Fenofibrate reduces adiposity in pregnant and virgin rats but through different mechanisms

María del Carmen González, Hubert Vidal, Emilio Herrera & Carlos Bocos

INTRODUCTION

Fibrates have been effectively used to reduce plasma triacylglycerol levels under conditions of hypertriacylglycerolemia (1). The molecular bases for the action of fibrates on lipid metabolism have been elucidated (2, 3) and involve the activation of transcriptional factors, known as peroxisome proliferator-activated receptors (PPAR), principally the PPARα transcriptional factors, known as peroxisome proliferator-activated receptors (PPAR), principally the PPARα agonist, was unable to maintain its hypotriacylglycerolemic effect beyond two days in pregnant rats, whereas in virgin rats it efficiently produced the expected reduction on plasma triacylglycerol throughout its treatment. Such inefficiency of fenofibrate on the triacylglycerolemia of pregnant rats was ascribed to the elevated amount of FFA which reached the liver in treated pregnant rats and which were not sufficiently oxidized and/or stored, and therefore had to be canalized back to the plasma as triacylglycerols (13, 14). This implies that WAT in treated pregnant rats would be releasing fatty acids into the plasma.

It has been reported that fenofibrate can reduce body weight gain in animal models of diabetes (15), obesity (16), and insulin resistance such as seen in obese Zucker rats (17) and high fat fed C57BL/6 mice (18), as well as in normal rats (19). This effect of fenofibrate on body weight gain and on the reduction of WAT mass has been ascribed to increased fat catabolism in liver mainly through the induction of target enzymes involved in hepatic fatty acid oxidation (16, 18). In fact, it has been proposed that PPARα agonists reduce insulin resistance and WAT depots secondary to their effects on liver. Curiously, no effects were reported in WAT (18). Although there are authors who only determined the hepatic expression of PPARα target genes (20), in spite of having found reductions in adiposity after fenofibrate treatment, recent works indicate that PPARα is also expressed in WAT, where it is able to regulate genes involved in fatty acid oxidation (21).

Due to the above mentioned different responses to fenofibrate in liver of pregnant and virgin animals (13,14), the aim of the present work was to determine the expression of PPAR and related genes in WAT of pregnant and virgin rats receiving or not such treatment. Moreover, since fenofibrate has been proven to reduce adiposity (16-19) and gestation produces an increase in WAT mass (22), we comparatively studied this drug-effect in virgin and pregnant rats. Thus, we found that fenofibrate reduces adiposity in pregnant and virgin rats but through different mechanisms.
Fenofibrate reduces adiposity
Maria del Carmen Gonzalez, et al.

Fenofibrate treatment reduces lumbar WAT in both virgin and late pregnant rats, although its effect on the mRNA expression of some involved proteins differs between these conditions, indicating a different mechanism of action.

RESULTS AND DISCUSSION

As shown in Table 1, lumbar WAT weight appeared higher in pregnant than in virgin rats, in agreement with previous findings (22), while it was decreased by the fenofibrate treatment in a dose-dependent manner in the two groups. Although the effect of the 100 × 2 mg dose did not reach statistical significance in either group, a significant decrease was found in rats treated with the 200 × 2 mg dose. Thus, it was found that WAT weight was reduced in virgin and pregnant rats treated for 4 days with fenofibrate. Such an effect has been previously reported for this and other fibrates in non-pregnant rats subjected to different treatment periods and different doses from those used here (15, 16, 18, 19, 23), even after treatment with other peroxisome proliferators, such as perfluorooctanoic acid (24).

In order to obtain an index of the net WAT fatty acids release into the circulation, free fatty acids (FFA) plasma levels were determined (Table 2). Whereas at day 0 of treatment (day 16 of pregnancy in the case of pregnant rats) plasma FFA levels did not differ between virgin and pregnant rats, values increased in pregnant rats at day 20 of pregnancy. Moreover, whereas fenofibrate treatment did not modify this variable in virgin rats, it caused a significant increase in pregnant rats, not only when compared to virgin rats but also when compared to the pregnant rats not receiving treatment. These findings would indicate that fenofibrate reduces adiposity in pregnant and virgin rats through different mechanisms.

To test whether specific marker genes of WAT may drive the effect of fenofibrate reducing adiposity, the mRNA levels of PPARγ and leptin were determined. The PPARγ mRNA levels in both virgin and pregnant rats decreased after treatment with fenofibrate (Fig. 1A), the effect being dose-dependent and greater in WAT from pregnant than from virgin rats. In fact, in rats receiving the 100 × 2 mg/kg/day dose, the adipose PPARγ mRNA was significantly lower in pregnant than in virgin rats, whereas the difference in those receiving 200 × 2 mg/kg/day did not reach significance due to the high variability of the groups (Fig. 1A). As was to be expected from previous studies (25), leptin mRNA levels appeared lower in virgin than in pregnant rats not receiving the drug (Fig. 1C), but fenofibrate treatment did not affect this variable in neither virgin nor pregnant rats (Fig. 1C). The fenofibrate dose-dependent reduction of PPARγ mRNA expression found here fits with the diminished adipose tissue LPL activity previously found in virgin and pregnant rats receiving the same treatment (13). Although these two effects agree with the reported decline in PPARγ expression in rat adipocytes after fibrate exposure (26), which would indicate a conversion of triacylglycerol storing cells into cells with a higher capacity to oxidize fatty acids, this view is not supported by our leptin values. In virgin rats, the mRNA expression of this adipocyte marker was practically kept stable after fenofibrate treatment.

To test whether an augmented mitochondrial fatty acid β-oxidation of fatty acids by WAT could also be involved in the decreased WAT size after fenofibrate treatment, the mRNA expression of carnitine palmitoyl transferase type I (CPT-I) was determined. CPT-I is a rate-limiting enzyme for long-chain fatty

Table 1. Effects of fenofibrate on lumbar WAT weight in virgin and pregnant rats

<table>
<thead>
<tr>
<th>WAT weight (g)</th>
<th>Dose (× 2 mg/kg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Virgin</td>
<td>1.16 ± 0.09a,A</td>
</tr>
<tr>
<td>Pregnant</td>
<td>1.68 ± 0.13b</td>
</tr>
</tbody>
</table>

Values are means ± S.E. of 7-8 rats/group. The capital letters correspond to the statistical comparisons between pregnant and virgin rats receiving the same treatment. The small letters correspond to the statistical comparisons between rats receiving different drug doses. Values not sharing a common letter are significantly different at \(P < 0.05 \)

Table 2. Effects of fenofibrate on plasma FFA in virgin and pregnant rats

<table>
<thead>
<tr>
<th>FFA (mM)</th>
<th>0 Day of treatment</th>
<th>100 Day of treatment</th>
<th>200 Day of treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Virgin</td>
<td>0.296 ± 0.024a,b</td>
<td>0.291 ± 0.033a,b</td>
<td>0.263 ± 0.026a,b</td>
</tr>
<tr>
<td>Pregnant</td>
<td>0.237 ± 0.021a,b</td>
<td>0.515 ± 0.058b</td>
<td>0.259 ± 0.033a,b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.274 ± 0.026a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.240 ± 0.029b</td>
</tr>
</tbody>
</table>

Values are means ± S.E. of 7-8 rats/group. The capital letters correspond to the statistical comparisons between pregnant and virgin rats receiving the same treatment. The small letters correspond to the statistical comparisons between rats receiving different drug doses. Values not sharing a common letter are significantly different at \(P < 0.05 \)
Fenofibrate reduces adiposity
María del Carmen González, et al.

Fig. 1. Effects of fenofibrate on the expression of adipocyte markers. (A) Amount of mRNA of peroxisome proliferator-activated receptor gamma (PPARγ) in lumbar WAT from virgin and pregnant rats treated or not with fenofibrate. Values are represented using amol of PPAR mRNA per mg of total RNA. (B) Blots and (C) relative amounts of mRNA of leptin in WAT from virgin and pregnant rats treated or not with fenofibrate. Values were normalized against glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression and are represented using arbitrary units. The capital letters correspond to the statistical comparisons between pregnant and virgin rats receiving the same treatment. The small letters correspond to the statistical comparisons between rats receiving different drug doses. Values not sharing a common letter are significantly different at P < 0.05. Each value represents the mean ± standard error of five animals.

Fig. 2. Effects of fenofibrate on fatty acid metabolism gene expression. (A) Blots and relative amounts of mRNA of: (B) carnitine palmitoyl transferase type I (CPT-I) and (C) phosphoenolpyruvate carboxykinase (PEPCK) in WAT from virgin and pregnant rats treated or not with fenofibrate. Values were normalized against glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression and are represented using arbitrary units. The capital letters correspond to the statistical comparisons between pregnant and virgin rats receiving the same treatment. The small letters correspond to the statistical comparisons between rats receiving different drug doses. Values not sharing a common letter are significantly different at P < 0.05. Each value represents the mean ± standard error of five animals.
acids (LCFAs) β-oxidation in mitochondria (27). As shown in Fig.
2B, fenofibrate treatment increases CPT-I mRNA levels in WAT
of virgin rats in a dose-dependent manner. However, whereas in
untreated pregnant rats the CPT-I mRNA levels were higher
than in virgins, values in this group did not increase significantly
with fenofibrate treatment (Fig. 2B). In fact, CPT-I mRNA levels
in non-pregnant rats treated with the highest drug dose used here,
were significantly higher than those found in pregnant rats receiv-
ing the same dose (Fig. 2B). In accordance with the results pre-
viously observed in liver (14) and in adipocytes (26), the CPT-I ex-
pression in WAT from non-pregnant rats was augmented by fen-
ofibrate in a dose-dependent manner. However, in pregnant rats
we did not observe such a fenofibrate-induced increase, which
may be due to the known contrarregulatory action of estrogens
(3, 28), whose levels are quite high in late gestation (9). In a re-
cent study with ovarianized mice, the concomitant treatment
with fenofibrate and estradiol showed that the hormone reversed
the effects of fibrate on plasma lipids and hepatic PPARα target
gene expression (20), although nothing was said about the WAT
expression. Furthermore, the possible implication of insulin
should not be discarded. Hyperinsulinemia develops during late
pregnancy (10), and we (29) and others (30) have described that
insulin can counteract the induction effected by PPARα activators.

As shown in Fig. 2C, the expression of phosphoenolpyruvate
carboxykinase (PEPCK) in WAT does not differ between virgin
and pregnant rats but significantly increases in a dose-dependent
manner in non-pregnant rats after fenofibrate treatment. However,
in tissues from pregnant rats, an increase in PEPCK mRNA oc-
curred only in those treated with 100 × 2 mg/kg of fenofibrate
whereas no-differences were found in pregnant rats receiving the
highest dose of fenofibrate studied here in comparison to basal
values (Fig. 2C). In fact, PEPCK mRNA levels in virgin rats treated
with this high dose were significantly higher than those in pregnant
rats receiving the same dose (Fig. 2C). The main components of
WAT are triacylglycerols, whose synthesis depends on the es-
tification of fatty acids. This pathway requires glycerol-3-phosphate,
which due to the low glycerol kinase activity in WAT (31), must
come from either glycolytic glucose utilization or from non-carbo-
hydrate precursors such as pyruvate, lactate or even amino acids,
throughout glyceroneogenesis (32). The enzyme PEPCK cata-
yzes the key step in WAT glyceroneogenesis (32) and in the pres-
ent study it was observed that adipose tissue PEPCK expression
was dose-dependent induced by fenofibrate in non-pregnant rats.
This finding agrees with a similar effect seen in adipocytes cul-
tured in the presence of clofibrate (33). In fact, we have previously
shown that fibrates are able to promote fatty acid reesterification
in adipose tissue of male rats both in vitro and in vivo (34, 35).
However, such a dose-dependent effect of fenofibrate on mRNA
PEPCK was not observed in pregnant rats, suggesting the presence
of some factor which might be counteracting the induction effect.
Thus, glucocorticoids, whose circulating levels are augmented
during pregnancy (36), have been described as repressors of
PEPCK induction by fibrates in adipocytes (37). Moreover, a pos-
sible insulin implication should not be discarded. In fact, varia-
tions in insulinemia are oppositely correlated to PEPCK mRNA
levels (33). In agreement with this, we also found that the PEPCK
expression increase after a lipid overload was attenuated when in-
sulinemia was elevated (29, 38).

According to the augmented mRNA of CTP-I found in WAT of
non-pregnant rats receiving the fenofibrate treatment, it is pro-
posed that the drug is enhancing the mitochondrial β-oxidation,
thus contributing in this way to the diminished size of WAT pads.
However, this explanation is not valid to account for the de-
creased adiposity observed in treated-pregnant rats. Pregnancy
displays an enhanced lipolytic activity in WAT (7), which is
counteracted by an accelerated reesterification of fatty acids,
therefore avoiding the depletion of fat stores in the fed state (39).
Thus, the lack of effect of fenofibrate in inducing the expression
of mRNA PEPCK found in WAT of pregnant rats indicates an un-
modified glyceroneogenesis which together with an active lip-
olysis, would produce a net increase in the output of fatty acids
into the bloodstream. This explanation fits with the increased
plasma FFA levels in pregnant-treated rats and with their lower
size of WAT found here.

It is therefore proposed that fenofibrate reduces adiposity in
virgin and pregnant rats using different mechanisms. This prob-
ably explains the opposite effects found on lipidemia in virgin
versus pregnant rats (14). As we (14) and others (20) have already
proposed, our present study suggests that fibrates normally act as
efficient hypolipidemic agents but, under certain conditions (e.g.
patients displaying high estrogen levels; patients with a PPAR
receptor deficiency; obese postmenopausal women receiving a
combined hormone replacement treatment, etc.) (3, 28), they
should be used with care since their effect on such patients may
not be as expected (40).

MATERIALS AND METHODS

Animals, drug administration and samples

The experimental design has been reported in detail elsewhere
(13). Briefly, female Sprague-Dawley rats weighing 180-210 g
were used. Half of the animals were mated, and day 0 of preg-
nancy was determined by the appearance of spermatozoids in
vaginal smears, while the other half were kept virgin. From day
16 of gestation, rats were given two daily doses of 0, 100 or 200
mg of fenofibrate (from Sigma, USA)/kg of body weight sus-
pended in 2% Tween-80, by oral gavage, one at 8:00 h and the
other at 18:00 h. The doses of fenofibrate were chosen under
the base of previous studies in the rat (13, 14, 34, 35, 41, 42).
On the morning of the 20 th day of pregnancy (4 th day after
the onset of treatment) rats were decapitated and blood collected.
Plasma was kept at −30°C until processing for the analysis of
FFA by enzymatic commercial kits (Wako). Lumbar WAT was
immediately removed, placed in liquid nitrogen and kept at
−80°C until analysis. Virgin rats received the same treatment
and were studied in parallel. The experimental protocol was ap-
proved by the Animal Research Committee of the Faculty of
Pharmacy, University CEU San Pablo (Madrid, Spain).
Total RNA preparation and analysis

Total RNA was isolated from WAT by using Ultraspec according to the manufacturer’s instructions (Biotexx Labs, Houston, USA). An aliquot of total RNA was subjected to RT-competitive PCR for determination of PPAR γ mRNA. Primer sequences and protocol of the RT-competitive PCR assays have been reported in detail elsewhere (43). On the other hand, cDNA was synthesized from 2.5 μg of total RNA-genomic DNA free using Superscript II (Invitrogen, USA). Appropriate dilutions of the cDNA stock were used for PCR. The sense and antisense primer sequences were 5′-TATGTGAGATGCTGCTT T-3′ and 5′-CTCGGAGAGCTAAACGCTTG-3′ for CPT-I (629 bp product); 5′-GTGCTGGAAGACCCCTGTGCCG-3′ and 5′-AGAA TGGGTTGAAGCCCGGA-3′ for leptin (ob) (206 bp product); 5′-AGCCTCGACAGGCCCTGGCCAGG-3′ and 5′-CCAGCTGTG GACAAAAAGCTTITTT-3′ for PEPC (575 bp product); and 5′-ACCAGTGCTCATGCATCAC-3′ and 5′-TTCCACACCCCACTTGC TGCTGA-3′ for GAPDH (452 bp product). The amplification products were separated by agarose gel electrophoresis containing ethidium bromide. UV-stimulated fluorescence was captured using a digital videocamera and quantitated with the GS-700 Imaging Densitometer (BioRad, California, USA). Linearity of the PCR was tested by amplifying dilutions of the cDNA preparations for each gene and experimental group of rats. All experimental values were normalized to GAPDH.

Statistical analysis

Results are expressed as means ± S.E. Treatment effects were analyzed by one-way analysis of variance (ANOVA). When treatment effects were significantly different (P < 0.05), means were tested by Tukey multiple range test. When necessary, the Mann-Whitney U test was used instead. Differences between the two groups were analyzed by using the Student t test.

Acknowledgements

This work was supported by Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica (I + D + i), Instituto de Salud Carlos III-Subdirección General de Evaluación y Fomento de la Investigación (PI-06/0352) as well as the Fundación Universitaria San Pablo-CEU (USP-PC 16/07). M. C. González was a recipient of a predoctoral fellowship from the Universidad San Pablo-CEU. The excellent technical assistance of Milagros Morante and Nathalie Vega and the editorial help of Brian Crilly are greatly appreciated.

REFERENCES

