A NOTE ON THE WEIGHTED
LEBESGUE-RADON-NIKODYM THEOREM WITH RESPECT
TO p-ADIC INVARIANT INTEGRAL ON \(\mathbb{Z}_p \)

T. KIM, J. CHOI∗ AND H.-M. KIM

Abstract. In this paper, we give the weighted Lebesgue-Radon-Nikodym theorem with respect to \(p \)-adic invariant integral on \(\mathbb{Z}_p \).

AMS Mathematics Subject Classification : 11B68, 28A25
Key words and phrases : weighted Lebesgue-Radon-Nikodym theorem, fermionic invariant measure on \(\mathbb{Z}_p \)

1. Introduction

Let \(p \) be a fixed odd prime number. Throughout this paper, the symbols \(\mathbb{Z}_p \), \(\mathbb{Q}_p \), and \(\mathbb{C}_p \) denote the ring of \(p \)-adic integers, the field of \(p \)-adic rational numbers, and the completion of the algebraic closure of \(\mathbb{Q}_p \), respectively. The \(p \)-adic norm \(|x|_p\) is defined by \(|x|_p = p^{-r}\) for \(x = p^r s/t \) with \(s, t \in \mathbb{Z} \) with \((p, s) = (p, t) = 1\) and \(r \in \mathbb{Q} \) (see [1-8]).

Let \(C(\mathbb{Z}_p) \) be the space of continuous functions on \(\mathbb{Z}_p \). The fermionic invariant measure on \(\mathbb{Z}_p \) is defined by Kim as follows:

\[
\mu_{-1}(a + p^n\mathbb{Z}_p) = (-1)^a, \tag{1}
\]

where

\[
a + p^n\mathbb{Z}_p = \{ x \in \mathbb{Z}_p | x \equiv a \pmod{p^n} \},
\]

and \(a \in \mathbb{Z} \) with \(0 \leq a < p^n \) (see [3,6,7]). From (1), the fermionic \(p \)-adic invariant integral on \(\mathbb{Z}_p \) is defined by Kim as follows:

\[
I(f) = \int_{\mathbb{Z}_p} f(x) d\mu_{-1}(x) = \lim_{N \to \infty} \sum_{x=0}^{p^{N-1}} f(x)(-1)^x, \tag{2}
\]
where \(f \in C(\mathbb{Z}_p) \) (see [3,6,7,8]).

Let us assume that \(w \in \mathbb{C}_p \) with \(|1 - w|_p < 1\). By (1), we get

\[
\int_{\mathbb{Z}_p} e^{xt}w^x d\mu_{-1}(x) = \frac{2}{we^{t} - 1} = \sum_{x=0}^{\infty} E_{n,w}\frac{t^n}{n!}, \quad \text{(see [7])},
\]

where \(E_{n,w} \) is weighted Euler numbers. The weighted Euler polynomials are also defined by

\[
\int_{\mathbb{Z}_p} e^{(x+y)t}w^y d\mu_{-1}(y) = \frac{2}{we^{t} - 1}e^{xt} = \sum_{n=0}^{\infty} E_{n,w}(x)\frac{t^n}{n!}.
\]

By (3) and (4), we get

\[
E_{n,w}(x) = \sum_{l=0}^{n} \binom{n}{l} x^{n-l}E_{l,w} = (x + E_w)^n,
\]

with the usual convention about replacing \((E_w)^n\) by \(E_{n,w} \) (see [7]).

The idea for generalizing the fermionic integral is replacing the fermionic Haar measure with weakly (strongly) fermionic measure \(\mathbb{Z}_p \) satisfying

\[
|\mu_{-1}(a + p^n\mathbb{Z}_p) - \mu_{-1}(a + p^{n+1}\mathbb{Z}_p)|_p \leq \delta_n, \quad \text{see [3]},
\]

where \(\delta_n \to 0 \), \(a \) is an element of \(\mathbb{Z}_p \), and \(\delta_n \) is independent of \(a \) (for strongly fermionic measure, \(\delta_n \) is replaced by \(Cp^{-n} \), where \(C \) is a positive constant).

Let \(f(x) \) be a function defined on \(\mathbb{Z}_p \). The fermionic integral of \(f \) with respect to a weakly fermionic measure \(\mu_{-1} \) is

\[
\int_{\mathbb{Z}_p} f(x)d\mu_{-1}(x) = \lim_{n\to\infty} \sum_{x=0}^{p^n-1} f(x)\mu_{-1}(x + p^n\mathbb{Z}_p),
\]

if the limit exists.

If \(\mu_{-1} \) is a weakly fermionic measure on \(\mathbb{Z}_p \), then we can define Radon-Nikodym derivative of \(\mu_{-1} \) with respect to the Haar measure on \(\mathbb{Z}_p \) as follows:

\[
f_{\mu_{-1}}(x) = \lim_{n\to\infty} \mu_{-1}(x + p^n\mathbb{Z}_p), \quad \text{see [3]},
\]

Note that \(f_{\mu_{-1}} \) is only a continuous function on \(\mathbb{Z}_p \). Let \(UD(\mathbb{Z}_p) \) be the space of uniformly differentiable functions on \(\mathbb{Z}_p \). For \(f \in UD(\mathbb{Z}_p) \), let us define \(\mu_{-1,f} \) as follows:

\[
\mu_{-1,f}(x + p^n\mathbb{Z}_p) = \int_{x + p^n\mathbb{Z}_p} f(x)d\mu_{-1}(x), \quad \text{see [3]},
\]

By (3) and (4), we get

\[
E_{n,w}(x) = \sum_{l=0}^{n} \binom{n}{l} x^{n-l}E_{l,w} = (x + E_w)^n,
\]

with the usual convention about replacing \((E_w)^n\) by \(E_{n,w} \) (see [7]).
where the integral is the fermionic p-adic invariant integral. From (7), we can easily note that $\mu_{-1,f}$ is a strongly fermionic measure on \mathbb{Z}_p. Since
\[
\left| \mu_{-1,f}(x + p^n\mathbb{Z}_p) - \mu_{-1,f}(x + p^{n+1}\mathbb{Z}_p) \right|_p = \left| \sum_{x=0}^{p^n-1} f(x)(-1)^x - \sum_{x=0}^{p^n} f(x)(-1)^x \right|_p = \left| \frac{f(p^n)}{p^n} \right|_p |p^n|_p \leq Cp^{-n},
\]
where C is a positive constant.

The purpose of this paper is to derive the weighted Lebesgue-Radon-Nikodym’s type theorem with respect to the fermionic p-adic invariant measure on \mathbb{Z}_p.

2. The weighted Lebesgue-Radon-Nikodym theorem

In this section, we assume that the weighted function $w(x)$ is defined by $w(x) = w^x$ where $w \in \mathbb{C}_p$ with $|1 - w|_p < 1$. For any positive integer a and n with $a < p^n$ and $f \in UD(\mathbb{Z}_p)$, we define the strongly weighted fermionic measure on \mathbb{Z}_p as follows:
\[
\mu_{f,-w}(a + p^n\mathbb{Z}_p) = \int_{a + p^n\mathbb{Z}_p} f(x)w^xd\mu_{-1}(x), \quad (8)
\]
where the integral is the fermionic p-adic invariant integral on \mathbb{Z}_p. From (8), we note that
\[
\mu_{f,-w}(a + p^n\mathbb{Z}_p) = \lim_{m \to \infty} \sum_{x=0}^{p^m-1} f(a + p^n x)(-1)^{a+p^n x}w^{a+p^n x} = (-1)^a w^a \lim_{m \to \infty} \sum_{x=0}^{p^m-n-1} f(a + p^n x)(-1)^x w^{p^n x} \quad (9)
\]
By (9), we get
\[
\mu_{f,-w}(a + p^n\mathbb{Z}_p) = (-1)^a \int_{\mathbb{Z}_p} f(a + p^n x)w^{a+p^n x}d\mu_{-1}(x). \quad (10)
\]
Thus, by (10), we have
\[
\mu_{\alpha f + \beta g,-w} = \alpha \mu_{f,-w} + \beta \mu_{g,-w}, \quad (11)
\]
where $f, g \in UD(\mathbb{Z}_p)$ and α, β are positive constants. By (8), (9), (10) and (11), we get
\[
\left| \mu_{f,-w}(a + p^n\mathbb{Z}_p) \right|_p \leq |f_w|_\infty, \quad (12)
\]
where $|f_w|_\infty = \sup_{x \in \mathbb{Z}_p} |f(x)w^x|_p$.
Let \(P(x) \in \mathbb{C}_p[[x]] \) be an arbitrary polynomial. Now we show \(\mu_{P,-w} \) is a strongly weighted fermionic \(p \)-adic invariant measure on \(\mathbb{Z}_p \). Without a loss of generality, it is enough to prove the statement for \(P(x) = x^k \).

For \(a \in \mathbb{Z} \) with \(0 \leq a < p^n \), we have

\[
\mu_{P,-w}(a + p^n \mathbb{Z}_p) = \lim_{m \to \infty} (-1)^a p^{m-n-1} \sum_{i=0}^{p^m-1} (a + ip^n)^k w^{a+ip^n} (-1)^i.
\]

From binomial theorem, we note that

\[
(a + ip^n)^k = \sum_{l=0}^{k} a^{k-l} \binom{k}{l} (ip^n)^l = a^k + \binom{k}{1} a^{k-1} p^n i + \cdots + p^n i^k.
\]

and

\[
w^{a+ip^n} = w^a \sum_{l=0}^{ip^n} \binom{ip^n}{l} (w-1)^l \equiv w^a \pmod{p^n}.
\]

Thus, by (13) and (14), we get

\[
\mu_{P,-w}(a + p^n \mathbb{Z}_p) \equiv \left(-1 \right)^a a^k \pmod{p^n}
\]

For \(x \in \mathbb{Z}_p \), let \(x \equiv x_n \pmod{p^n} \) and \(x \equiv x_{n+1} \pmod{p^{n+1}} \), where \(x_n, x_{n+1} \in \mathbb{Z} \) with \(0 \leq x_n < p^n \) and \(0 \leq x_{n+1} < p^{n+1} \).

Then we have

\[
\left| \mu_{P,-w}(a + p^n \mathbb{Z}_p) - \mu_{P,-w}(a + p^{n+1} \mathbb{Z}_p) \right| \leq Cp^{-n},
\]

where \(C \) is a positive constant and \(n \gg 0 \).

Let

\[
f_{\mu_{P,-w}}(a) = \lim_{n \to \infty} \mu_{P,-w}(a + p^n \mathbb{Z}_p).
\]

Then, by (15) and (16), we see that

\[
f_{\mu_{P,-w}}(a) = \left(-1 \right)^a a^k = \left(-1 \right)^a a^k P(a).
\]

Since \(f_{\mu_{P,-w}}(x) \) is a continuous function on \(\mathbb{Z}_p \). For \(x \in \mathbb{Z}_p \), we have

\[
f_{\mu_{P,-w}}(x) = (-1)^x w^x x^k, (k \in \mathbb{Z}_+).
\]

Let \(g \in UD(\mathbb{Z}_p) \). Then, by (16), (17) and (18), we get

\[
\int_{\mathbb{Z}_p} g(x) d\mu_{P,-w}(x) = \lim_{n \to \infty} \sum_{x=0}^{p^n-1} g(x) \mu_{P,-w}(x + p^n \mathbb{Z}_p)
\]

\[
= \lim_{n \to \infty} \sum_{x=0}^{p^n-1} g(x) w^x x^k (-1)^x
\]

\[
= \int_{\mathbb{Z}_p} g(x) w^x x^k d\mu_{-1}(x).
\]

Therefore, by (19), we obtain the following theorem.
Theorem 1. Let \(P(x) \in \mathbb{C}_p[[x]] \) be an arbitrary polynomial. Then \(\mu_{P,-w} \) is a strongly weighted fermionic \(p \)-adic invariant measure on \(\mathbb{Z}_p \). That is, \[f_{\mu_{P,-w}} = (-1)^x w^x P(x) \quad \text{for all} \quad x \in \mathbb{Z}_p. \]

Furthermore, for any \(g \in UD(\mathbb{Z}_p) \),
\[
\int_{\mathbb{Z}_p} g(x) d\mu_{P,-w}(x) = \int_{\mathbb{Z}_p} g(x) P(x) w^x d\mu_{-1}(x),
\]
where the second integral is fermionic strongly weighted fermionic \(p \)-adic invariant integral on \(\mathbb{Z}_p \).

Let \(f(x) = \sum_{n=0}^{\infty} a_n \binom{x}{n} \) be the Mahler expansion for \(f \in UD(\mathbb{Z}_p) \). Then we note that \(\lim_{n \to \infty} n|a_n|_p = 0 \). Now, we get \(f_m(x) = \sum_{i=0}^{m} a_i \binom{x}{i} \in \mathbb{C}_p[[x]] \). Thus, we have
\[
\|f - f_m\|_\infty \leq \sup_{n \geq m} n|a_n|_p. \tag{20}
\]
The function \(f(x) \) can be rewritten as \(f = f_m + f - f_m \). Thus, by (11) and (20), we get
\[
|\mu_{f,-w}(a + p^n \mathbb{Z}_p) - \mu_{f,-w}(a + p^{n+1} \mathbb{Z}_p)|_p \\
\leq \max \left\{ |\mu_{f,-w}(a + p^n \mathbb{Z}_p) - \mu_{f_m,-w}(a + p^{n+1} \mathbb{Z}_p)|_p, \right. \\
|\mu_{f-f_m,-w}(a + p^n \mathbb{Z}_p) - \mu_{f-f_m,-w}(a + p^{n+1} \mathbb{Z}_p)|_p \right\}. \tag{21}
\]
From Theorem 1 and (21), we note that
\[
|\mu_{f-f_m,-w}(a + p^n \mathbb{Z}_p)|_p \leq C^* \|f - f_m\|_\infty \leq C_1 p^{-n}, \tag{22}
\]
where \(C^* \) and \(C_1 \) are positive constants. For \(m \gg 0 \), we have \(\|f\|_\infty = \|f_m\|_\infty \).
So, we see that
\[
|\mu_{f_m,-w}(a + p^n \mathbb{Z}_p) - \mu_{f_m,-w}(a + p^{n+1} \mathbb{Z}_p)|_p \\
= |f_m(p^n) w^{p^n}|_p = |f_m(p^n) w^{p^n} - p^n|_p \\
\leq \|f_m w^x\|_{\infty p^{-n}} \leq C_2 p^{-n},
\]
where \(C_2 \) is a positive constant. By (22), we get
\[
\|(-1)^a f(a) w^a - \mu_{f,-w}(a + p^n \mathbb{Z}_p)|_p \\
\leq \max \left\{ |w^a f(a)|_p, |f_m(a) - \mu_{f_m,-w}(a + p^n \mathbb{Z}_p)|_p, \\
|\mu_{f-f_m,-w}(a + p^n \mathbb{Z}_p)|_p \right\} \\
\leq \max \left\{ |f(a)|_p, |f_m(a)|_p, |\mu_{f_m,-w}(a + p^n \mathbb{Z}_p)|_p, \|f - f_m\|_\infty \right\}
\]
Let us assume that fix $\epsilon > 0$, and fix m such that $\|f - f_m\| < \epsilon$. Then we have
\[
\left| (-w)^n f(a) - \mu_{f, -w}(a + p^nZ_p) \right|_p \leq \epsilon \quad \text{for} \quad n \gg 0.
\] (24)

Thus, by (24), we have
\[
f_{\mu_{f, -w}}(a) = \lim_{n \to \infty} \mu_{f, -w}(a + p^nZ_p) = (-1)^n w^n f(a)
\] (25)

Let m be the sufficiently large number such that $\|f - f_m\|_{\infty} \leq p^{-n}$. Then we get
\[
\mu_{f, -w}(a + p^nZ_p) = \mu_{f_m, -w}(a + p^nZ_p) + \mu_{f - f_m, -w}(a + p^nZ_p)
\] \[= (-1)^n w^n f(a) \quad (\text{mod } p^n).
\]

For $g \in UD(Z_p)$, we have
\[
\int_{Z_p} g(x)d\mu_{f, -w}(x) = \int_{Z_p} f(x)g(x)w^n \, d\mu_{-1}(x).
\]

Let f be the function from $UD(Z_p)$ to $Lip(Z_p)$. We easily see that $w^n\mu_{-1}(x + p^nZ_p)$ is a strongly weighted p-adic invariant measure on Z_p and
\[
\left| (f_w)_{\mu_{-1}}(a) - w^n \mu_{-1}(a + p^nZ_p) \right|_p \leq C_3 p^{-n},
\]
where $f_w(x) = f(x)w^n$ and C_3 is a positive constant and $n \in \mathbb{Z}_+$.

If $\mu_{1, -w}$ is associated with strongly weighted fermionic invariant measure on Z_p, then we have
\[
\left| \mu_{1, -w}(a + p^nZ_p) - (f_w)_{\mu_{-1}}(a) \right|_p \leq C_4 p^{-n},
\]
where $n > 0$ and C_4 is a positive constant.

For $n \gg 0$, we have
\[
\left| w^n \mu_{-1}(a + p^nZ_p) - \mu_{1, -w}(a + p^nZ_p) \right|_p
\] \[\leq \left| w^n \mu_{-1}(a + p^nZ_p) - (f_w)_{\mu_{-1}}(a) \right|_p + \left| (f_w)_{\mu_{-1}}(a) - \mu_{1, -w}(a + p^nZ_p) \right|_p
\] (26)
\[\leq K,
\]
where K is a positive constant. Hence, $w\mu_{-1} - \mu_{1, -w}$ is a weighted measure on Z_p. Therefore, we obtain the following theorem.

Theorem 2. Let $w\mu_{-1}$ be a strongly weighted p-adic invariant measure on Z_p, and assume that the fermionic weighted Radon-Nikodym derivative $(f_w)_{\mu_{-1}}$ on Z_p is uniformly differentiable function. Suppose that $\mu_{1, -w}$ is the strongly weighted fermionic p-adic invariant measure associated with $(f_w)_{\mu_{-1}}$. Then there exists a weighted measure $\mu_{2, -w}$ on Z_p such that
\[
w^2 \mu_{-1}(x + p^nZ_p) = \mu_{1, -w}(x + p^nZ_p) + \mu_{2, -w}(x + p^nZ_p).
\]
REFERENCES

Taekyun Kim received M.Sc. from Kyungpook National University, and Ph.D. from Kyushu University, Japan. He is currently a professor at Kwangwoon University since 2008. His research interest is number theory.
Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, Korea
e-mail: tkkim@kw.ac.kr

Jongsung Choi received M.S degree from Pusan National University, Korea, and Ph.D. degrees from The University of Tokyo, Japan. He has been at Kwangwoon University since 2005. His research interests are Inverse Problems, analytic number theory, philosophy of mathematics.
Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, Korea
e-mail: jeschoi@kw.ac.kr

Hyun-Mee Kim received M.Sc. and Ph.D. degrees from Kyunghee University. She has been a parttime instructor at Kwangwoon University since 2011. Her research interests are fuzzy theory and functional analysis.
Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, Korea
e-mail: kagness@kw.ac.kr