REMARKS ON THE WIENER POLARITY INDEX OF SOME GRAPH OPERATIONS†

MORTEZA FAGHANI, ALI REZA ASHRAFI∗ AND OTTORINO ORI

Abstract. The Wiener polarity index \(W_p(G)\) of a graph \(G\) of order \(n\) is the number of unordered pairs of vertices \(u\) and \(v\) of \(G\) such that the distance \(d_G(u, v)\) between \(u\) and \(v\) is 3. In this paper the Wiener polarity index of some graph operations are computed. As an application of our results, the Wiener polarity index of a polybuckyball fullerene and \(C_4\) nanotubes and nanotori are computed.

AMS Mathematics Subject Classification : 05C12.
Key words and phrases : Wiener polarity index, graph operation, polybuckyball fullerene.

1. Introduction

Let \(G = (V, E)\) be a connected simple graph in which \(V\) and \(E\) are the set of vertices and edges respectively. As usual the distance between the vertices \(u\) and \(v\) is denoted by \(d_G(u, v)\) (or \(d(u, v)\) for short) and it is the length of a shortest path connecting \(u\) and \(v\). The number of unordered pairs of vertices \(u\) and \(v\) of \(G\) such that \(d_G(u, v) = k\) is denoted by \(d(G, k)\). A topological index \(\text{Top}(G)\) for \(G\) is a number with this property that for every graph \(H\) isomorphic to \(G\), \(\text{Top}(G) = \text{Top}(H)\). The Wiener index is the first distance-based and most studied topological indices, both from theoretical point of view and applications. It is equal to the sum of distances between all pairs of vertices of the respective graph [29].

The Wiener polarity index of an organic molecule with molecular graph \(G = (V, E)\) is defined as \(W_p(G) = d(G, 3)\). Using the Wiener polarity index, Lukovits and Linert demonstrated quantitative structure property relationships in a series of acyclic and cycle-containing hydrocarbons [25]. In [12] Hosoya, one of the

†The work of the first and second authors was supported in part by the research grant of the University of Kashan, I. R. Iran.

© 2012 Korean SIGCAM and KSCAM.
Let the distance be defined as follows:

Definition 1.1. Let G and H be simple connected graphs. The join $G + H$, symmetric difference $G \Delta H$, disjunction $G \lor H$, composition $G[H]$, Cartesian product $G \times H$, strong product $G \odot H$ and tensor product $G \otimes H$ of G and H are defined as follows:

$V(G + H) = V(G) \cup V(H)$,

$E(G + H) = E(G) \cup E(H) \cup \{uv : u \in V(G), v \in V(H)\}$

$V(G \Delta H) = V(G) \times V(H)$,

$E(G \Delta H) = \{(a, b)(c, d) : ac \in E(G) \text{ or } bd \in E(H) \text{ not both}\}$

$E(G \lor H) = \{(a, b)(c, d) : ac \in E(G) \text{ or } bd \in E(H)\}$

$E(G[H]) = \{(a, b)(c, d) : ac \in E(G) \text{ or } a = c \text{ and } bd \in E(H)\}$

$E(G \times H) = \{(a, b)(c, d) : [ac \in E(G) \text{ and } b = d] \text{ or } [a = c \text{ and } bd \in E(H)]\}$

$E(G \odot H) = \{(a, b)(c, d) : [ac \in E(G) \text{ and } b = d] \text{ or } [a = c \text{ and } bd \in E(H)]\}$

$E(G \otimes H) = \{(a, b)(c, d) : [ac \in E(G) \text{ and } bd \in E(H)]\}$
It is an easy fact that the Wiener polarity index of any graph with diameter less than 3 such as the complete graph K_n, the star graph S_n, the Wheel W_n, the Petersen graph $P_{2,5}$, the complete bipartite graph $K_{m,n}$, join $G + H$, symmetric difference $GΔH$ and the disjunction $G ∨ H$ are zero.

Example 1.2. The Wiener polarity index of the n–vertex path P_n is $n - 3$ and for the cycle C_n, $n ≥ 7$ is n.

Example 1.3. Consider the path P_n with vertex set $V(P_n) = \{x_1, x_2, ..., x_n\}$. We form a graph G with vertices correspond to each vertex of P_n as follows: for each $1 ≤ i ≤ n$ we define a set $M_i = \{x_i, x_{i+1}, ..., x_{i+6}\}$ and connect any vertex x_i to all vertices in M_i. The resulting graph is called a caterpillar denoted by $G = Cat_{n,m_1,m_2,...,m_n}$. To compute the Wiener polarity index of G we notice that there are three types of pair of vertices with distance three. At first, we count the number of vertices $u ∈ M_i$, $v ∈ M_{i+1}$ and $d_G(u, v) = 3$. The number of such pairs is $\sum_{i=1}^n m_i m_{i+1}$. Secondly, the number of vertices with $u = x_i$, $v ∈ M_{i+2}$ and $d_G(u, v) = 3$ is $\sum_{i=1}^n m_i + m_4 + ... + m_n$. Finally, if $u, v ∈ \{x_1, x_2, ..., x_n\}$ then the number of vertices with distance 3 is $n - 3$. Hence we have:

$$W_p(Cat_{n,m_1,m_2,...,m_n}) = \sum_{i=1}^n [m_i m_{i+1}] + 2 \times [m_3 + m_4 + ... + m_n - 2]$$
$$+ [m_1 + m_2 + m_{n-1} + m_n] + n - 3.$$

Let G and H be two graphs. We consider n copies of H and connect the i-th vertex of G to all vertices of i-th copy of H. This graph is called the corona product of G and H denoted by GoH.

2. Main results

In this section, the Wiener polarity index of some graph operations are computed. For further details the interested reader can be consulted [1, 16, 19, 20, 26, 31, 32]. First of all it is clear that for any two vertices u and v in disjunction graph $G ∨ H$ we have $d_{G ∨ H}(u, v) ≤ 2$ and so the Wiener polarity index of $G ∨ H$ is equal to zero. We now consider the composition graph $G[H]$. We have:

Theorem 2.1. Let $G_1, G_2, ..., G_k$ be connected graphs then we have:

$$W_p(G_1[G_2[...[G_k]]]) = W_p(G_1) \prod_{i=2}^k |V(G_i)|.$$

Proof. It is clear that,

$$d_{G_1[G_2]}((a, b), (c, d)) = \begin{cases}
0 & \text{if } a = c, \ b = d \\
1 & \text{if } (a = c), \ bd ∈ E(G_2), \text{ or } ac ∈ E(G_1) \\
2 & \text{if } (a = c), \ bd \notin E(G_2) \\
d_{G_1}(a, c) & \text{if } (a \neq c)
\end{cases}$$
The proof is by induction on \(k \). If \(k = 2 \) then we have: \(d_{G_1[G_2]}((a, b), (c, d)) = 3 \) if and only if \(d_{G_1}(a, c) = 3 \). Therefore, \(WP(G_1[G_2]) = WP(G_1)[|V(G_1)|^2] \). Now assume that the result holds for \(k \), then

\[
WP(G_1[G_2][\ldots[G_k[G_{k+1}]]\ldots]) = WP(G_1)[(\prod_{i=2}^{k} |V(G_i)|)|V(G_{k+1})|]
\]

\[
= WP(G_1) \prod_{i=2}^{k+1} |V(G_i)|.
\]

This completes the proof. \(\square \)

There are many graph operations with vertex set \(V(G) \times V(H) \). Let us consider the Cartesian product of graphs. We have:

Lemma 2.2. Let \(G_1, G_2, \ldots, G_k \) be connected graphs. Then

\[(a) \quad d_{\prod_{i=1}^{k} G_i}((x_1, x_2, \ldots, x_k), (y_1, y_2, \ldots, y_k)) = \sum_{i=1}^{k} d_{G_i}(x_i, y_i) \]

\[(b) \quad d(\prod_{i=1}^{k} G_i, 2) = \left[\sum_{i=1}^{k} d_i \prod_{j=1}^{k} v_j + 2 \sum_{i,j \in A_k, i < j} e_i e_j \prod_{l \neq i,j} v_l \right] \]

\[(c) \quad |E(\prod_{i=1}^{k} G_i)| = \sum_{i=1}^{k} (e_i \prod_{j=1, j \neq i}^{k} v_j), \]

where \(A_k = \{1, 2, \ldots, k\} \), \(e_i = |E(G_i)| \), \(d_i = d(G_i, 2) \), and \(v_i = |V(G_i)| \).

Proof. We first notice that the following equality holds:

\[d_{G_1 \times G_2}((a, b), (c, d)) = d_{G_1}(a, c) + d_{G_2}(b, d)\]

see [26] for details. We proceed by induction on \(k \). The equality (a) is obvious and (c) holds by the definition of Cartesian product of graphs. To prove (b), we notice that \(d_{G_1 \times G_2}((a, b), (c, d)) = 2 \) if and only if

\[d_{G_1}(a, c) + d_{G_2}(b, d) = 2.\]

It implies that \(d(G_1 \times G_2, 2) = d_1 v_2 + d_2 v_1 + 2 e_1 e_2.\)

Assume that the result holds for \(k \) then

\[
d(\prod_{i=1}^{k+1} G_i, 2) = d(\prod_{i=1}^{k} G_i, 2)v_{k+1} + d(G_{k+1}, 2)(\prod_{j=1}^{k} v_j) + 2e(\prod_{i=1}^{k} G_i)(e_{k+1})
\]

\[
= \sum_{i=1}^{k+1} [d_i \prod_{j=1, j \neq i}^{k} v_j]v_{k+1} + (d_{k+1})(\prod_{j=1}^{k} v_j)
\]

\[+ 2v_{k+1}[\sum_{i,j \in A_{k+1}, i < j} e_i e_j \prod_{l \neq i,j} v_l] + 2[\sum_{i=1}^{k+1} (e_i \prod_{j=1, i \neq j}^{k} v_j)](e_{k+1})
\]

\[= \sum_{i=1}^{k+1} d_i \prod_{j=1, j \neq i}^{k+1} v_j + 2[\sum_{i,j \in A_{k+1}, i < j} e_i e_j \prod_{l \neq i,j} v_l].\]
proving the lemma.

\[W_p(\bigwedge_{i=1}^k G_i) = \sum_{i=1}^k (w_i \prod_{j=1, j \neq i}^k v_j) + 2 \sum_{i \neq j, i, j \in A_k} (e_i d_j \prod_{l \in A_k - \{i, j\}} v_l) \\
+ 4 \sum_{(i, j, l \in A_k), i < j < l} (e_i e_j e_l \prod_{p \in A_k - \{i, j, l\}} v_p) \]

in which \(A_k = \{1, 2, ..., k\} \), \(e_i = |E(G_i)| \), \(d_i = d(G_i, 2) \), \(v_i = |V(G_i)| \) and \(w_i = W_p(G_i) \).

Proof. By induction on \(k \). If \(k = 2 \) then \(d_{G_1 \times G_2}[(a, b), (c, d)] = 3 \). Therefore, one of the following holds:

1. Let \(|d_{G_1}(a, c)| = 3, b = d \). In this case the number of pairs in \(G_1 \times G_2 \) with distance 3 is equal to \(w_1 v_2 \).
2. Let \(d_{G_2}(b, d) = 3, a = c \). In this case the number of pairs in \(G_1 \times H_2 \) with distance 3 is equal to \(w_2 v_1 \).
3. Let \(|d_{G_1}(a, c)| = 2, bd \in E(G_2) \). In this case the number of pairs in \(G_1 \times G_2 \) at distance 3 is equal to \(2 e_2 d_1 \).
4. Let \(|d_{G_2}(b, d)| = 2, ac \in E(G_1) \). In this case the number of pairs in \(G_1 \times G_2 \) at distance 3 is equal to \(2 e_1 d_2 \).

Therefore, \(W_p(\bigwedge_{i=1}^k G_i) = w_1 v_2 + w_2 v_1 + 2 e_2 d_1 + 2 e_1 d_2 \). Assume that the result holds for \(k \). Then the Lemma 2.2 implies that

\[
W_p(\bigwedge_{i=1}^{k+1} G_i) = W_p(\bigwedge_{i=1}^k G_i)\left[|V(\bigwedge_{i=1}^k G_i)| + |W_p(\bigwedge_{i=1}^k G_i)|v_{k+1} + 2|e_{k+1}|d_{k+1} \bigwedge_{i=1}^k G_i\right]
\]

\[= w_{k+1} \left(\prod_{i=1}^{k+1} v_i \right) + \left(\sum_{i=1}^k (w_i \prod_{j=1, j \neq i}^k v_j) + 2 \sum_{i \neq j, i, j \in A_k} (e_i d_j \prod_{l \in A_k - \{i, j\}} v_l) \right) \\
+ 4 \sum_{i, j \in A_k, i < j < l} (e_i e_j e_l \prod_{p \in A_k - \{i, j, l\}} v_p) v_{k+1} + 2 e_{k+1} \sum_{i=1}^k d_i \prod_{j=1, j \neq i}^k v_j \]

\[+ 2 \sum_{i, j \in A_k, i < j} (e_i e_j \prod_{p \in A_k - \{i, j\}} v_p) + 2 e_{k+1} \sum_{i=1}^k (e_i \prod_{j=1, j \neq i}^k v_j) \]

\[= \left(w_{k+1} \left(\prod_{i=1}^{k+1} v_i \right) + v_{k+1} \sum_{i=1}^k w_i \left(\prod_{j=1, j \neq i}^k v_j \right) \right) + 2 e_{k+1} \sum_{i \neq j, i, j \in A_k} (e_i d_j \prod_{l \in A_k - \{i, j\}} v_l) \]

\[+ 2 d_{k+1} \sum_{i=1}^k e_i \prod_{j=1, j \neq i}^k v_j + \left(4 e_{k+1} \sum_{i \neq j, i, j \in A_k} e_i e_j \prod_{p \in A_k - \{i, j\}} v_p \right) \]

\[+ \left(2 e_{k+1} \sum_{i=1}^k d_i \prod_{j=1, j \neq i}^k v_j + 4 v_{k+1} \sum_{i, j \in A_k, i < j < l} (e_i e_j e_l \prod_{p \in A_k - \{i, j, l\}} v_p) \right) \]

\[= \sum_{i=1}^{k+1} (w_i \prod_{j=1, j \neq i}^k v_j) + 2 \sum_{i \neq j, i, j \in A_k} (e_i d_j \prod_{l \in A_k - \{i, j\}} v_l) \\
+ 4 \sum_{(i, j, l \in A_k, i < j < l)} (e_i e_j e_l \prod_{p \in A_k - \{i, j, l\}} v_p) \]
This completes the proof. \hfill \square

Define Q_n to be the n-dimensional cube. Then Q_n is isomorphic to the Cartesian product of n copies of K_2. Apply Theorem 2.3, we have:

$$W_p(Q_n) = W_p(\prod_{i=1}^{n} K_2) = 4 \sum_{(i,j) \in A_n, i < j \leq l} (e_i e_j e_l) \prod_{p \in A_n - \{i,j,l\}} v_p$$

$$= 4 \sum_{(i,j) \in A_n, i < j < l} (2^{n-3}) = 4 \binom{n}{3} \times 2^{n-3} = \frac{n^3}{3} \times 2^{n-1}.$$

We now define $R = P_m \times C_n$ and $S = C_m \times C_n$. The graphs R and S are called C_4-nanotube and C_4-nanotorus.

Corollary 2.4. $W_p(R) = nm + n(m-3) + 2(m-2)n + 2n(m-1) = 6mn - 9m$ and $W_p(S) = 6mn - 3(m + n).$

Theorem 2.5. Let G and H be two connected graphs. Then

$$W_p(G \circ H) = W_p(G). \left\{ |V(H)| + |E(H)| + \sum_{i=1}^{\left\lfloor \frac{|H|}{2} \right\rfloor} \frac{(d_i)}{2} \right\}$$

$$+ W_p(H). \left\{ |V(G)| + |E(G)| + \sum_{i=1}^{\left\lfloor \frac{|G|}{2} \right\rfloor} \frac{(d_i)}{2} \right\} + W_p(G).W_p(H).$$

Proof. We first notice that the following equality holds:

$$d_{G \circ H}((a, b), (c, d)) = \text{Max}[d_G(a, c), d_H(b, d)],$$

see [26] for details. Next we assume that $d_{G \circ H}((a, b), (c, d)) = 3$. Therefore at least one of the following holds:

1. Let $d_H(b, d) = 3, a = c$. In this case the number of pairs in $G \circ H$ by distance 3 is equal to $W_p(H).|V(G)|$.
2. Let $d_H(b, d) = 3, a \in E(G)$. In this case the number of pairs in $G \circ H$ with distance 3 is equal to $W_p(H).|E(G)|$.
3. Let $d_H(b, d) = 3, d_G(a, c) = 2$. In this case the number of pairs in $G \circ H$ at distance 3 is equal to $W_p(H).|\sum_{i=1}^{\left\lfloor \frac{|G|}{2} \right\rfloor} \binom{(d_i)}{2}|$.
4. Let $d_G(a, c) = 3, b = d$. In this case the number of pairs in $G \circ H$ at distance 3 is equal to $W_p(G).|V(H)|$.
5. Let $d_G(a, c) = 3, bd \in E(H)$. In this case the number of pairs in $G \circ H$ at distance 3 is equal to $W_p(G).|E(H)|$.
6. Let $d_H(b, d) = 2, d_G(a, c) = 3$. In this case the number of pairs in $G \circ H$ at distance 3 is equal to $W_p(G).|\sum_{i=1}^{\left\lfloor \frac{|H|}{2} \right\rfloor} \binom{(d_i)}{2}|$.
7. Let $d_G(a, c) = 3, d_H(b, d) = 3$. In this case the number of pairs in $G \circ H$ at distance 3 is equal to $W_p(G).W_p(H)$.

Let \(\mathcal{E} \) with \(W \) edges are equal to 3 · \(W \) equal to \(G \) triangular graph. Then the Wiener polarity index of tensor product

\[
W_p(G \odot H) = W_p(G) \left\{ |V(H)| + |E(H)| + \sum_{i=1}^{[H]} \left(\frac{d_i}{2} \right) \right\} + W_p(H) \left\{ |V(G)| + |E(G)| + \sum_{i=1}^{[G]} \left(\frac{d_i}{2} \right) \right\} + W_p(G)W_p(H).
\]

This completes the proof. \(\square \)

The graph \(H \) is called strongly triangular if for every pair \(u, v \in V(H) \) there exists a vertex \(w \) adjacent to both of them. The number of triangles in \(G \) is denoted by \(t_G \).

Theorem 2.6. Let \(G \) and \(H \) be simple connected graphs, where \(H \) is a strongly triangular graph. Then the Wiener polarity index of tensor product \(G \odot H \) is equal to \(W_p(G) |V(H)|^2 + [|E(G)| - 3t_G](|V(H)|^2 - |E(H)|) \).

Proof. By [22, Theorem 2], \(d_{G \odot H}((a, b), (c, d)) \) is computed as follows:

\[
d_{G \odot H}((a, b), (c, d)) = \begin{cases}
2 & \left[(ac \in E(G)) , (bd \notin E(H)) , (ac \notin \text{Tri}(G)) \right] \\
3 & \left[(ac \notin E(G)) , (bd \notin E(H)) , (ac \notin \text{Tri}(G)) \right] \\
& \left[(ac \in E(G)) , (bd \in E(H)) , (ac \notin \text{Tri}(G)) \right] \\
& \text{or} \left[(ac \in E(G)) , (bd \notin E(H)) , (ac \notin \text{Tri}(G)) \right] \\
& \text{or} \left[(ac \in E(G)) , (bd = d) , (ac \notin \text{Tri}(G)) \right] \\
& \text{or} \left[(ac \in E(G)) , (bd = d) , (ac \notin \text{Tri}(G)) \right] \\
\end{cases}
\]

in which \(\text{Tri}(G) \) is the set of all edges in triangles in \(G \). Our main proof will consider the following two cases:

Case 1: Suppose \(d_{G \odot H}((a, b), (c, d)) = 3 \). Then \([(ac \in E(G)) , (bd \notin E(H)) , (ac \notin \text{Tri}(G))] \) or \([(ac \notin E(G)) , (bd \notin E(H)) , (ac \notin \text{Tri}(G))] \). Let \(t_G \) be the number of triangles in \(G \). If \(ac \notin \text{Tri}(G) \) then the number of such edges are equal to 3 · \(t_G \). This implies that the number of pairs \(a, c \in E(G) \) is equal to \(|E(G)| - 3t_G \). Similarly, the number of vertices \(b \) and \(d \) such that \(bd \in E(H) \) is \(|V(H)|^2 - |E(H)| \). Therefore, the number of pairs \((a, c), (b, d) \) with \(W_p(G \odot H) = 3 \) is \([|E(G)| - 3t_G]|(|V(H)|^2 - |E(H)|) \).

Case 2: Suppose \(d_{G \odot H}((a, b), (c, d)) = d_G(a, c) = 3 \). Then the number of pairs \((ac, (b, d)) \) such that \(W_p(G \odot H) = 3 \) is \(W_p(G) |V(H)|^2 \). So, \(W_p(G \odot H) = W_p(G) |V(H)|^2 + [|E(G)| - 3t_G]|(|V(H)|^2 - |E(H)|) \), proving the theorem. \(\square \)

We now consider the corona product of graphs.

Theorem 2.7. Let \(G \) and \(H \) be graphs. Then the Wiener polarity index of \(GoH \) is equal to \(W_p(G) + \sum_{i=1}^{[G]} t_i + |E(G)| |V(G)|^2 \) in which \(t_i = |\bigcup_{v \in N(v_i)} (N(b) - N(v_i))| - 1 \).
Proof. We note that $d_{GoH}(a, b)$ is computed as follows:

$$d_{GoH}(a, b) = \begin{cases}
0 & \text{a = c} \\
\deg_G(a, b) & \text{(a \neq b), (a, b \in V(G))} \\
2, \text{or, 1} & \text{(a \neq b), (a, b \in H_i)} \\
d_G(a, v_i) + 1 & \text{(a \in V(G)), (b \in H_i)} \\
d_G(v_i, v_j) + 2 & \text{(b \in V(H_j)), (a \in H_i)}
\end{cases}$$

We now assume that $d_{GoH}(a, b) = 3$. Therefore at least one of the following hold:

1. Let $(a \neq b), (a, b \in V(G))$. In this case the number of pairs in GoH at distance 3 is equal to $W_p(G)$.
2. Let $(a \in V(G)), (b \in H_i)$. In this case the number of pairs in GoH with distance 3 is equal to $\sum_{i=1}^{[G]} t_i$ in which t_i is the number of vertices in G by distance 3 from v_i, it is equal to $t_i = |\bigcup_{b \in N(v_i)} [N(b) - N(v_i)]| - 1$.
3. Let $(b \in V(H_j)), (a \in H_i)$. In this case the number of pairs in GoH at distance 3 is equal to $|E(G)|.|V(G)|^2$.

Therefore, $W_p(GoH) = W_p(G) + \sum_{i=1}^{[G]} t_i + |E(G)|.|V(G)|^2$. \hfill \qed

Let G and H be two connected graphs, $u \in V(G)$ and $v \in V(H)$. The linked graph K is a graph with $V(K) = [(V(G)) \cup (V(H))]$ and $E(K) = (E(G)) \cup (E(H)) \cup \{uv\}$, Figure 1. We end the paper by the following theorem:

Theorem 2.8. $W_p(K) = W_p(G) + W_p(H) + \deg_G(u)\deg_H(v) + d_G(u, 2) + d_H(v, 2)$.

![Figure 1. The Link of the Graphs G and H.](image)

The link is an important graph operation with some application in chemistry. The models of some complex molecules can be built from simpler building block by iterating combining the link operation, see [6]. Let G and H be two simple and connected graphs with disjoint vertex sets and $a, b \in V(G)$ and $c, d \in V(H)$. A link of G and H by a and c is defined as the graph $(G H)(a; c)$ obtained by joining the vertices a and c by an edge. Similarly, a double link of G and H by (a, c) and (b, d) is defined as the graph $(G H)(a, b; c, d)$ obtained by joining a and c by an edge and b and d by another edge. A link and double link of two graphs are shown schematically in Figures 1 and 2.

Theorem 2.9. Suppose that G and H are connected graphs and $a, b \in V(G)$ and $c, d \in V(H)$. Set $L_1 = (G H)(a; c)$ and $(G H)(a, b; c, d)$. Then
Remarks on the Wiener Polarity Index of Some Graph Operations

Figure 2. The Double Link of the Graphs G and H.

- $W_p(L_1) = W_p(G) + W_p(H) + d_G(a, 2) + d_H(b, 2) + \deg_G(a)\deg_H(b)$.
- $W_p(L_2) = W_p(G) + W_p(H) + d_G(a, 2) + d_H(b, 2) + d_G(c, 2) + d_H(d, 2) + \deg_G(a)\deg_H(b) + \deg_G(c)\deg_H(d) - |N_G(a) \cap N_G(c)| \cdot |N_G(c) \cap N_H(d)|$.

Proof. The first equality is a direct consequence of definition. To prove second, we consider three different cases as follows:

- Two vertices are chosen from G. The number of such pairs of distance 3 is equal to $W_p(G)$.
- Two vertices are chosen from H. The number of such pairs of distance 3 is equal to $W_p(H)$.
- One vertex is chosen from G and another from H. We have to count the number of pairs of vertices x, y of distance 3. To do this, we consider six subcases as follows:
 - $x = a$ and $y \in H$. The number of such pairs are equal to $d_H(b, 2)$.
 - $x \in G$ and $y = b$. The number of such pairs are equal to $d_G(a, 2)$.
 - $x = c$ and $y \in H$. The number of such pairs are equal to $d_H(d, 2)$.
 - $x \in G$ and $y = d$. The number of such pairs are equal to $d_G(c, 2)$.
 - $x \in N_G(a)$ and $y \in N_H(b)$. The number of such pairs are equal to $\deg_G(a) \cdot \deg_H(b)$.
 - $x \in N_G(c)$ and $y \in N_H(d)$. The number of such pairs are equal to $\deg_G(c) \cdot \deg_H(d)$.

Notice that in last two cases the vertices in $N_G(a) \cap N_G(c)$ and $N_G(b) \cap N_H(d)$ are counted twice. This completes our argument.

Fullerenes are carbon cage molecules having 12 pentagonal and $(n=2-10)$ hexagonal faces, where $20 \leq n (\neq 22)$ is an even integer. The discovery of the fullerene C_{60} in 1985 by Kroto and Smalley revealed a new form of existence of carbon element other than graphite, diamond and amorphous carbon [23, 24].

In the end of this paper, we apply Theorem 2.9 to compute the Wiener polarity index of a polybuckyball, Figure 3. The molecular graph of a polybuckyball is instructed by operations link or double link on the same IPR fullerene graphs on 60 vertices.

Corollary 2.10. The Wiener polarity index of the first and second type polybuckyballs, that is made by n copies of C_{60} fullerene by operations link or double link is equal to $561n - 615$ and $294n - 54$, respectively.
Figure 3. The Molecular Graph of a Polybuckyball a) of the first type; b) of the second type.

References

Morteza Faghani He is a PhD student of the University of Kashan working on the graph theoretical problems in mathematical chemistry under direction of professor Ali Reza Ashrafi.

Department of Mathematics, Faculty of Mathematics, Statistics and Computer Science, University of Kashan, Kashan 87317-51167, I. R. Iran.

Ali Reza Ashrafi received his M.Sc. from Shahid Beheshti University, and Ph.D. from the University of Tehran under direction of professor Mohammad reza darafsheh. He is currently a professor at the University of Kashan since 1994. His research interests are computational group theory, graph theory and mathematical chemistry.

Department of Mathematics, Faculty of Mathematics, Statistics and Computer Science, University of Kashan, Kashan 87317-51167, I. R. Iran.

e-mail: ashrafi@kashanu.ac.ir
Ottorino Ori was born in Parma, Italy in 1960. He reached the degree in physics at Parma University in 1986 with a theoretical thesis in solid state physics. He then spent the next 3 years in a postdoc position, sponsored by Eni (Italian oil company) to develop computer chemistry applications in the heterogeneous catalysis sector. His interest for topological chemistry started in that period with studies to zeolites and fullerenes. The Wiener index of C60 was computed in 1991 and, since then, many other hexagonal systems have been investigated. From 2000 he joined Actinium as correspondent member, a small research company in Rome founded by Professor Franco Cataldo devoted to frontier research in chemistry. His cooperations with scientists like Ante Graovac, Mihai Putz, Ali Iranmanesh, Giorgio Benedek and Ali Reza Ashrafi focus on topological modelling methods and their application to schwarzites, graphene and other nanosystems.

Department of Mathematics, Faculty of Mathematics, Statistics and Computer Science, University of Kashan, Kashan 87317-51167, I. R. Iran.