The role of neuroinflammation on the pathogenesis of Parkinson’s disease

Young Cheul Chung1,2, Hyuk Wan Ko1, Eugene Bok1,2, Eun Soo Park1,2, Sue Hee Huh1,2, Jin Han Nam1 & Byung Kwan Jin1,∗
1Department of Biochemistry & Molecular Biology, Neurodegeneration Control Research Center, School of Medicine Kyung Hee University, Seoul, 2Neuroscience Graduate Program, Division of Cell Transformation and Restoration, School of Medicine, Ajou University, Suwon 443-479, Korea

Parkinson’s Disease (PD) is a common neurodegenerative disease characterized by the progressive degeneration of nigrostriatal dopaminergic (DA) neurons. Although the causative factors of PD remain elusive, many studies on PD animal models or humans suggest that glial activation along with neuroinflammatory processes contribute to the initiation or progression of PD. Additionally, several groups have proposed that dysfunction of the blood-brain barrier (BBB) combined with infiltration of peripheral immune cells play important roles in the degeneration of DA neurons. However, these neuroinflammatory events have only been investigated separately, and the issue of whether these phenomena are neuroprotective or neurotoxic remains controversial. We here review the current knowledge regarding the functions of these neuroinflammatory processes in the brain. Finally, we describe therapeutic strategies for the regulation of neuroinflammation with the goal of improving the symptoms of PD. [BMB reports 2010; 43(4):225-232]

INTRODUCTION

Parkinson’s disease (PD) is a common neurodegenerative disorder characterized by abnormal motor symptoms such as resting tremor, slowness of movement, rigidity and bradykinesia (1). The neuropathological features of PD are progressive death of dopaminergic (DA) neurons in the substantia nigra pars compact (SNpc) and depletion of dopamine in the striatum (STR), which is the site at which these nerve terminals project (2). Along with damage in the SN, eosinophilic inclusions (Lewy bodies) were identified in the brain of PD patients, thus becoming a pathological marker of the disease (3). Nowadays, Lewy bodies and neurites stained with antibodies to ubiquitin, α-synuclein and other biochemical markers are detectable in various brain regions; not only the SN, but also the locus celluleus, raphe, thalamus, amygdala and cerebral cortex (4). These phenomena indicate that PD is involved in multiple neuronal systems in addition to dopamine.

Based on these main neuropathological features, several neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 1-methyl-4-phenylpyridinium (MPP+), 6-hydroxydopamine (6-OHDA), 1,1’-dimethyl-4,4’-bipyridinium (paraquat) and rotenone are currently used for the induction of nigrostriatal DA neuronal degeneration (5). Although these toxin-based models of PD have some limitations in exactly reproducing neurotoxic mechanisms in a genetic mutation model (6), the specific features of PD pathogenesis such as neuronal inclusions (7), mitochondrial dysfunction (8), oxidative stress and inflammation (9) are consistently reported.

Among them, glial activation-derived oxidative stress and inflammatory molecules play important roles in DA neuronal death in PD patients and animal models (10, 11). These mechanisms are comprised of microglial activation, reactive astrocyes, damaged blood-brain barrier (BBB) and infiltrated peripheral immune cells (Fig. 1, 2). However, these molecular and cellular changes are not specific to PD, since neuroinflammation is also implicated in the development of Alzheimer’s disease (AD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS) as well as other neurodegenerative diseases (12). In this review, we describe the evidence for neuroinflammation as a consequence of nigrostriatal DA neuronal degeneration in the brains of PD patients and animal models of PD. Finally, we highlight possible therapeutic targets associated with inflammation that might help to slow down the progression of PD.

Involvement of glial activation in PD

Microglial activation in PD

Microglia are the resident immune cells in the CNS and constitute about 5-20% of all glial cells. They were first identified as a distinct cell entity by Pio del Rio-Hortega (13). The origin of microglia is derived from circulating blood monocytes, which are the progenitors of microglia (14). In the mature healthy brain, resting microglia adopt a ramified morphology

*Corresponding author. Tel: 82-2-969-4563; Fax: 82-2-969-4570; E-mail: bkjin@khu.ac.kr
Received 22 March 2010
Keywords: Astrocyte, BBB leakage, Infiltration of peripheral immune cells, Microglia, Parkinson’s disease
The role of neuroinflammation on the pathogenesis of Parkinson's disease
Young Cheul Chung, et al.

Microglial activation by various stimuli is generally characterized by a gradual change in morphology from a quiescent ramified form (resting state) to an amoeboid form (activated state) (16-19). Several studies have revealed that activated microglia express diverse cell-surface receptors, including the major histocompatibility complex and complement receptors (17, 20) as well as inducible potentially neurotoxic factors (21) that impose chronic inflammation of the brain, leading to neuronal dysfunction and death in the form of neurodegenerative disorders such as PD (22).

In a postmortem analysis of PD patients, activated microglia and reactive human leukocyte antigen-DR (HLA-DR)-positive microglia were found in the SNpc (23, 24). Immunohistochemical studies have shown that numerous activated microglia are present in neurotoxin-treated SNpc in various animal models of PD (25). Consistent with these results, we reported that microglial activation involving the degeneration of DA neurons was observed in the SNpc (26, 27). Several results have suggested that these activated microglia could contribute to nigral DA neurons through oxidative stress and production of
proinflammatory cytokines (28-31).

Oxidative stress is caused by an imbalance between the production and destruction of ROS and reactive nitrogen species (RNS) (32). ROS/RNS production could be modulated by miRNA induction and destruction of ROS and reactive nitrogen species (28-31).

Fig. 2. Proposed schematic diagram showing neuroinflammatory processes in PD. The lozenges indicate that DA neuronal death propagates microglial activation, reactive astrocytes, BBB dysfunction and infiltration of peripheral immune cells. Increased neuroinflammation then exacerbates DA neuronal death through glial cell-derived oxidative stress and production of proinflammatory cytokines, decreased levels of neurotrophic factors, immune cell-mediated cytotoxicity and penetration of neurotoxic molecules by disrupted BBB.

Reactive astrocytes in PD
Astrocytes, major glial components of the central nervous system (CNS), constitute up to 20-50% of brain volume (47). Astrocytes provide the optimal microenvironment for neuronal function by exerting active control on the cerebral blood flow (48, 49) and by controlling the extracellular concentration of synaptically-released neurotransmitters (50).

Similar to microglial activation, star-shaped astrocytes transformed to reactive form have enlarged bodies and thick dendrites in response to various stimuli (51, 52). Originally, reactive astrocytes were described as a mechanical barrier to neuret outgrowth following injury that consists of scar tissue. Although the presence of reactive astrocytes in the SNpc of PD patients is involved in the progression of PD (53), the role of reactive astrocytes in the development of PD is still unknown and controversial.

Generally, astrocytes promote the survival and maintenance of DA neurons through secretion of various neurotrophic factors in the SN (54). In postmortem PD patients, biochemical analysis and immunostaining results showed that the levels of neurotrophic factors such as glial-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) were decreased (55). Interestingly, supplementation with glial-derived growth factors such as GDNF (56, 57), BDNF (58, 59) and mesencephalic astrocyte-derived neurotrophic factor (MANF) (60) protected DA neurons from neurotoxins (59, 60). Although the relationship between reactive astrocytes and the expression of neurotrophic factors is unknown, these results suggest that decreased levels of astrocyte-derived neurotrophic factors are at least somewhat responsible for DA neuronal death in PD.

Additionally, astrocytes are known to play an important role in antioxidant defense in the brain (61). Recently, astrocytes were found to regulate excessive inflammation via induction of microglial hemooxygenase-1 (HO-1) expression in vitro (62). Additionally, Min and colleagues demonstrated that astrocyte-conditioned medium induced nuclear translocation and binding of nuclear factor E2-related factor 2 (Nrf-2) to anti-oxidant response element (ARE), which reduces IFN-γ-induced ROS production. In particular, overexpression of Nrf-2 and
The role of neuroinflammation on the pathogenesis of Parkinson’s disease
Young Cheul Chung, et al.

Fig. 3. Therapeutic strategies for regulating neuroinflammation in PD. (A-C) Animals receiving MPTP with or without fluoxetine were sacrificed 3 days after MPTP injections, followed by hydroethidine staining to detect ROS production. The results of hydroethidine staining showed that fluoxetine reduced superoxide generation in MPTP-treated mice. PBS as a control (A), MPTP (B) or MPTP and fluoxetine (C). (D, E) Accompanying this, fluoxetine inhibited the activation of NADPH oxidase as a major source of ROS generation at 2 days after nigral LPS injection (D). Colocalization of microglia (OX-42; green) and the subunit of NADPH oxidase (p67phox; red) revealed that microglia-derived NADPH oxidase plays an important role in ROS production (E). Two images are merged (yellow). (F, G) Immunostaining and stereological counting showed that paroxetine, another anti-depressant, decreased MPO-positive cells related to RNS production at 3 days after the last MPTP injection (F). The statistical significance of differences was assessed using one-way ANOVA, followed by Student-Newman-Keuls analyses. One asterisk marks P < 0.01, significant from control (C) and paroxetine (P). Two asterisks mark P < 0.05, significant from MPTP (M). Localization of MPO immunoreactivity (red) in activated astrocytes (green) in SN treated with MPTP (G). (H-J) Double immunostaining with GFAP and CNTF revealed that capsaicin, a TRPV1 agonist, upregulated MPP+-induced CNTF expression in the ipsilateral side of the brain. PBS as a control (H), MPP+ (I) or MPP + and capsaicin (J). (K-P) FITC-LA assay and CD3 immunostaining indicated that WIN55,212-2 prevented BBB leakage and leukocyte infiltration at 3 days after MPTP injection. MPTP induced severe penetration of FITC-LA (L) and increased the number of CD3-positive cells in the SN (O) compared to PBS-treated SN (K, N). Treatment with WIN55,212-2 prevented BBB disruption (M) and infiltration of immune cells (P). Dotted lines indicate SNpc.

Nrf-2 activators protects DA neurons from the neurotoxicity of 6-OHDA in vivo (63) and in rat organotypic nigrostriatal cocultures (64). These results collectively suggest that astrocytes are involved in antioxidant signaling both in vivo and in vitro.

By contrast, myeloperoxidase (MPO), a key enzyme in the generation of RNS, was upregulated in the midbrains of PD patients and MPTP-treated mice (11). Interestingly, this enzyme was localized within reactive astrocytes in MPTP-treated mice, and MPTP neurotoxicity was attenuated by ablation of MPO in the nigrostriatal pathway. This is in accordance with our unpublished observation that numerous MPO-positive cells are present in the MPTP-treated SN whereupon they colocalize within reactive astrocytes (Fig. 3; unpublished data). Although the reason for this apparent functional discrepancy remains unclear, reactive astrocytes does serve an important role in the initiation and progression of PD.

Microenvironmental changes in PD

Dysfunction of the blood-brain barrier in PD

The brain demands an adequate blood supply for the regulation of neuronal and synaptic function. To maintain concentrations of ions (Na⁺, K⁺ and Ca²⁺) within narrow ranges as well as adequate levels of metabolic substrates in various brain regions, neural milieu are strictly separated from circulatory spaces through BBB formation (65). These unique biological structures are comprised of neurovascular units such as endothelial cells, pericytes, neurons and astrocyte endfeet (66). Endothelial cells tightly connect at junctional complexes such as adherens junctions (AJ), tight junctions (TJ) and gap junctions, thereby conferring low paracellular permeability (67). Pericytes and astrocytes regulate hemodynamic neurovascular coupling, microvascular permeability, matrix interactions, neurotransmitter inactivation, neurotrophic coupling, and angio-
genic and neurogenic coupling through close proximity with each other or with neurons (67).

In aging and neurodegenerative disease, neurovascular functions are altered to abnormal states, such as increased BBB permeability, decreased nutrient supply, faulty clearance of toxic molecules, and failure of enzymatic function (65). Although there is no clear evidence as to whether these altered neurovascular circumstances are responsible for the loss of DA neurons in PD, several studies on PD patients and animal models suggest a pathogenic linkage between BBB disruption and DA neuronal death. Positron emission tomography (PET) and histological studies on PD patients revealed dysfunction in the BBB transporter system (68) as well as alteration of blood vessels (69) in the midbrain of PD patients. Additionally, the levels of vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF) that induce structural changes in blood vessels were increased in PD patients and the MPTP model (70). Interestingly, nigral injection of VEGF disrupted BBB and induced DA neuronal death in the ventral mesencephalon (71). In addition, increased BBB permeability was observed in the MPTP (72) and LPS models of PD (73). Along with previously described results, our unpublished data suggest that increased permeability is revealed by leakage of FITC-linked albumin in MPTP- and LPS-treated SN (Fig. 1). These results collectively suggest that BBB disruption has some relationship with neuronal cell death and neuroinflammation in PD.

Infiltration of peripheral immune cells in PD

CNS is considered an immunologically-privileged region due to the presence of innate microglia. However, the presence of T lymphocytes in the midbrain of PD patients suggests that the potential role of infiltrated peripheral cells is related to PD pathogenesis (24). In the model of LPS-induced inflammation, neutrophils and monocytes infiltrated into SN regions where they played important roles in neuroinflammation (74). Recently, Brochard and colleagues reported that numerous CD4 and CD8 positive cells were detectable in postmortem PD patients (75). In particular, the cytotoxic effects of T cells provided evidence that CD4 deficient mice were resistant to MPTP neurotoxicity in the SN. Accompanying this finding, our immunohistochemistry results showed that various peripheral immune cells, such as T cells, B cells, microphages and leukocytes, infiltrated into the SN region in the LPS and MPTP models (Fig. 1; BK Jin, unpublished data). Additionally, the presence of Iba-1 positive cells in disrupted blood vessels indicates that neuroinflammation might contribute to the infiltration of peripheral immune cells and leakage of the BBB in the SN. Collectively, these results suggest that penetration of immune cells plays an important role in the degeneration of DA neurons in PD.

Neuroprotective strategies for the regulation of neuroinflammation in PD

Previous evidence has demonstrated that the regulation of neuroinflammation (Fig. 2; glial activation-derived oxidative damage and proinflammatory cytokines, astrocyte-derived neurotrophic factors, BBB disruption and infiltrated immune cells) could attenuate DA neuronal loss both in vivo and in vitro models of PD. Wu and colleagues reported that minocycline attenuated DA neuronal death in MPTP mouse model through inhibition of NADPH oxidase and/or iNOS-derived oxidative stress as well as IL-1β expression (30). The fetomolar concentration of dexmethasone protected mesencephalic DA neurons in LPS-treated microglia-neuron cocultures via reduction of superoxide and proinflammatory cytokines (76). Recently, simvastatin rescued DA neurons from MPTP neurotoxicity through inhibition of nigral p21ras activation, which is related to the production of proinflammatory cytokines and glial activation (77). Accompanying these results, our unpublished data showed that fluoxetine, a common anti-depressant, contributes to the survival of DA neurons by inhibiting the transient expression of iNOS and by attenuating microglial NADPH oxidase activation, ROS/RNS production, and consequent oxidative damage in LPS and MPTP models (Fig. 3; unpublished observation). Interestingly, another anti-depressant, paroxetine, had similar neuroprotective effects on DA neurons (data not Shown) as well as inhibitory effects on astroglial MPO-derived RNS production (Fig. 3; unpublished observation). In addition, our other unpublished data showed that capsaicin, the agonist of transient receptor potential vanilloid subtype 1 (TRPV1), prevented neuronal death in MPTP, MPP+ and LPS models by inhibiting microglial activation and production of proinflammatory cytokines (data not Shown). Especially, treatment with capsaicin increased the expression ofCNTF in reactive astrocytes, which then increased a neurotrophic factor that plays a neuroprotective role in MPP+ middle forebrain bundle (MFB) model (Fig. 3; unpublished observation).

In addition to these strategies for regulating neuroinflammation, several therapeutic targets related to the prevention of BBB leakage and infiltration of immune cells have been reported. Chen and colleagues reported that caffeine restrained the MPTP-induced loss of DA neurons, leakage of Evan’s blue and FITC-LA while decreasing expression of the Tj proteins ZO-1 and occludin in the striatum (72). Dexamethasone and indomethasine exerted neuroprotective effects on DA neurons by reducing the amount of infiltrated leukocytes in MPTP-treated SN as well as inhibition of glial activation (78, 79). Our unpublished data also demonstrated that WIN55,212-2, a synthetic cannabinoid, inhibited not only microglial activation and ROS production (data not Shown) but also disruption of BBB and leukocyte infiltration in the MPTP model (Fig. 3; unpublished observation). Collectively, these results propose that the regulation of neuroinflammation might arrest or improve
the progression of PD.

Summary and Conclusion

Accumulating evidence indicates that neuroinflammation plays multi-faceted roles in PD, such as neuroprotection or neurotoxicity. Although this apparent discrepancy remains unclear, neuroinflammation is recognized as an important neuropathological feature of PD. Better understanding of these complex mechanisms may provide some clues to the development of interventional therapeutic strategies for PD patients.

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (20090063274).

REFERENCES


47. Tower, D. B. and Young, O. M. (1973) The activities of butyrylcholinesterase and carbonic anhydrase, the rate of anaerobic glycolysis, and the question of a constant density of glial cells in cerebral cortices of various mammalian species from mouse to whale. *J. Neurochem.* 20, 269-278.


The role of neuroinflammation on the pathogenesis of Parkinson's disease
Young Cheul Chung, et al.