Common MCL1 polymorphisms associated with risk of tuberculosis

Hyoung Doo Shin1,2, Hyun Sub Cheong1, Byung Lae Park1, Lyuong Hyo Kim1, Chang Su Han1, In Hee Lee3 & Seung Kyu Park4

1Department of Genetic Epidemiology, SNP Genetics, Inc., Seoul, 2Department of Life Science, Sogang University, Shin-su-dong, Seoul, 3Clinical Research Center for Tuberculosis, National Masan Tuberculosis Hospital, Masan, Korea

MCL1 expression has been found to be up-regulated during infection with virulent Mycobacterium tuberculosis. We investigated the genetic polymorphisms in MCL1 as potential candidate gene for a host genetic study of clinical TB infection. We have sequenced exons and their boundaries of MCL1, including the 1.5 kb promoter region, to identify polymorphisms, and eight polymorphisms were identified. The genetic associations of polymorphisms in MCL1 with clinical TB patients (n = 486) and normal controls (n = 370) were analyzed. Using statistical analyses, one common promoter polymorphism (MCL1-324C>A) which is absolutely linked with three other SNPs in the promoter and 3’UTR regions, were found to be significantly associated with increased risk of clinical TB disease. The frequency of the A-bearing genotype of -324C>A was higher in clinical TB patients than in normal controls (P = 0.0008, OR = 1.68). Our findings suggest that polymorphisms in MCL1 might be one of genetic factors for the risk of clinical tuberculosis development. [BMB Reports 2008; 41(4): 334-337]

INTRODUCTION

Approximately one-third of the world’s population is infected with the bacterium M. tuberculosis that causes tuberculosis (TB). This makes TB a significant cause of morbidity/mortality, as it results in approximately 2 million deaths annually (1). However, only 10% of those infected are estimated to progress to active (clinical) TB disease. Host genetic factors are, at least partly, important determinants of susceptibility to TB (2). The doubly high risk of disease in identical twins compared with non-identical twins (3) indicates a host genetic component in susceptibility. Understanding the molecular mechanisms underlying protective immunity is a prerequisite for the development of improved therapies and vaccines for TB.

MCL1 (Myeloid Cell Leukemia 1) is one of anti-apoptotic B-Cell CLL/Lymphoma 2 (BCL2) family which is involved in the control of cell viability (4). MCL1 protein expression has also been found to be up-regulated during infection with virulent M. tuberculosis. Thus, the anti-apoptotic effect of the induction of MCL1 expression in infected macrophages promotes the survival of virulent M. tuberculosis (5). Moreover, in a previous study, a 6- or 18-bp sequence insertion was found in the MCL1 promoter region and was associated with rapid disease progression and failure to respond to chemotherapy in chronic lymphocytic leukemia patients (6).

Here we present the genetic polymorphisms in MCL1 as potential candidate gene for a host genetic study of TB. We performed extensive screening of MCL1 by direct sequencing, as well as statistical analysis to examine the genetic effects on the risk of TB in Korean male subjects.

RESULTS

To discover polymorphism(s) in MCL1, we performed direct DNA sequencing in 24 unrelated Korean individuals. We identified 8 polymorphisms; five in the promoter region, one in intron 2, and two in 3’UTR of MCL1 (Fig. 1A, and Ad. Table 2). Pair-wise comparisons among polymorphisms revealed one set of absolute LD in MCL1 (|D’|= 1 and r2 = 1) (-616A>C : -386G>C : -324C>A : +4260C>T). The -284insdel showed two insertion types: 6-nucleotide (GGCTCAG -616A >C), and 18-nucleotide (GGCTCAGGGCCCCGGCCCC, ins18) insertion (Fig. 1A). Among identified polymorphisms, two (-324C>A and -284insdel) in MCL1 were selected for larger-scale (n = 856) genotyping for a TB genetic association study based on frequencies (> 0.05) and LDs (only one SNP if there is absolute LDs (r2 = 1)). Three major (freq. > 0.05) haplotypes in MCL1 were constructed from the Korean male subjects using the algorithm developed by Schaid et al. (7) (Haplo.Score) (Fig. 1B).

Logistic regression analyses controlling for age and smoking status (non-smoker = 0, ex-smoker [ex-smokers in TB patients, and current smokers in controls] = 1) showed strong association...
A. Map of MCL1 (myeloid cell leukemia sequence 1) on chromosome 1q21

B. Haplotypes in MCL1

Table 1. Logistic analysis of association of MCL1 polymorphisms with risk of clinical tuberculosis disease in Korean male subjects

<table>
<thead>
<tr>
<th>Gene</th>
<th>Loci</th>
<th>Case (n = 486)</th>
<th>Control (n = 370)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCL1</td>
<td>-324C>A</td>
<td>0.407</td>
<td>0.342</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>-284insdel*</td>
<td>0.313</td>
<td>0.325</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>deletion</td>
<td>0.026</td>
<td>0.028</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>6-bp insertion</td>
<td>0.302</td>
<td>0.303</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>18-bp insertion</td>
<td>0.397</td>
<td>0.341</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>ht1[A-del]</td>
<td>0.291</td>
<td>0.335</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>ht2[C-ins18]</td>
<td>0.284</td>
<td>0.299</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Logistic regression models were used for calculating P-values of polymorphisms, controlling for age and smoking status as covariates. P-values of co-dominant models are given. P-values of haplotype association were calculated using the algorithm developed by Schaid et al. (Haplo.Score), while controlling for age and smoking status as covariates.

with the increased risk of clinical TB disease (Table 1). In further haplotype analysis, a susceptible effect of MCL1 ht1[A-del] and a protective effect of MCL1 ht2[C-del] were also observed (P = 0.004 and P = 0.04, respectively) (Table 1). The frequency of -324A-bearing genotypes (AC or AA of MCL1-324C>A) was higher in patients (64.7%) than in normal controls (55.4%) (P = 0.0008, OR = 1.68, Table 2).

Analysis of putative transcription factor-binding sites using the software TFSEARCH (8) was performed with the promoter sequence of MCL1. Putative transcription factor-binding sites that had putative score greater than 0.9 based on the TRANSFAC database are shown in Fig. 1A. The DNA sequences surrounding MCL1-324C>A was shown to include motifs specific for CRE-BP (cycling AMP response element-binding protein) and E4BP4 (adenovirus E4 promoter-binding protein) binding sites.

DISCUSSION

TB kills about two million people each year, making it one of the world’s leading infectious causes of death among young people and adults (9). Each year, more than 8 million people become sick with TB. Due to a combination of factors including economic decline, the breakdown of health systems, insufficient application of TB control measures, the spread of HIV/AIDS, and the emergence of multidrug-resistant TB (MDR-TB), TB is on the rise in many developing and transitional economies (9). MCL1 is induced by infection of T helper cells with viable and virulent M. tuberculosis, but not in response to phagocytosis or ingestion of heat-killed or attenuated M. tuberculosis. Induction of this antiapoptotic protein limits the extent of apoptosis in virulent M. tuberculosis-infected macrophages as inhibition of MCL1 expression results in increased apoptosis of infected cells. This mechanism appears to contribute to the dif-
Table 2. Association analysis of MCL1 -324C >A with risk of clinical tuberculosis disease in Korean male subjects

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Genotype</th>
<th>Analyzing model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CC</td>
<td>AC</td>
</tr>
<tr>
<td>TB patients</td>
<td>165 (35.3%)</td>
<td>225 (48.1%)</td>
</tr>
<tr>
<td>Normal controls</td>
<td>164 (44.6%)</td>
<td>156 (42.4%)</td>
</tr>
</tbody>
</table>

Logistic regression model was used for calculating odds ratios (95% confidential interval) and corresponding P-values for SNP sites, controlling for age and smoking status as covariates. P-values of co-dominant, dominant, and recessive models are also given. The significance of association (P = 0.0008 in the dominant model) was retained even after the strictest correction for multiple tests (20 tests in this study).

The possible role of the promoter polymorphism of MCL1 in the manifestation of clinical TB is that the increased risk of clinical TB in the group A-del may be due to the presence of the A-del allele of MCL1-324C, which is a promoter SNP (MCL1-324C >A) and two haplotypes carrying the del allele of -284insdel (MCL1 ht1 and ht2) are significantly associated with the risk of clinical TB disease. It seems likely that the genetic effects of MCL1 ht1 (A-del) susceptible to clinical TB disease come from the A allele of MCL1-324C >A, because the site was mostly tagged by MCL1-324C >A (97.3%, Fig. 1B). Likewise, the opposite direction of effects of MCL1 ht2 (C-del) might come from the C allele of -324C >A, although the strength was less than that of MCL1 ht1 (A-del).

Using statistical analysis, it would be hard to tell which site(s) is causal for the increased risk of clinical TB because four SNPs (-324C >A, -616A >C, -386G >C, and +4260C >T) were in absolute LD. However, when considering that the promoter SNP, -324C >A, was shown to include motifs specific for CRE-BP (cycling AMP response element-binding protein) and E4BP4 (adenovirus E4 promoter-binding protein) binding sites, it could be speculated as the causal site for increased risk of clinical TB manifestation. The possibility that the promoter polymorphisms may alter MCL1 protein regulation/transcriptional binding activity will need to be evaluated in future studies.

In summary, one common promoter SNP (-324C >A) of MCL1 was found to have significant association with risk of clinical TB disease through screening of a large number of TB patients and normal controls recruited from Korean male subjects.

MATERIALS AND METHODS

Subjects
A total of 486 patients with clinical pulmonary TB (mean age, 46.7 years; range, 20-86 years, all male) were recruited from the Clinical Research Center for TB, National Masan Tuberculosis Hospital, Korea.

PCR has been routinely tested in all sputum AFB culture-positive samples to distinguish Mycobacterium Tuberculosis (MTB) from non-tuberculous mycobacterial (NTM). The diagnosis of pulmonary TB was confirmed by the isolation of M. tuberculosis from sputum or bronchoalveolar lavage fluid. The patients with NTM infection were excluded from this study. TB patients who had a family history of the disease were excluded to eliminate the additional risk factors of exposure to TB. A total of 370 healthy controls (mean age, 54.9 years; range, 40-69 years, all male; Ad Table 1) were simultaneously recruited from an unselected population who had come in for routine health checkups in the same regional area. Only subjects whose ages were greater than 40 were included in normal controls to exclude the possibility of TB infection among young individuals (TB may subsequently develop in a proportion of the controls). Individuals with other apparent diseases such as HIV infection (no HIV-positive patient have been reported in our hospital so far), hepatitis (mainly chronic hepatitis B infection), diabetes, alcoholism, autoimmune diseases, and cancers were also excluded (in both cases and controls). The ethnicity of all patients and controls was Korean. Informed consents were obtained from all subjects before drawing blood. The study protocol was approved by the Institutional Review Board of National Masan Hospital. Written informed consent was obtained from each subject.

Sequencing analysis of the MCL1 gene
Genomic DNA was extracted from peripheral blood leukocytes using a commercial kit (Wizard Genomic DNA purification kit, Promega, Madison, WI, USA). We sequenced exons and their boundaries in MCL1, including the promoter region (~1.5 kb), to discover genetic variants in 24 Korean DNA samples using a DNA analyzer (ABI PRISM 3730, Applied Biosystems). Twenty-four primer sets of the MCL1 gene for the amplification and sequencing analysis were designed based on GenBank sequences (Ref. Genome sequence for MCL1; NT_086596 released in Aug. 2004). The primer information is available as Ad Table 3 (http://www.snp-genetics.com/reference/SupplementaryInformationToMCL.doc) and sequence variants were verified by chromatograms.
Genotyping
For genotyping of polymorphic sites, amplifying primers and probes were designed for TaqMan. Primer Express (Applied Biosystems) was used to design both the PCR primers and the MGB TaqMan probes. One allelic probe was labeled with the FAM dye and the other with the fluorescent VIC dye. PCRs were run in the TaqMan Universal Master mix without UNG (Applied Biosystems), with PCR primer concentrations of 900 nM and TaqMan MGB-probe concentrations of 200 nM. Reactions were performed in a 384-well format in a total reaction volume of 5 μl using 20 ng of genomic DNA. The plates then were placed in a thermal cycler (PE 9700, Applied Biosystems) and heated at 50°C for 2 min and 95°C for 10 min, followed by 40 cycles of 95°C for 15 sec and 60°C for 1 min. The TaqMan assay plates were transferred to a Prism 7900HT instrument (Applied Biosystems) where the fluorescence intensity in each well of the plate was read. Fluorescence data files from each plate were analyzed using automated software (SDS 2.1). The -284insdel in the promoter of MCL1 was genotyped using an ABI3100 DNA sequencer in conjunction with GENESCAN and GENOTYPER software (Applied Biosystems). Oligonucleotides used in -284insdel genotyping include the fluorescent labeled forward primer FAM-CGAGGTGCTCATGGAAAG and reverse primer TTCCCATAAAAGGGGAAAGG. PCR fragments of 212, 218, and 230 bp were obtained, corresponding to deletion, 6 bp (GGCCCC, 6 bp insertion) and 18 bp (GGCTCAGGCCCCGGCCCC, 18 bp insertion) insertion types.

The primer information is available as Ad Table 4 (http://www.snp-genetics.com/reference/SupplementaryInformationToMCL.doc).

Acknowledgments
This work was supported by a grant from the Korea Health 21 R&D Project, Ministry of Health & Welfare, Republic of Korea (03-PJ3-PG10-21000-0007), and a grant No. 10020202 from the Core Technology Development Project of Ministry of Commerce, Industry and Energy. We wish to thank the study subjects and their families who participated in the TB study at National Masan Tuberculosis Hospital.

REFERENCES

http://bmbreports.org