Contribution of lysine-containing cationic domains to thermally-induced phase transition of elastin-like proteins and their sensitivity to different stimuli

Won Bae Jeon*
Laboratory of Biochemistry and Cellular Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu 704-230, Korea

A series of elastin-like proteins, SKGPQ[V(KG)3]VP(GP80)WP (n = 1, 2, 3, and 4), were biosynthesized based on the hydrophobic and lysine linkage domains of tropoelastin. The formation of self-assembled hydrophobic aggregates was monitored in order to determine the influence of cationic segments on phase transition properties as well as the sensitivity to changes in salt and pH. The thermal transition profiles of the proteins fused with only one or two cationic blocks (n = 1 or 2) were similar to that of the counterpart ELP1-90. In contrast, diblock proteins that contain 3 and 4 cationic blocks displayed a triphasic profile and no transition, respectively. Upon increasing the salt concentration and pH, a stimulus-induced phase transition from a soluble conformation to an insoluble aggregate was observed. The effects of cationic segments on the stimuli sensitivity of cationic bimodal ELPs were interpreted in terms of their structural and molecular characteristics.

INTRODUCTION

Elastin is a major component of elastic fibers found in the extracellular matrix of many tissues, for which elasticity is of great importance (1). Elastin is an insoluble molecule formed from many monomers of water-soluble tropoelastin. Tropoelastin is encoded by a single-copy gene, but alternative splicing of transcripts results in various isomeric forms of the protein, each with a molecular weight of approximately 70 kDa (2). The primary structure of tropoelastin consists of alternating hydrophobic and cross-linking domains. The hydrophobic domains are composed of repeats of alternating hydrophobic amino acid sequences such as VPGVG and APGVGV, whereas the AK cross-linking domains consist mainly of Ala and Lys, e.g., AAAAKAKAKYGA (3). Under physiological conditions, the hydrophobic domains of tropoelastin undergo a self-assembly process that is referred to as coacervation (4), and the resulting assembly is stabilized by the formation of intermolecular cross-links between Lys residues that produce a highly insoluble network of elastic fibers (5).

Protein-based polymers that respond to biologically relevant stimuli by altering their conformation or properties are often considered to be intelligent or smart biomaterials (6). In particular, elastin-like proteins (ELPs) that are modeled on the VPGXG pentapeptide repeat of tropoelastin, in which X is any amino acid except proline, display a soluble-insoluble phase transition in response to changes in temperature, salt, or pH, and thus have emerged as promising smart proteins for biomedical applications (7, 8). The temperature at which the soluble-insoluble conformational change occurs, known as the inverse transition temperature (Tt), has been used to characterize the responsiveness of ELPs to a change in stimulating factors (9). ELPs are highly compatible with living cells; therefore, they have high potential for use in the delivery of drugs or genes or as a matrix for mammalian cell culture or wound healing (10, 11). However, owing to the low chemical reactivity of hydrophobic VPGXG units, the biological utilization of unmodified forms of ELPs is limited. As a consequence, functionalized ELPs have been generated by conjugating or incorporating biologically active sequences into the structural backbone of ELPs (12). For example, fusion of homing peptides or affinity ligands to the N- or C-terminus of ELPs (13), which produces a multimodal form (14), enables receptor-mediated targeting of these proteins to biologically relevant sites. Similarly, the ability of the proteins to bind and deliver drugs can be further modulated by fusing the ELP backbone to an anionic or cationic domain. Such cationic or anionic ELPs not only provide amino or carboxylic groups for the covalent conjugation of drug cargos but also are able to self-assemble into a hydrogel or micelle structure. Furthermore, the size of micellar particles can be modulated by selecting cationic or anionic domains of different sequence and number, which is of great interest in targeting cancer drugs by local hyperthermia (15) or the development of intelligent gene delivery...
Stimuli sensitivity of cationic elastin-like proteins
Won Bae Jeon

Fig. 1. Schematic illustration of bimodal composition of cationic ELPs (A), and SDS-PAGE analysis of the purity and MW of the isolated proteins (B). Lanes 1, 2, 3, and 4 represent [V(VKG)3VKVPG]n-ELP1-90 with n = 1, 2, 3, and 4, respectively.

Fig. 2. Turbidity profiles obtained for ELP1-90 (○) and [V(VKG)3VKVPG]n-ELP1-90 [n = 1 (●), 2 (▲), 3 (▼), and 4 (○)] (A). Inverse temperature transition of [V(VKG)3VKVPG]n-ELP1-90 (B) and [V(VKG)3VKVPG]n-ELP1-90 (C) in the presence of 50 (●), 100 (▲), 300 (▼), 500 (▲), 1,000 (●), and 2,000 (○) mM NaCl. The concentration of cationic ELPs was 25 μM in 10 mM phosphate buffer. In the cartoon of graph A, pink and blue represent [V(VKG)3VKVPG]n block in solution and ELP1-90 domain out of solution, respectively.

vehicles (16, 17). Therefore, detailed characterization of the phase transition properties of cationic ELPs under various environmental conditions is necessary as it will provide insights into the precise control of physicochemical properties. Previously, an elastin-based polylsine diblock biopolymer, K6ELP1-60, was tested as a vehicle for thermally targeted chemotherapy or gene delivery (15-17). However, there are no reports in the literature of the effect of cationic domains on the sensitivity of bimodal ELPs to stimuli.

The aim of the study described herein was to investigate the effects of lysine-containing cationic domains by characterizing the phase transition properties of a set of diblock cationic ELPs, SKGPG[V(VKG)3VKVPG]n-ELP1-90, which mimic both the cross-linking and hydrophobic domains of tropoelastin. Determining the characteristics of these cationic ELPs with respect to responsiveness towards changes in temperature, ionic strength, and pH should reveal useful information on the mechanisms responsible for the behavior of amphiphilic ELPs under various solution conditions, and ultimately aid in the design of protein-based intelligent biomaterials that respond to changes in environmental stimuli.

RESULTS

Design and production of cationic diblock elastin-like proteins

In order to analyze the effects of cationic domains on the sensitivity of cationic ELPs in response to a change in environmental stimuli, a set of diblock ELPs, SKGPG[V(VKG)3VKVPG]n-ELP1-90, was biosynthesized (hereafter referred to as [V(VKG)3VKVPG]n-ELP1-90). In each diblock ELP, a cationic unit contained four lysine residues, and the ELP1-90 segment consisted of 90 repeats of the XGVPG pentapeptide, in which X corresponds to Val, Ala, and Gly in a 5:2:3 molar ratio. The unit [V(VKG)]n-ELP1-90 was designed such that it generated rigid VPGVV and VPGVG sequences upon formation of cationic domains and was connected to the ELP1-90 segment.

DNA sequences that encode [V(VKG)]n-ELP1-90 were cloned successfully by recursive directional ligation (RDL, 18), and the bimodal ELPs were expressed and purified from E. coli. Three rounds of inverse transition cycling yielded [V(VKG)]n-ELP1-90 of purity greater than 95%, as judged by SDS-PAGE (Fig. 1B). When compared to the MW of the standard proteins, the purified proteins migrated to positions that corresponded to a slightly larger MW than that of the calculated value, a trend that was reported previously (19). However, when the expressed proteins were compared to each other, the differences in relative migration distance were consistent with the expected differences in MW. During SDS-poly-
Stimuli sensitivity of cationic elastin-like proteins
Won Bae Jeon

24 BMB reports
http://bmbreports.org

Table 1. Summaries of protein properties and effects of salt and pH on Tt values

<table>
<thead>
<tr>
<th>Protein</th>
<th>MW (Da)</th>
<th>pI</th>
<th>CCD* (%)</th>
<th>Tt 1</th>
<th>Conc. of NaCl (mM)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.05 0.1 0.3 0.5 1 2</td>
<td></td>
</tr>
<tr>
<td>ELP1-90</td>
<td>35,940</td>
<td>8.5</td>
<td>0</td>
<td>42.2</td>
<td>ND 1</td>
<td>ND</td>
</tr>
<tr>
<td>[V(VKG)3VKVPG]-ELP1-90</td>
<td>37,373</td>
<td>10.6</td>
<td>4.0</td>
<td>44.9</td>
<td>49.1 48.4 42.5 38.8 32.2</td>
<td>21.0</td>
</tr>
<tr>
<td>[V(VKG)3VKVPG]-ELP1-90</td>
<td>38,806</td>
<td>10.9</td>
<td>7.8</td>
<td>47.2</td>
<td>TT 1</td>
<td>46.9 43.2 39.7 31.9</td>
</tr>
<tr>
<td>[V(VKG)3VKVPG]-ELP1-90</td>
<td>40,238</td>
<td>11.1</td>
<td>11.2</td>
<td>50.4</td>
<td>NT 1</td>
<td>TT 45.4 41.6 32.9</td>
</tr>
<tr>
<td>[V(VKG)3VKVPG]-ELP1-90</td>
<td>41,671</td>
<td>11.2</td>
<td>13.9</td>
<td>NT</td>
<td>NT 44.8 41.7 327</td>
<td>18.0</td>
</tr>
<tr>
<td>[V(VKG)3VKVPG]-ELP1-90</td>
<td>35,940</td>
<td>8.5</td>
<td>0</td>
<td>42.2</td>
<td>ND 1</td>
<td>ND</td>
</tr>
</tbody>
</table>

*Content of cationic domains in a molecule (MW of cationic domains/MW of molecule ×100), 1Tt at 25 μM of protein in PBS, 1Not determined, 1Triphasic transition, 1No transition

acrylamide gel electrophoresis, the migration rate of a protein is affected not only by its size but also by shape. In SDS-PAGE buffer, an ELP may have an extended conformation, which could result in a slower migration rate than that of a globular protein standard having the same MW. Approximately 25 mg of purified cationic ELP was obtained from 1 L of culture, and the yield did not differ among the four ELPs, which indicates that the cationic domains did not have an adverse effect on the production of the diblock ELPs.

Transition characteristics of bimodal ELPs
The phase transition properties of the diblock ELPs (25 μM) in PBS are depicted in Fig. 2A. ELP1-90 showed a very sharp increase in turbidity with a Tt of 42°C. V(VKG)3VKVPG-ELP1-90 and [V(VKG)3VKVPG]-ELP1-90 also displayed a rapid increase in turbidity, although their Tt values were shifted to higher temperatures of 45°C and 47°C, respectively. In contrast, the turbidity profile of [V(VKG)3VKVPG]-ELP1-90 exhibited a triphasic transition: the first slow transition with a Tt of 50°C was followed by a rapid drop in absorbance between 53°C and 56°C, and then a gradual increase in turbidity above 56°C. In the case of [V(VKG)3VKVPG]-ELP1-90, an inverse temperature transition was not observed. Table 1 summarizes the relationship between the number of cationic domains and the Tt values of the cationic ELPs. As the number of cationic domains in the ELP molecule increased, the Tt of the ELP shifted to a higher temperature with a concomitant decrease in the degree of thermal sensitivity.

Sensitivity to salt concentration
The influence of salt concentration on the phase transition properties of the cationic ELPs was investigated using [V(VKG)3VKVPG]-ELP1-90 and [V(VKG)3VKVPG]-ELP1-90 in 10 mM phosphate buffer (pH 7.4) (Fig. 2B, C), since neither ELP was sensitive to temperature change at 50 mM NaCl. In 100 mM NaCl, [V(VKG)3VKVPG]-ELP1-90 showed a triphasic transition profile, whereas [V(VKG)3VKVPG]-ELP1-90 remained insensitive to thermal change. In the presence of 300 mM NaCl, [V(VKG)3VKVPG]-ELP1-90 became responsive to temperature change. As the concentration of NaCl was increased higher than 500 mM, both [V(VKG)3VKVPG]-ELP1-90 and [V(VKG)3VKVPG]-ELP1-90 became fully thermosensitive and showed similar Tt values of around 42°C. Any further increase in NaCl concentration up to 2 M resulted in a shift of Tt to 18°C along with enhancement in the slope of the transition curves.

pH responsiveness
Fig. 3 illustrates the sensitivity of [V(VKG)3VKVPG]-ELP1-90 (n = 3 or 4) to pH change. At pH 7.0, [V(VKG)3VKVPG]-ELP1-90 showed a triphasic transition profile. As the pH was increased to 10, the phase transition profile became hyperbolic, which indicates that thermal responsiveness was enhanced. At pH 12, the transition curve exhibited a sigmoidal shape with a Tt of 47°C. Similar results were obtained for [V(VKG)4VKVPG]-ELP1-90. The latter did not display phase transition at pH 7.0, although it was fully responsive to temperature change at pH 12.0 with a Tt of 48°C. The finding that the Tt value at pH 12.0 was lower for [V(VKG)4VKVPG]-ELP1-90 than for [V(VKG)3VKVPG]-ELP1-90 suggests that there were more intermolecular interactions in the case of [V(VKG)4VKVPG]-ELP1-90 since the
uncharged ELP chain length had increased. This result is consistent with a report that found T_t decreases as the chain length of a hydrophobic ELP molecule increases (20). Table 1 summarizes the influence of the number of cationic domains on the phase transition properties of diblock ELPs as well as on their sensitivity to stimuli.

DISCUSSION

The self-assembly or coacervation of ELPs in solution occurs via a mechanism that involves a conformational change from a random chain into a β-turn conformation, hydrophobic association, and a maturation process into larger aggregates (21). Within diblock ELPs, which are composed of two different ELP segments with different T_t values, the ELP block with the lower T_t value assumes the β-turn conformation and collapses above its T_t, whereas the other segment with the higher T_t value remains in solution (18). On the basis of these investigations, it is plausible that the observed triphasic thermal transition for [V(VKG)3VKVPG]3-ELP1-90 indicates the formation of a core-shell micelle structure. When the temperature is increased close to the T_t of 50°C, the solvated hydrophobic ELP1-90 segment undergoes a conformational change to form a β-turn structure. Upon a further increase in temperature above the T_t, intermolecular hydrophobic interactions between the β-turn coils of the ELP1-90 segments cause the proteins to assemble into a micelle structure, in which the ELP1-90 segments form a hydrophobic core surrounded by a hydrophilic shell of solvated cationic sequences. It is likely that the sudden linear drop in turbidity of the solution between 53°C and 56°C is caused by the rearrangement of small particles into micelle structures, whereas the gradual increase in turbidity observed between 56°C and 70°C may be due to the formation of supermolecular aggregates at the expense of small micelles (Cartoon of Fig. 2A). Dynamic particle size monitoring during the phase transition process of [V(VKG)3VKVPG]-ELP1-90 could provide evidence to support this interpretation.

In analyzing the contribution of lysine-containing domains to the salt sensitivity of cationic ELPs, the addition of NaCl caused a concentration-dependent decrease in T_t along with an increase in the thermal sensitivity of cationic ELPs at neutral pH, at which they have a net positive charge. High NaCl concentrations (>500 mM) were necessary to induce phase transition of cationic ELPs whose hydrophilic cationic content was higher than 10%, indicating that NaCl enhanced the hydrophobic interaction of ELP molecules. It has been suggested that Cl ions destabilize water molecules that are involved in hydrophobic hydration and order themselves surrounding the hydrophobic pentapeptide of ELPs under thermally-induced phase transition (22). However, in the case of [V(VKG)3VKVPG]-ELP1-90 and [V(VKG)3VKVPG]-ELP1-90, the observed increase in thermal sensitivity at high concentrations of NaCl may partly be the result of a shielding or neutralizing effect of Cl− counter ions on the positively charged ε-amino groups of lysine residues. This would reduce electrostatic repulsion at the interfaces of the cationic domains as well as decrease the interaction between the cationic domain and water molecules, thus improving the formation of ordered water structures around the cationic domains. For the cationic ELPs, the apparent increase in temperature sensitivity would be a combined effect of the two mechanisms.

From the perspective of molecular structure, the pH versus transition profiles show that the pH responsiveness of [V(VKG)3VKVPG]n-ELP1-90 (where n = 1 and 2) was due to the overall balance between the charged and uncharged ionic states exhibited by the c-amo group of lysine. At pH 7.0, the thermal sensitivity of [V(VKG)3VKVPG]-ELP1-90 was lower than that of its counterpart ELP1-90, whereas [V(VKG)3VKVPG]-ELP1-90 demonstrated no transition. This may have been caused by electrostatic repulsion at the cationic interfaces or by positively charged cationic domains preventing the packing of hydrophobic β-turns between ELP segments. As the pH was increased to 10.0, both [V(VKG)3VKVPG]-ELP1-90 and [V(VKG)3VKVPG]-ELP1-90 demonstrated an enhanced responsiveness to thermal change, whereas at pH 12.0, the cationic ELPs exhibited a rapid response. This behavior correlates with the degree of ionization of the lysine side chains, which have a pI of 10.3. The pI values of [V(VKG)3VKVPG]-ELP1-90 and [V(VKG)3VKVPG]-ELP1-90 were 11.1 and 11.2, respectively (Table 1). Therefore, at pH <12.0, the side chains were fully deprotonated and uncharged. Hence, the entire molecular structure had no net charge, in contrast to the protonated state at pH 7.0; the uncharged structure facilitated hydrophobic interactions between ELP segments at a lower temperature.

In conclusion, the results of this study show that the sensitivity of ELPs to stimuli can be modulated by changing the sequence and number of cationic domains. By fusing a charged cationic domain to the EL2 segment fused to a thermally-responsive ELP segment, control over sensitivity to stimuli by the fusion of charged domains could broaden the field of ELP applications, in which sensitivities to temperature, salt, and pH are highly desirable.

MATERIALS AND METHODS

Construction of the coding sequence for the V(VKG)3VKVPG unit

Two oligonucleotides (forward: 5’-AATTCCCAAGGCGGTGGTTAACAGGTGTATAAGGTGTAAAGTGCCGGGGCA-3’ and reverse: 5’-AGCTTGCCCGCCCGGCACTTTAACAGGTGTATAAGGTGTAAAGTGCCGGGGGCGGA-3’) encoding the V(VKG)3VKVPG monomeric block unit were designed such that EcoRI, NheI, and HinDIII restriction enzyme sites were generated upon annealing to form a double-stranded DNA fragment. A double-stranded DNA cassette was formed by heating a mixture of the two oligonucleotides in ligase buffer at 95°C for 5 min, followed by cooling to room temperature at a rate of 1°C/min. The cloning vector pUC19 (NEB) was digested with both EcoRI and HinDIII (NEB) and de-
phosphorylated using calf intestinal phosphatase (CIP; Promega). The linearized pUC19 vector was then purified from an agarose gel using a spin column purification kit (Qiagen) and ligated with the double-stranded DNA cassette for V(VKG)3VKVPG. After ligation, *E. coli* Top 10 cells (Invitrogen) were transformed with the ligation product by the heat shock method, spread on CircleGrow agar medium (Q-BIO gene) supplemented with ampicillin (100 µg/ml), and incubated overnight at 37°C. Multiple colonies were chosen and grown in 5 ml of CircleGrow medium with ampicillin for 12 hrs at 37°C. Plasmids were isolated and purified from the 5 ml cultures using a miniprep kit (Qiagen). A clone containing the recombinant plasmid with the correct insert was identified by diagnostic digestion using EcoRI, PflMI, and HinDIII.

Construction of the coding sequence for the [V(VKG)3VKVPG]ₙ domain

DNA fragments encoding [V(VKG)ₙVKVPG]ₙ, where n = 1, 2, 3, or 4, were prepared from the plasmid containing V(VKG)ₙVKVPG gene by applying RDL (18). Briefly, pUC19, containing the sequence for the V(VKG)ₙVKVPG monomeric unit, was linearized with PflMI, dephosphorylated with CIP, and the fragments separated on an agarose gel. The linearized plasmid was purified from the gel using a spin column purification kit (Qiagen). A separate sample of the plasmid was digested with both PflMI and BglII in order to liberate the sequence encoding the V(VKG)ₙVKVPG monomer. After digestion, the reaction products were separated by high-melting agarose gel electrophoresis, after which the insert was purified using a DNA extraction kit (Qiagen). The purified insert was then ligated into the linearized pUC19 vector, and the resulting product was transformed into *E. coli* Top10 cells. Transformants were screened initially by diagnostic digestion using EcoRI and HinDIII and further confirmed by DNA sequencing. A clone containing the sequence for the [V(VKG)ₙVKVPG]ₙ peptide was identified and selected for the next round of RDL. Additional rounds were performed in an identical manner using the construct from the previous round as the starting clone.

Construction of the [V(VKG)ₙVKVPG]ₙ-ELP1-90 gene library

A pUC19-based cloning vector, pUC19-ELP1-90, containing a copy of the coding sequence for ELP1-90, was prepared in accordance with a previously published method (18). The vector was digested with PflMI, dephosphorylated with CIP, and separated on an agarose gel, after which the linearized plasmid was purified from the gel using a spin DNA extraction kit. A separate pUC19 vector containing the gene for [V(VKG)ₙVKVPG], was digested with both PflMI and BglII in order to liberate the target insert. After digestion, the reaction products were separated on agarose gel electrophoresis, and the insert was purified from the gel using a DNA extraction kit. The pET-25b(+)SV2 vector (18) was linearized by digestion with SfiI, dephosphorylated with CIP, and then purified by agarose gel extraction after electrophoresis. The purified [V(VKG)ₙVKVPG]ₙ gene along with the linearized pET-25b(+)SV2 vector were ligated (20 pmol of vector and 100 pmol of insert incubated in 20 µl of ligation buffer with 10 units of ligase from NEB at 16°C for 5 hrs, after which the ligation mixture was transformed into *E. coli* Top10 cells. Plasmids isolated from the resulting transformants were screened by diagnostic digestion with Aval and XbaI (NEB), and the identity of the insert was then confirmed further by DNA sequencing. The plasmids containing the coding sequences for the diblock [V(VKG)ₙVKVPG]ₙ-ELP1-90 polymer were transformed into *E. coli* strain BLR(DE3) by the heat shock method.

Expression and purification of cationic ELPs

E. coli BLR(DE3) transformed with the pET-based expression vector containing the coding sequence for [V(VKG)ₙVKVPG]ₙ-ELP1-90 was grown in CircleGrow medium at 37°C for 24 hrs. After harvesting, cells were disrupted by sonication, and the diblock ELPs were purified from the cell lysate by the inverse transition cycling (ITC) method as described previously (19). Protein concentrations were determined by UV spectrophotometry using a molar extinction coefficient of 5,690 M⁻¹ cm⁻¹ for a single Trp residue at 280 nm (18). The purified proteins were dissolved in PBS (pH 7.4; Gibco) at a concentration of 20 mg/ml and kept at −80°C until use. The purity and molecular weight of the cationic ELPs were analyzed by visualization on a 12% SDS-PAGE gel using Coomasie Brilliant Blue R-250 stain (Bio-Rad). The molecular weights (MWs) of the [V(VKG)ₙVKVPG]ₙ-ELP1-90 polymers were computed using Compute pl/MW software, which is available from the ExPASy Proteomics Server.

Characterization of sensitivity to stimuli by inverse temperature transition

The effects of cationic domain content, salt, and pH on the thermally induced phase transition of [V(VKG)ₙVKVPG]ₙ-ELP1-90 were characterized by monitoring the optical density of protein solutions at 350 nm as a function of temperature on a Cary 100 UV-visible spectrophotometer equipped with a multichannel thermoelectric temperature controller (Varian). The rate for heating and cooling of the temperatures was 1°C/min, and the Tₛ was determined as the temperature at which half maximum optical density was observed.

Acknowledgments

This work was supported partly by the Biodefense Program Fund to WBJ from the Ministry of Education, Science and Technology of the Republic of Korea.

REFERENCES

2. Bashir, M. M., Indlik, Z., Yeh, H., Ornstein-Goldstein, N.,...
Stimuli sensitivity of cationic elastin-like proteins
Won Bae Jeon

