1986; Höfte and Whiteley, 1989; Schnepf et al., 1998). The Bt δ-endotoxins can be classified into the two families of Cry (crystal) and Cyt (cytolytic) toxins based on the similarity of their deduced amino acid sequences (Höfte and Whiteley, 1989; Crickmore et al., 1998). For example, one of the four major larvicidal proteins that is produced by Bt subsp. israelensis (BtI) has been classified as Cry4A, which is highly toxic to mosquito-larvae of Aedes sp., Culex sp., and Anopheles sp. (Höfte and Whiteley, 1989; Schnepf et al., 1998).

Upon ingestion by the susceptible insect larvae, the Bt crystalline inclusions are solubilized under the alkaline conditions of the larval midgut and are proteolytically activated by gut proteases to release the active toxins (Höfte and Whiteley, 1989). For several Cry toxins, the activated toxins bind to specific receptors that are located on the brush border membrane of midgut epithelial cells (Schnepf et al., 1998; de Maagd et al., 2001). Subsequently, the toxins insert into the membrane to form leakage pores that cause the cell to swell and lyse by colloid-osmotic lysis (Knowles and Ellar, 1987). However, the precise mechanism of action at the molecular level of Bt toxins is still not completely understood.

The X-ray crystal structures of four different Cry toxins, Cry1Aa (Grochulski et al., 1995) Cry2Aa (Morse et al., 2001), Cry3Aa (Li et al., 1991), and Cry3Bb (Galitsky et al., 2001) display a high degree of overall structural similarity and are composed of three distinct domains. The N-terminal domain I is a seven α-helix bundle in which the helix 5 is relatively hydrophobic and completely surrounded by six other amphipatic helices. A function for this domain in the membrane insertion and pore formation is supported by a number of studies that demonstrate the isolated helical fragments, α1-α7 of Cry3B2 and Cry1Ac (Walters et al., 1993; Von Tersch et al., 1994) or α1-α5 of Cry4B (Puntheeranurak et al., 2001; 2004) that are responsible for the pore-formation and generation of ion-selective channels.

The “umbrella model” has been proposed to describe the toxicity mechanism of the Bt Cry toxins that involves an...
insertion of helices 4 and 5 into the membrane as a helical hairpin structure, with the remaining helices lying on the membrane surface (Gazit et al., 1998). This model is supported by a number of studies that demonstrate the crucial role of α4 and α5 in the toxicity of different Cry toxins. The results of in vitro studies suggest that α4 lines the lumen of the pore and participates in ion-channel formation, while the hydrophobic α5 interacts with the lipid membranes and participates in toxin oligomerisation (Schwartz et al., 1997; Masson et al., 1999; Nunez-Valdez et al., 2001). Furthermore, membrane permeation studies with Cry1Ac have revealed that the α4-loop-α5 segment is more active in membrane permeation than either the isolated helices or their mixtures, suggesting that the presence of the loop-structure is a requirement for efficient insertion of the toxin into the membrane (Gerber and Shai, 2000).

In previous studies, we demonstrated that α4 and α5 of the 130-kDa Bti Cry4B toxin are important determinants of toxicity, likely being involved in membrane insertion and pore formation (Uawithya et al., 1998; Bramala et al., 2000). In addition, the specific structure for the positively-charged side-chain of Arg-158 in α4 was found to play a pivotal role in the Cry4B larvical activity (Bramala et al., 2001). We further demonstrated that the polar residue at position-166 and the aromatic residue at position-170 within the α4-α5 loop are important structural determinations for the toxicity of this toxin (Kanimtronkul et al., 2003). In this report, we showed that an analogous effect on mosquito-larvical activity of the closely-related 130-kDa Bti toxin, Cry4A, was observed when charged or polar residues in the α4-α5 loop were altered. The results reveal that Tyr-202, which is very conserved among the Cry toxins, is critically involved in the Cry4A toxicity, supporting the notion that an aromatic structure of the highly-conserved tyrosine residue within the α4-α5 loop is an essential prerequisite for the toxic action of the Cry δ-endotoxins.

Materials and Methods

Construction of mutant toxins The recombinant plasmid pMEX-B4A encoding the 130-kDa Bti Cry4B larvical protein, which has been reconstructed in the pMEx8 expression vector (Butcher et al., 1990) under control of the tac promoter together with the cry4B promoter (Anguthanasombat et al., 1987), was used as a template for the site-directed mutagenesis. Mutant plasmids were generated by a polymerase chain reaction (PCR) using a pair of mutagenic primers (Table 1) that were purchased from Proligo Inc. (Singapore) and Pfu DNA polymerase, following the procedure of the QuickChange™ Mutagenesis Kit (Stratagene, La Jolla, USA). The mutant clones with the required mutation were first identified by restriction endonuclease digestion of the plasmids, and verified by DNA sequencing, using a BigDye™ Terminator Cycle Sequencing Kit (Perkin-Elmer, Norwalk, USA).

Expression and solubilisation of toxin inclusions Each E. coli JM109 clone that harbored the wild-type plasmid or its mutants was grown at 30°C in a Luria-Bertani medium containing 100 μg mL⁻¹ ampicillin until OD₆₀₀ of the culture reached 0.3-0.5. Toxin expression was induced with isopropyl-β-D-thiogalactopyranoside (IPTG) at a final concentration of 0.1 mM for 10 hrs, and subsequently analyzed by sodium dodecyl sulfate-(10% w/v) polyacrylamide gel electrophoresis (SDS-PAGE). The cells were harvested by centrifugation and resuspended in cold distilled water. The cell suspension was lysed in a French Pressure Cell at 10,000 psi. The cell lysate was centrifuged at 8,000 × g, 4°C for 15 min. The pellets were washed 3 times in cold distilled water and suspended by sonication. Protein concentrations of the partially-purified inclusions were determined by using a protein microassay reagent (Bio-Rad, Hercules, USA) with bovine serum albumin fraction V (Sigma, St. Louis, USA) as the standard. Proteins were solubilized in 50 mM Na₂CO₃, pH 10.0, and incubated at 37°C for 1 hr, as previously described (Uawithya et al., 1998). After centrifugation at 8,000 × g for 10 min, the supernatants were analyzed by SDS-PAGE and compared with the inclusion suspension.

Mosquito-larvical activity assays Bioassays were performed as previously described (Bramala et al., 2001), using 2-day old Aedes aegypti larvae that were reared from eggs that were obtained from the mosquito-rearing facility of the Institute of Molecular Biology and Genetics, Mahidol University, Thailand. Both the rearing and bioassays were performed at room temperature (25°C). Assays were carried out in 1 mL of E. coli suspension (10⁶ cells suspended in distilled water) in a 48-well microtitre plate (11.3-mm diameter wells).
well diameter, Costar, USA) with 10 larvae per well and a total of 100 larvae for each type of E. coli samples. E. coli cells containing the pMEx8 vector were used as a negative control. Mortality was recorded after a 24-hr incubation period.

Results and Discussion

Based on multiple sequence alignments of the known Bt Cry toxin structures and the homology-based Cry4 models (Angsuthanasombat et al., 2004), the interhelical loop connecting α4 and α5 of the Cry4A toxin is composed of sixteen amino acids with the majority being polar and charged residues (Fig. 1a). Previously, we demonstrated that polarity and aromaticity for Asn-166 and Tyr-170, respectively, in the α4-α5 loop are critically involved in the larvicidal activity of the Cry4B toxin (Kanintronkul et al., 2003). In the present study, we constructed several mutants in the α4-α5 loop region of Cry4A in order to determine the residue that is responsible for the toxin activity. Two negatively-charged (Asp-198 and Asp-200) and four polar (Asn-190, Asn-195, Tyr-201 and Tyr-202) residues were initially selected for the substitution with alanine via PCR-based directed mutagenesis. The loop mutant toxins were expressed in E. coli under inducible control of the tac promoter. Upon addition of IPTG to the mid-exponential phase cultures, all of the mutant Cry4A protoxins were predominantly produced in the form of sedimentable inclusion bodies. When the E. coli lysates were analyzed by SDS-PAGE, the protein expression levels for all of the mutants were comparable to those of the wild-type (data not shown).

To assess the solubility of the mutant protoxin inclusions in comparison with that of the wild-type, experiments were conducted using carbonate buffer, pH 10.0. The amount of the 130-kDa Cry4A soluble proteins in the supernatant were compared with those of the proteins that were initially used in order to determine the percentage of toxin solubilisation. Figure 2 shows that the toxin inclusions of the N190A, D198A, D200A, and Y201A mutants were soluble in this buffer, giving approximately 60-70% solubility. This is comparable to the solubility of the wild-type inclusions under similar conditions. On the other hand, a nearly complete loss of the inclusion solubility was observed for the two remaining mutants, N195A and Y202A. However, toxin inclusions of the two closely-related loop-Cry4B mutants, N166A and Y170A as mentioned previously, were found to be relatively soluble in this buffer (Kanintronkul et al., 2003). At this stage, the reason for this difference in solubility between the two loop-mutants of Cry4A and Cry4B is unclear. It does, however, lead to the interesting possibility that single-alanine

![Fig. 1.](attachment:image)
Mutagenesis of Cry4A α4-α5 Loop

substitutions at Asn-195 and Tyr-202 of the Cry4A toxin could disturb the structural characteristics that consequently affect the toxin-inclusion formation, as shown by a drastic decrease in solubility.

To determine the effect of the α4-α5 loop mutations on the Cry4A bioactivity, E. coli cells expressing each mutant toxin were tested for their biological activity towards A. aegypti mosquito-larvae. Replacement at only Tyr-202 with alanine almost completely abolished larvicidal activity, whereas alanine-substitutions at the other positions (Asn-190, Asn-195, Asp-198, Asp-200 and Tyr-201) did not affect the Cry4A toxicity. Further analysis via specific mutations revealed that the conversion of this critical tyrosine residue to cysteine resulted in a drastic loss of toxicity, but replacement with the aromatic residue (i.e. phenylalanine) retained the high level of larvicidal activity (Fig. 3). The level of the protein expression of both the Y202C and Y202F mutant toxins was approximately the same as that of the wild-type. These results, together with the highly structural conserved level of the tyrosine residue at this position among the Cry toxins (Fig. 1b), suggest the essential feature of an aromatic structure at this critical position for the toxin activity. The data further support our previous findings that Tyr-170 in the α4-α5 loop plays an important role in the larvicidal activity of the 130-kDa Cry4B toxin, since substitutions with only the aromatic residues (i.e. Phe or Trp) were shown to restore bioactivity towards mosquito-larvae (Kanintronkul et al., 2003).

For in vitro solubility, like the Y202A mutation, the substitution of Tyr-202 with Cys reduced the solubility in vitro of toxin inclusions, while a conversion to Phe still exhibited the same solubility characteristics as that of the wild-type (Fig. 2). Although insolubility of the toxin inclusions and the loss of toxicity are seemingly correlated for both the Y202A and Y202C mutants, the inclusion solubility in vitro may not necessarily reflect toxin activity in vivo, as observed for the N195A mutant which was insoluble in the carbonate buffer, but still bioactive (Figs. 2 and 3). It has been demonstrated that the single-proline substitution in α6 of Cry4B dramatically perturbed the inclusion dissolvability, but did not affect its larvicidal activity (Sramala et al., 2000). Also, the detected difference in solubilisation in vitro for the cloned Cry4A toxin inclusions, which were purified form two different Bt recipient strains, is not a factor for toxicity in vivo (Angsuthanasonbat et al., 1992). Presumably, the larval gut proteases in vivo might facilitate the dissolution of the ingested toxin inclusions that would negate the differences between the observed larvicidal activities of the bioactive N195A and non-active Y202A or Y202C mutants.

Studies with several membrane proteins have indicated that the aromatic residues are predominantly found at or near the
lipid-water interface (Ulmschneider and Sansom, 2001). These aromatic residues have been proposed to function in anchoring the proteins into the membrane through interactions of their aromatic rings with phospholipid head groups (Yau et al., 1998; Killian and Von Heijne, 2000), maintaining rigidity in the periphery of the transmembrane segments (Tsang and Saier, 1996), allowing vertical mobility of the transmembrane helical region with respect to the membranes (Schiffer and Deber, 1990), facilitating translocation of the periplasmic helical region with respect to the membranes (Schiffer and Deber, 1990), facilitating translocation of the periplasmic portion of proteins through the membrane, thereby acting as determinants of protein orientation (Schiffer et al., 1992). Taken together, a function for Tyr-202 in the α4-α5 loop of the Cry4A toxin may conceivably be an interaction with the phospholipid head groups for stabilizing the oligomeric pore structure.

In conclusion, this study demonstrates that the aromaticity of Tyr-202 in the α4-α5 loop plays a crucial role in the Cry4A toxicity that further supports the notion that the aromatic structure of the highly-conserved tyrosine residue within the loop connecting the two transmembrane helices, α4 and α5, is essential for toxic action of the Bt Cry δ-endotoxins. However, further studies are still required to elucidate the exact role of this critical residue in toxin function.

Acknowledgments This work was supported by the grant number BRG/08/2544 from the Thailand Research Fund. A Royal Golden Jubilee Ph.D. research scholarship to W.P. is gratefully acknowledged. We are also grateful to Ms. Somsri Sakdee and Ms. Chaweewan Shimwai for their technical assistance.

References


Angsuthanasombat, C., Crickmore, N. and Ellar, D. J. (1992) Comparison of Bacillus thuringiensis subsp. israelensis Cry1A and Cry1VB cloned toxins reveals synergism in vivo. FEMS Microbiol. Lett. 94, 63-68.


Mutagenesis of Cry4A α4-α5 Loop


