The C-terminal domain of PLD2 participates in degradation of protein kinase CKII β subunit in human colorectal carcinoma cells

Young-Hoon Lee1,*, Jong-Su Uhm1,*, Soo-Hyun Yoon1, Ji-Young Kang1, Eun-Kyung Kim1, Beom Sik Kang1, Do Sik Min2 & Young-Seuk Bae1,*

1School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, 2Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan 609-735, Korea

Elevated phospholipase D (PLD) expression prevents cell cycle arrest and apoptosis. However, the roles of PLD isoforms in cell proliferation and apoptosis are incompletely understood. Here, we investigated the physiological significance of the interaction between PLD2 and protein kinase CKII (CKII) in HCT116 human colorectal carcinoma cells. PLD2 interacted with the CKII β subunit in HCT116 cells. The C-terminal domain (residues 578-933) of PLD2 and the N-terminal domain of CKII β were necessary for interaction between the two proteins. PLD2 relocalized CKII β to the plasma membrane area. Overexpression of PLD2 reduced CKII β protein level, whereas knockdown of PLD2 led to an increase in CKII β expression. PLD2-induced CKII β reduction was mediated by ubiquitin-dependent degradation. The C-terminal domain of PLD2 was sufficient for CKII β degradation as the catalytic activity of PLD2 was not required. Taken together, the results indicate that the C-terminal domain of PLD2 can regulate CKII by accelerating CKII β degradation in HCT116 cells. [BMB reports 2011; 44(9): 572-577]

INTRODUCTION

Phospholipase D (PLD) catalyzes hydrolysis of the membrane phospholipid phosphatidylcholine to produce a lipid second messenger, phosphatidic acid, and choline (1, 2). PLD has two isoforms, PLD1 and PLD2. PLD1 has low basal activity and is activated by small G proteins, classical protein kinase C (PKC) isoforms, and phosphatidylinositol 4, 5-bisphosphate (PIP2). In contrast, PLD2 has high basal activity, requires PIP2, and is activated by ARF (ADP-ribosylation factor) and PKC. PLD has been implicated in a variety of physiological cellular functions, such as intracellular protein trafficking, cytoskeletal dynamics, membrane remodeling, and cell proliferation (3). PLD activity was previously shown to increase in response to mitogenic signals and activated oncogenes such as EGF, insulin, v-Src, and v-Ras. PLD activity and expression are up-regulated in several types of human cancers. Elevated PLD activity has been shown to contribute to cell transformation and survival. In addition, elevated PLD expression prevents cell-cycle arrest and apoptosis (4, 5). However, the roles of PLD isoforms in cell proliferation and apoptosis are not completely understood.

Protein kinase CKII (CKII) is a ubiquitous serine/threonine kinase that catalyzes the phosphorylation of a large number of cytoplasmic and nuclear proteins (6-8). The holoenzyme of CKII is a heterotetramer composed of two catalytic (α and/or α’) subunits and two regulatory (β) subunits. The β subunit stimulates the catalytic activity of the α or α’ subunit, mediating tetramer formation and substrate recognition. Overexpression of the CKII catalytic subunit leads to tumorigenesis in mice overexpressing Myc. Analysis of yeast expressing a temperature-sensitive mutant CKII gene showed that CKII is required for cell cycle progression in both G1 and G2/M phases. In addition, recent observations that CKII phosphorylates procaspase-2 or caspase substrate confirmed that CKII prevents apoptosis (9-11). These findings suggest that CKII plays a critical role, not only in cell growth and proliferation, but also in anti-apoptosis. Thus, there must be at least one regulatory mechanism for CKII. Recently, we showed that in non-cancer NIH3T3 cells overexpressing PLD isoforms, CKII activity is down-regulated through the proteasome-dependent degradation of CKII β (12). In the present study, we investigated the physiological significance of the interaction between CKII and PLD2 in HCT116 human colorectal carcinoma cells. Our results indicate for the first time that the C-terminal domain of PLD2 modulates CKII by binding to CKII β in HCT116 cells.

RESULTS AND DISCUSSION

Interaction between PLD2 and CKII β in HCT116 cells

To determine whether or not CKII is associated with PLD2 in
CKII regulation by PLD2
Young-Hoon Lee, et al.

Fig. 1. Interaction of the C-terminal domain of PLD2 with the N-terminal domain of CKIIβ. (A & B) HCT116 cell extracts were subjected to immunoprecipitation (IP) with either anti-PLD antibody or normal IgG (A). The cell lysates were also used for the precipitation of PLD2 with amylose resin coated with either MBP-CKIIβ or MBP (control) (B). The precipitated proteins were separated by SDS-polyacrylamide gel electrophoresis and visualized by Western blotting. (C) The yeast reporter strain was co-transformed with pGADGH-PLD2 deletion constructs and pGBT9-CKIIα or -CKIIβ (upper panel) or with pGBT9-CKIIβ deletion constructs and pGADGH-PLD2 578-933 (bottom panel). All constructs were also tested against the empty expression vector pGBT9 and pGADGH to control for autonomous activation of the hybrid proteins. PX, phox domain; PH, pleckstrin homology domain; CR, conserved region.

HCT116 cells, PLD2 was immunoprecipitated from HCT116 cell extracts. Normal IgG immunoprecipitation was used as a control. As shown in Fig. 1A, CKIIα and CKIIβ co-precipitated with PLD2, indicating that PLD2 interacts with CKII enzyme in HCT116 cells. Next, to determine whether or not PLD2 interacts directly with the CKIIβ subunit, we attempted to form a complex between MBP-CKIIβ and PLD2. When MBP-CKIIβ was mixed with cell extract, PLD2 bound to MBP-CKIIβ (Fig. 1B). To identify the regions of PLD2 and CKIIβ that participate in this interaction, we used a yeast two-hybrid system. PLD2 did not bind directly to CKIIα, but the C-terminal domain (amino acids 578-933) of PLD2 interacted with CKIIβ. CKIIβ interacted with PLD2 when amino acids 1-167 were present, but not when amino acids 147-215 were present (Fig. 1C). These results suggest that the C-terminal domain of PLD2 and the N-terminal domain of CKIIβ are necessary for the interaction between PLD2 and CKIIβ.

Co-localization of CKIIβ and PLD2 in HCT116 cells
The finding that CKIIβ associated with PLD2 implies that CKIIβ and PLD2 might co-localize to the same cell region. We investigated the intracellular localization of CKIIβ relative to that of PLD2 using immunocytochemical analysis. In HCT116 cells transfected with pcDNA-HA-CKIIβ and control vector, CKIIβ expression (green) was detected in both the cytoplasm and nucleus. However, in cells co-expressing HA-CKIIβ and PLD2, the subcellular localization of CKIIβ was significantly altered; both CKIIβ and PLD2 were prominently localized to the plasma membrane region, indicating the co-localization of CKIIβ and PLD2 at discrete sites in the cells (Fig. 2).
PLD2 overexpression stimulates proteasome-dependent degradation of CKII β in HCT116 cells

To investigate the physiological significance of the interaction between PLD2 and CKII β, we analyzed CKII expression in PLD2-overexpressing HCT116 cells. As shown in Fig. 3A, the protein level of endogenous CKII β, but not CKII α, decreased. The protein level of exogenously expressed HA-CKII β also decreased in PLD2-overexpressing cells (Fig. 3B). Quantification by densitometry revealed that PLD2 overexpression reduced the protein level of CKII β by approximately 50-60% in HCT116 cells. To confirm the role of PLD2 in CKII β reduction, we knocked down PLD2 in HCT116 cells using PLD2 siRNA. As shown in Fig. 3C, knockdown of PLD2 resulted in an increase in CKII β protein expression. We then examined whether or not the reduction in CKII β protein expression in PLD2-overexpressing cells was due to reduced levels of CKII β mRNA. The amount of CKII β mRNA remained unchanged in the cells overexpressing PLD2 (Fig. 3D). To determine whether or not CKII β degradation PLD2 activity is required for CKII β degradation, HCT116 cells were treated with phosphatic acid or 1-butanol, an inhibitor of PLD-mediated phosphatic acid production. As shown in Fig. 3E, the level of CKII β protein was not altered by

Fig. 3. Induction of CKII β degradation by PLD2 overexpression in HCT116 and HEK293 cells. (A) HCT116 cells stably transfected with the control vector (Vec, lane 1) or pcDNA3.1-PLD2 (lane 2) were lysed, electrophoresed on an SDS-polyacrylamide gel, and visualized by Western blotting. (B) Cells transiently expressing the control vector (Vec) and pcDNA3.1HA-CKII β (lane 1) or pcDNA3.1-PLD2 and pcDNA3.1HA-CKII β (lane 2) were lysed, electrophoresed, and visualized by Western blotting. (C) Cells were transfected with control (lane 1) or PLD2 (lane 2) siRNAs, lysed, electrophoresed, and visualized by Western blotting. (D) Total RNA was extracted from cells stably expressing the control vector (lane 1) or pcDNA3.1-PLD2 (lane 2) and reverse-transcribed using CKII β-specific primers and reverse transcriptase. (E) Lysates from cells treated for 20 h with phosphatidic acid (upper panel) or 1-butanol (bottom panel) were electrophoresed and visualized by Western blotting. (F) Cells expressing wild-type (WT) or catalytically negative mutant (K758R) PLD2 were lysed, electrophoresed, and visualized by Western blotting. (G) HCT116 cells expressing the control vector (Vec) or pcDNA3.1-PLD2 (PLD) were treated without or with 10 μM MG132 for 24 h. The cells were lysed, electrophoresed, and visualized by Western blotting with anti-CKII β antibody. (H) Cells expressing the control vector (Vec) or pcDNA3.1-PLD2 (PLD) were grown in the presence or absence of 10 μM MG132. Cell lysates were immunoprecipitated (IP) with anti-CKII β antibody followed by Western blotting (WB) with anti-ubiquitin antibody. (I) HEK293 cells stably expressing the control vector (lanes 1 and 3) or pcDNA3.1-PLD2 (lanes 2 and 4) were treated for 20 h with 0.3% 1-butanol (lanes 1 and 2) or 2-butanol (lanes 3 and 4), lysed, electrophoresed, and visualized by Western blotting.

PLD2 overexpression by PLD2 siRNA. As shown in Fig. 3C, knockdown of PLD2 resulted in an increase in CKII β protein expression. We then examined whether or not the reduction in CKII β protein expression in PLD2-overexpressing cells was due to reduced levels of CKII β mRNA. The amount of CKII β mRNA remained unchanged in the cells overexpressing PLD2 (Fig. 3D). To determine whether or not CKII β degradation PLD2 activity is required for CKII β degradation, HCT116 cells were treated with phosphatic acid or 1-butanol, an inhibitor of PLD-mediated phosphatic acid production. As shown in Fig. 3E, the level of CKII β protein was not altered by
CKII regulation by PLD2
Young-Hoon Lee, et al.

Involvement of the C-terminal region of PLD2 in CKIIβ degradation in HCT116 cells

To map the subregion within PLD2 that is required to stimulate CKIIβ degradation, different regions of PLD2 were expressed in HCT116 cells. PLD2 caused a reduction in CKIIβ protein expression when amino acids 1-875 were present, but not when the C-terminus was deleted to amino acid 579. Deletion of 577 amino acids from the N-terminal end of PLD2 did not abolish its ability to induce CKIIβ degradation. The residues 578-933 of PLD2 stimulated CKIIβ degradation more significantly, probably due to increased protein number and/or accessible protein structure (Fig. 4A). Furthermore, the C-terminal domain (residues 578-933) of PLD2 increased the poly-ubiquitinated forms of CKIIβ in HCT116 cells (Fig. 4B). Taken together, these results indicate that residues 578-875 of PLD2, a region containing CRIII and CRIV, are involved in ubiquitin-dependent CKIIβ degradation (Fig. 4C).

In summary, this study showed for the first time that PLD2 is involved in destabilization of CKIIβ in HCT116 cells. The PLD2-mediated reduction in CKIIβ protein expression was almost completely reversed by treatment with the proteasome inhibitor MG132. The level of poly-ubiquitinated CKIIβ increased more significantly in PLD2-overexpressing HCT116 cells, suggesting that PLD2-induced destabilization of CKIIβ is mediated by the ubiquitin proteasome machinery. CKIIβ degradation occurred even in the presence of a catalytically in-
active mutant PLD2, and neither phosphatidic acid nor 1-butanol altered CKIIβ stability in cells. It was previously shown that the region containing CRI to CRIV is critical for PLD activity (13). Our current results show that PLD2 amino acids 578-933, a region that lacking PX, CR1, or CR1I, is sufficient for CKIIβ degradation. Taken together, our data and those of others reveal that the catalytic activity of PLD2 is unnecessary for CKIIβ degradation. What is the mechanism for CKIIβ degradation by PLD2? In this study, we found that the PLD2 578-933 region is the CKIIβ-binding domain. CKIIβ is localized throughout the cell; however, it translocates to the plasma membrane when PLD2 is overexpressed. Therefore, our study suggests that CKIIβ binding to PLD2 might induce nuclear export followed by proteasome-dependent degradation of CKIIβ. However, we cannot exclude the possibility that PLD2 578-933 binds to the N-terminal region of CKIIβ and enhances destabilization by modulating CKII phosphorylation (12). The N-terminal region of CKIIβ has autophosphorylation sites that might be involved in CKIIβ stabilization (14).

MATERIALS AND METHODS

Antibodies and enzymes
Polyclonal anti-CKIIβ and monoclonal anti-CKIIβ antibodies were obtained from Calbiochem (Darmstadt, Germany). Polyclonal anti-PLD antibody was raised against the C-terminal peptide of PLD (15). Polyclonal anti- ubiquitin, anti-β-actin, and anti-tubulin antibodies were obtained from Santa Cruz Biotechnology (Santa Cruz, CA), and anti-HA antibody was from Roche (Basel, Switzerland). Rhodamine-conjugated goat anti-rabbit IgG and fluorescein isothiocyanate (FITC)-conjugated donkey anti-mouse IgG were from Invitrogen (Carlsbad, CA). CKIIα and β subunits tagged with maltose-binding protein (MBP) were expressed in E. coli and purified as described previously (16).

Cell culture and preparation of cell extract
HCT116 and HEK293 cells were grown in Dulbecco’s modified Eagle’s media (DMEM) supplemented with 10% fetal bovine serum at 37°C in 5% CO2. To establish PLD2-overexpressed cells, cells were transfected with the pcDNA3.1-PLD2 in 200 μl of binding buffer [20 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM PMFS], and 2.5 mM P- nitrophenyl phosphate (pNPP). The particulate debris was removed by centrifugation at 12,000× g. The volumes of the supernatants were adjusted for equal protein concentration.

Plasmid constructions
PLD2 deletion mutants were generated by a polymerase chain reaction (PCR)-based cloning strategy. The four primers used to generate the PLD2 deletions were as follows: 1) 5'-ATGGAA-TCCATACCCCTACCTGTCCT-3', 2) 5'-CGAATTCTATGTCG-ACAAGTTCTAGGG-3', 3) 5'-ACTAGTGATGACGGCGACCCCT-3', 4) 5'-CGAATTCTATGATGGGAGCCTGACTT-3'. The pGADGH-PLD2 construct was generated using primers 1 and 2. The pGADGH-PLD2 construct was generated using primers 3 and 4. All PCR products were digested with BamHI and EcoRI (or SpeI and EcoRI) and cloned into pGADGH.

RNA interference
The PLD2 siRNA used was 5’-AAGAGGGGCGCGUGGGCU- GAAGdTdT. The negative control siRNA was 5’-GCUCAGAUAAGCGGAGAdTdT. Cells were transfected with siRNAs using Lipofectamine (Invitrogen, Carlsbad, CA) as described by the manufacturer. At 5 h after transfection, the medium was changed and the cells grown for another 2 days before being harvested.

Reverse Transcription-PCR
Total RNA was extracted from HCT116 cells. RNA was reverse-transcribed using CKIIβ-specific primers and reverse transcriptase (Takara, Japan), and the resulting cDNAs were PCR-amplified. Primers for β-actin RNA were used to standardize the amount of RNA in each sample. PCR products were resolved on a 1.5% agarose gel.

Immunoprecipitation, MBP pull-down, and yeast two-hybrid assays
For immunoprecipitation, cell lysates were pre-cleared with normal IgG and protein A sepharose (Amersham Biosciences, Piscataway, NJ) for 1 h at 4°C. The supernatant was then incubated with anti-CKIIβ or anti-PLD antibody and protein A sepharose by mixing for 12 h at 4°C. An MBP pull-down assay was performed by incubating amylose-agarose beads with MBP-CKIIβ and cell lysates that were transfected with pcDNA3.1-PLD2 in 200 μl of binding buffer [20 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM PMSF], and 2 mM P- nitrophenyl phosphate (pNPP). The reaction was allowed to proceed for 1 h while rocking at 4°C. Then, the beads were collected by centrifugation and washed three times with phosphate-buffered saline (PBS). Yeast two-hybrid assay was carried out as described (17).

Immuno-blotting and immunocytochemical staining
For immune-blotting, proteins were separated on polyacrylamide gels in the presence of SDS, and then transferred electrophoretically to a nitrocellulose membrane. The membrane was blocked with 5% skim milk in TBST [20 mM Tris-HCl (pH 7.4), 150 mM NaCl, 0.05% Tween 20] for 2 h and then incubated with specific antibodies. The membrane was washed three times in TBST and then treated with an enhanced chemiluminescence (ECL) system (Amersham Biosciences, Piscataway, NJ). Some membranes were stripped in stripping buffer [2% SDS, 100 mM β-mercaptoethanol, and 50
mM Tris-HCl (pH 7.0) at 50°C for 1 h with gentle shaking and then probed with anti-β-actin or anti-tubulin antibodies as a control for protein loading. For immunocytochemical staining, HCT116 cells were seeded on four-well micro-chamber slides (Nunc, Naperville, IL) and transfected the next day with pcDNA3.0-HA-CKIIβ and pcDNA3.1-PLD2. Forty-eight hours after transfection, the cells were fixed with 4% paraformaldehyde in PBS for 10 min at room temperature and permeabilized in 0.25% Triton X-100 before being blocked with 2% bovine serum albumin in PBS. Primary antibodies (anti-HA antibodies at a dilution of 1 : 100, anti-PLD antibodies at 1 : 200) were added at room temperature for 1 h. The secondary antibodies were rhodamine-conjugated goat anti-rabbit IgG (1 : 200) and FITC-conjugated donkey anti-mouse IgG (1 : 200). Nuclei were counterstained with 4',6-diamidino-2-phenylindole (DAPI; Molecular Probes, Eugene, OR), and fluorescence signals were detected with a Carl Zeiss Axioplan 2 microscope.

Acknowledgments
This Research was supported by the Kyungpook National University Research Fund, 2010.

REFERENCES