Saxatilin is a disintegrin known to inhibit tumor progression in vivo and in vitro. The role of saxatilin in cancer cell invasion was examined by a modified Boyden chamber assay in MDAH 2774 human ovarian cancer cell line. Saxatilin (50 nM) significantly inhibited cancer cell invasion induced by tumor necrosis factor-α (TNF-α). Saxatilin also reduced MMP-9 mRNA levels in cancer cells in a dose-dependent manner. In addition, TNF-α-induced MMP-9 activity was reduced by the treatment of saxatilin. These results indicate that transcriptional regulation of MMP-9 is an important mechanism for the tumor suppressive effects of saxatilin in MDAH 2774 human ovarian cancer cells.

Keywords: Disintegrin, Invasion, MMP-9, Ovarian cancer, TNF-α

Introduction

Ovarian cancer is thought to metastasize into the peritoneal cavity and other organs at an early stage of the disease (Ellerbroek et al., 1999). During metastasis, reorganization of the extracellular matrix (ECM) and angiogenesis are key steps for migration and invasion of cancer cells (Davidson et al., 2003). ECM degradation is mainly regulated by gelatinases such as matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9), which also have a critical role in angiogenesis and cancer proliferation in ovarian carcinomas (Roomi et al., 2006).

MMPs are a large family of proteins regulating cell survival, matrix remodeling, angiogenesis, and cell signaling (Sternlicht et al., 2001). MMP-9 (also known as gelatinase B) is an 89 kDa protein which is important for tumor metastasis, and has roles in the immune system and central nervous system (Opdenakker et al., 2001). Elevated MMP-9 expression is often correlated with malignancy of ovarian epithelial cancers whose progression is dependent on migration through the surrounding ECM (Davidson et al., 1999; Rausala et al., 2005). MMP-9 is regulated by several mechanisms: transcriptional regulation, post-translational activation, and regulation by tissue inhibitors of metalloproteinase (TIMP) (Bjorklund et al., 2005). Appropriate manipulation of MMP-9 activity has been suggested as a cancer treatment preventing tumor metastasis and angiogenesis (Thourouard et al., 2000).

Integrins are heterodimeric receptors critical in both cell-cell interaction and cell adhesion to ECM, and regulate cell survival, growth, migration, and invasion (Hood et al., 2002). Integrins form over 25 combinations of 18 α and 8 β subunits that determine ligand specificity (Bjorklund et al., 2005). When integrins bind their ligands, they initiate signal transduction into the cell in response to the extracellular environment. They also take part in signal transduction from in to out by modulating their affinity to ligands such as fibrinogen (Ginsberg et al., 2005). Integrins are known to regulate the activity of MMPs during tumor progression by modulating gene expression, activation, and localization (Bjorklund et al., 2005). Thus, disintegrin, as an integrin antagonist, is considered to be a potent tumor suppressing agent, along with integrin blocking antibodies and peptide.

Saxatilin is a monomeric disintegrin containing the tripeptide sequence Arg-Gly-Asp, a typical binding motif of adhesive proteins such as glycoprotein IIb-IIIa of platelets and αvβ3 integrin of endothelial cells (Hong et al., 2002). Besides inhibiting platelet aggregation, saxatilin is known to inhibit angiogenesis and melanoma pulmonary metastasis in a mouse model (Kim et al., 2006). We have previously reported that a very low concentration of saxatilin (50 nM) suppresses interleukin-8 (IL-8) gene expression at the transcriptional level (Kim et al., 2007). We have postulated that the anti-angiogenic and anti-metastatic activity of saxatilin might be due to the modulation of genes associated with migration and invasion of tumor cells. In this report, we demonstrate that...
saxatilin suppresses MMP-9 gene expression, reducing cell invasion in MDAH 2774 human ovarian cancer cells.

Results and Discussion

Neoplastic cells tend to induce endothelial cells to migrate and invade surrounding tissues during tumor metastasis. During metastasis, cancer cells undergo several processes such as proliferation, matrix remodeling, invasion, migration, and differentiation. Integrins are known to play a critical role in these physiological events by regulating cell/cell interactions and cell/ECM adhesion both of which determine the invasiveness of cancer cells (Hood et al., 2002).

There are several reports that integrin signaling is associated with MMP expression or cell migration. Fibronectin induces MMP-9 expression through AP-1 activation in human lung carcinoma cells (Han et al., 2006). Moreover, concomitantly, a homodimeric disintegrin containing RGD sequences, mimics the intracellular signaling evoked by fibronectin (Schmitteier et al., 2005). The effects of these disintegrins are distinguishable from traditional disintegrins (such as ecbastatin) which need micromolar concentrations to exert their physiological effects on endothelial cells (Schmitteier et al., 2005).

Saxatilin, a disintegrin derived from snake venom, even induces neutrophil chemotaxis with a potency similar to the classic neutrophil chemotactant N-formyl-methionyl-leucyl-phenylalanine (Mariano-Oliveira et al., 2003). The effects of these disintegrins are distinguishable from traditional disintegrins (such as ecbastatin) which need micromolar concentrations to exert their physiological effects on endothelial cells (Schmitteier et al., 2005).

Saxatilin, a disintegrin derived from snake venom, was introduced as an inhibitor of platelet aggregation by antagonizing integrin αIIbβ3 on platelets and integrin αβ3 on the surface of endothelial cells (Hong et al., 2002). Furthermore, it is reported that saxatilin inhibits tumor metastasis in a mouse model (Kim et al., 2006). Recently, we reported that low concentrations of saxatilin inhibits ovarian cancer cell proliferation by suppressing IL-8 expression, implying that saxatilin can directly influence the expression of genes associated with tumor progression. In this study, saxatilin is known to have a strong effect on MMP-9 expression and invasiveness in a human ovarian cancer cell line.

A matrigel invasion assay was employed to investigate the role of saxatilin in the invasiveness of the MDAH 2774 ovarian carcinoma. Saxatilin or TNF-α was present in the upper chamber while FBS was used as a chemoattractant in the lower chamber. TNF-α, a regulator of many angiogenic genes including MMP-9 (Thommesen et al., 2005; Cordiali-Fei et al., 2006), induced cell invasion as shown in Fig. 1. This cell invasion was reduced more than 80% in the presence of 50 nM saxatilin. One possibility is that saxatilin inhibited the ovarian cancer cell invasion by regulating integrin-mediated signaling. However, disintegrins are also known to reduce cell migration by physically blocking integrins. We note that half-maximal inhibition of vitronectin-induced smooth muscle cell migration is obtained with 2.6 mM of saxatilin (Hong et al., 2006).
a concentration over 50 times higher was used in this study. Though the experimental conditions and cells were different, it is reasonable to think that the effect of direct blocking of integrin by saxatilin on the cancer cell invasion is negligible. At nanomolar concentrations, disintegrins like saxatilin show effects distinct from those traditionally observed like integrin blocking. Alternagin-C, jarastatin, and EC3 all can induce neutrophil migration by activating signaling cascades associated with integrins (Mariano-Oliveira et al., 2003; Coelho et al., 2004). Alternagin-C and EC3 do not contain an RGD motif whereas jarastatin does. Alternagin-C and jarastatin exist as monomers, while EC-3 is a heterodimer. Despite remarkable contrasts in sequence and structure, all three induce integrin signaling which modulates cell survival, cell motility and gene expression in similar ways. Thus, it is thought that saxatilin can play diverse roles in cell movement in various cell types and under a variety of circumstances via integrin-associated signaling and regulation of gene expression.

To identify the role of saxatilin in suppressing cancer progression at the transcriptional level, RT-PCR was performed on MDAH 2774 human ovarian cancer cells after saxatilin treatment. The levels of MMP-9 mRNA decreased after saxatilin treatment in a dose dependent manner, while that of bFGF or actin were unchanged (Fig. 2A). VEGF and EGF are known to be abundant in serum of ovarian cancer patients (Baron et al., 1999; Chen et al., 1999; Nash et al., 1999). When cells were treated with TNF-α, gelatin zymography showed that MMP-9 activity in the cell culture supernatant increased markedly. Cells treated with VEGF or EGF showed little change. However, MMP-9 activities in the cell culture supernatant of cells treated with saxatilin were significantly decreased under all conditions (Fig. 2B).

Next, we examined the effect of saxatilin on MMP-9 expression induced by TNF-α in ovarian cancer cells. MMP-9 activity of the cell culture medium was analyzed in gelatin zymography after the cells were treated with TNF-α for 24 h with or without saxatilin pretreatment for 2 h. TNF-α-induced MMP-9 activities were suppressed by saxatilin treatment in a dose-dependent manner in the zymogram (Fig. 3A). The
catalytic activity of MMPs in the culture medium, including MMP-2 and MMP-9, was analyzed by ELISA. In accordance with the above data, gelatinolytic MMP activities were also increased by TNF-α treatment whereas the activity was greatly decreased in the presence of saxatilin (Fig. 3B). Taken together, it is apparent that TNF-α-induced MMP-9 expression was inhibited by saxatilin treatment. However, it is interesting to note that the MMP activity was more dramatically decreased in the activity assay than in the gelatin zymography (compare Fig. 2B and Fig. 3B). Therefore, there may be another inhibitory mechanism of MMP activity besides the inhibition of MMP-9 expression. MMPs are important in diverse pathologies, including tumor progression (Bjorklund et al., 2005), thus discovering the mechanism of MMP inhibition by saxatilin could be helpful in treating various diseases.

In conclusion, we have shown that a low concentration of saxatilin decreased cell invasion through the regulation of MMP-9 activity in a human ovarian cancer cell line. These data suggest that saxatilin inhibits tumor progression in a novel manner, the molecular mechanism of which remains to be elucidated.

Acknowledgments. This work was supported by the National R&D program (Project No. 0420210-3) from the Korean Ministry of Health and Welfare, by the Korea Science and Engineering Foundation (KOSEF) through the National Research Lab program funded by the Ministry of Science and Technology (MI104000029706J000029710), and by the BK21 Project for Yonsei Biomolecule Research Initiative.

References


