THE VERTEX AND EDGE PI INDICES OF GENERALIZED HIERARCHICAL PRODUCT OF GRAPHS

M. TAVAKOLI* AND F. RAHBARNIA

AMS Mathematics Subject Classification : 05C12.
Key words and phrases : Hierarchical product, generalized hierarchical product, vertex PI index, edge PI index.

1. Introduction

Throughout this paper all graphs considered are finite, simple and connected. The distance \(d_G(u, v)\) between the vertices \(u\) and \(v\) of a graph \(G\) is equal to the length of a shortest path that connects \(u\) and \(v\). Suppose \(G\) is a graph with vertex and edge sets \(V = V(G)\) and \(E = E(G)\), respectively. Suppose \(e = ab \in E(G)\). The number of edges of \(G\) whose distance to the vertex \(u\) is smaller than the distance to the vertex \(v\) is denoted by \(m^G_{uv}(e)\). The edge PI index of \(G\), \(\text{PI}_e(G)\), of a graph \(G\) is defined as \(\text{PI}_e(G) = \sum_{e=uv \in E(G)} (m^G_{gu}(e) + m^G_{gv}(e))\) [4, 5]. In a similar way, the quantities \(n^G_a(e)\) is defined as the number of vertices closer to \(a\) than to \(b\). In other words, \(n^G_a(e) = |\{u \in V(G)|d(u, a) < d(u, b)\}|. \) The vertex PI index of \(G\), \(\text{PI}_v(G)\), is defined as the summation of \(n^G_u(uv) + n^G_v(uv)\) over all edges of \(G\) [6, 7].

The edges \(e = uv\) and \(f = xy\) of \(G\) are said to be equidistant edges if \(\min\{d_G(u, x), d_G(u, y)\} = \min\{d_G(v, x), d_G(v, y)\}\). For \(e = uv\) in \(G\), the number of equidistant vertices of \(e\) is denoted by \(N_G(e)\) and the number of equidistant

Received September 5, 2012. Revised November 16, 2012. Accepted November 22, 2012.
*Corresponding author.
© 2013 Korean SIGCAM and KSCAM.
edges of e is denoted by $M_G(e)$. Then the above definitions are equivalent to

\[
\text{PI}_v(G) = |V(G)||E(G)| - \sum_{e \in E(G)} N_G(e), \quad \text{PI}_e(G) = |E(G)|^2 - \sum_{e \in E(G)} M_G(e).
\]

Suppose G and H are graphs and $U \subseteq V(G)$. The generalized hierarchical product, denoted by $G(U) \cap H$, is the graph with vertex set $V(G) \times V(H)$ and two vertices (g, h) and (g', h') are adjacent if and only if $g = g' \in U$ and $hh' \in E(H)$ or, $gg' \in E(G)$ and $h = h'$. This graph operation introduced recently by Barrière et al. [2, 3] and found some applications in computer science.

Most of our notation is standard and taken mainly from [1, 9]. The path graph with n vertices is denoted by P_n.

2. Main results

Let $G = (V, E)$ be a graph and $U \subseteq V$. We need some notation than taken from [8]. We encourage the interested readers to consult this paper and references therein for more information on this topic. Following Pattabiraman and Paulraja [8], an $u-v$ path through U in $G(U)$ is an $u-v$ path in G containing some vertex $w \in U$ (vertex w could be the vertex u or v). Let $d_{G(U)}(u, v)$ denote the length of a shortest $u-v$ path through U in G. Notice that, if one of the vertices u and v belong to U, then $d_{G(U)}(u, v) = d_G(u, v)$. A vertex $x \in V(G(U))$ is said to be equidistant from $e = uv \in E(G(U))$ through U in $G(U)$, if $d_{G(U)}(u, x) = d_{G(U)}(v, x)$. For an edge e in $G(U)$, let $N_{G(U)}(e)$ denote the number of equidistant vertices of e through U in $G(U)$. Then $\text{PI}_v(G(U))$ can be defined as follows:

\[
\text{PI}_v(G(U)) = \sum_{e \in E(G(U))} (|V(G(U))| - N_{G(U)}(e)).
\]

For $e \in E(G)$ and $S \subseteq V(G)$, let $N_{S}(e)$ denote the number of equidistant vertices of e (in G) contained in S. The edges $e = uv$ and $f = xy$ of $G(U)$ are said to be equidistant edges through U in $G(U)$ if $\min\{d_{G(U)}(u, x), d_{G(U)}(u, y)\} = \min\{d_{G(U)}(v, x), d_{G(U)}(v, y)\}$. Let $M_{G(U)}(e)$ denote the number of equidistant edges of e through U in $G(U)$. Then $\text{PI}_e(G(U))$ is defined as follows:

\[
\text{PI}_e(G(U)) = \sum_{e \in E(G(U))} (|E(G(U))| - M_{G(U)}(e)).
\]

Let $G_i = (V_i, E_i)$, $1 \leq i \leq N$, be a graph with vertex set V_i having a distinguished or root vertex 0. Following Barrière et al. [2, 3], the hierarchical product $H = G_N \cap \ldots \cap G_2 \cap G_1$ is the graph with vertices the N-tuples $x_N \ldots x_3x_2x_1$, $x_i \in V_i$, and edges defined by the adjacencies:

\[
\begin{align*}
 x_N \ldots x_3x_2x_1 & \sim \\
 x_N \ldots x_3x_2y_1 & \text{ if } y_1 \sim x_1 \text{ in } G_1, \\
 x_N \ldots x_3y_2x_1 & \text{ if } y_2 \sim x_2 \text{ in } G_2 \text{ and } x_1 = 0, \\
 x_N \ldots y_3x_2x_1 & \text{ if } y_3 \sim x_3 \text{ in } G_3 \text{ and } x_1 = x_2 = 0, \\
 & \vdots \vdots \\
 y_N \ldots x_3x_2x_1 & \text{ if } y_N \sim x_N \text{ in } G_N \text{ and } x_1 = x_2 = \ldots = x_{N-1} = 0.
\end{align*}
\]
A path graph with \(n \) vertices, is denoted by \(P_n \) and a caterpillar is a tree in which all the vertices are within distance 1 of a central path. By definition of hierarchical product, it is clear that if \(P_m \) is a path graph and \(S_n \) is a rooted star graph with root vertex \(r \) such that \(\text{deg}(r) > 1 \) then \(P_m \cap S_n \) is a caterpillar with order \(mn \) and generally, the hierarchical product of an arbitrary sequence of acyclic graphs is again an acyclic graph. Therefore, we can write:

Lemma 2.1. If \(G_1, G_2, \ldots, G_n \) are trees with orders \(m_1, \ldots, m_n \), respectively, then

\[
\text{PL}_v(G_1 \cap \ldots \cap G_n) = \prod_{i=1}^{n} m_i - 1 \prod_{i=1}^{n} m_i,
\]

\[
\text{PL}_v(G_1 \cap \ldots \cap G_n) = \prod_{i=1}^{n} m_i - 1(\prod_{i=1}^{n} m_i - 2).
\]

Let \(G_1, G_2, \ldots, G_n \) be connected rooted graphs with root vertices \(r_1, \ldots, r_n \), respectively and \(e = (a_{n-1}, u, r_1, \ldots, r_1)(a_{n-1}, v, r_1, \ldots, r_1) \) is an edge of \(H \) such that \(uv \in E(G_1) \). In order to simplify our notation, we will denote \(n(a_{n-1}, a_{n+1}, r_1, \ldots, r_1) \) by \(m_1(e) \), \(n(a_{n-1}, a_{n+1}, v, r_1, \ldots, r_1) \) by \(m_2(e) \), \(m(a_{n-1}, a_{n+1}, r_1, \ldots, r_1) \) by \(m_1(e) \) and \(m(a_{n-1}, a_{n+1}, v, r_1, \ldots, r_1) \) by \(m_2(e) \).

In what follows, let \(\prod_i f_i = 1 \) and \(\sum_i f_i = 0 \) for each \(i, j \in \{0, 1, 2, \ldots\} \), that \(i \neq j = 1 \). Furthermore, let \(\prod_i f_i = \sum_i f_i = 0 \) for every \(i, j \in \{0, 1, 2, \ldots\} \), such that \(i \neq j > 1 \). Also, for a sequence of graphs, \(G_1, G_2, \ldots, G_n \), we set \(|V_{i,j}| = \prod_{k=i}^{j} |V(G_k)| \) and \(|V_{i,j}| = \prod_{k=i}^{j} |V(G_k)| \).

The main results of [8] are Theorems 2.2 and 3.1. We claim that these results are incorrect. We first explain the reason that makes Theorem 2.2 to be incorrect. In [8, Eq. 2.3], the authors claim that for each edge \(e' = (u, v) \in G(U) \cap H \) such that \(v \in V(H) \) and \(e = u, \ u \in E(G) \), we have \(N_{G(U)}(e) = |V(H)|N_{G(U)}(e) \). In Figure 2, a counterexample for this argument is presented. Notice that if \(U = \{r\}, e' = (y, 1)(z, 1) \) then \(N_{G(U)}(e') = 6 \), but \(|V(H)|N_{G(U)}(e) = 2 \), which is impossible. In Figure 3, a family of enough large counterexamples are presented. In this figure, \(H = P_m, U = \{x\} \) and \(|V(G)| = 2n+1 \). Then \(\text{PL}_v(G(U) \cap H) = 2mn(2mn+2m+n-2)+m(m-1) \). But, [8, Theorem 2.2] implies that \(\text{PL}_v(G(U) \cap H) = 2mn(3mn+2m-1)+m(m-1) \). Then \(\{2mn(2mn+2m+n-2)+m(m-1) \} = 2mn(3mn+2m-1)+m(m-1) \), leads to another contradiction.

In the following theorem a correct form of [8, Theorem 2.2] is presented.

Theorem 2.2. Suppose \(G_1, G_2, \ldots, G_n \) are connected rooted graphs with root vertices \(r_1, \ldots, r_n \), respectively. Then

\[
\text{PL}_v(G_1 \cap \ldots \cap G_n) = \sum_{i=1}^{n} |V_{i,n}| \text{PL}_v(G_i) + \sum_{i=1}^{n-1} |V_{i+1,n}|(|E(G_i)| - N_{r_i}).
\]
\[
\times \sum_{j=i+1}^{n} ([V(G_j)] - 1)|V_{1,j-1}|,
\]

where \(N_{r_i} = \{|uv \in E(G_i) \mid d_{G_i}(u, r_i) = d_{G_i}(v, r_i)|\} \).

Proof. Let \(H = G_n \cap \cdots \cap G_2 \cap G_1 \) and \(e = (a_n, \ldots, a_{i+1}, u, r_{i-1}, \ldots, r_1)(a_n, \ldots, a_{i+1}, v, r_{i-1}, \ldots, r_1) \) be an edge of \(H \) such that \(uv \in E(G_i) \), and \(a_j \in V(G_j) \). It follows from the edge structure of \(H \) that, if \(d_{G_i}(u, r_i) \neq d_{G_i}(v, r_i) \) then

\[
n_1^H(e) + n_2^H(e) = (n_{G_i}^v(uv) + n_{G_i}^v(uv)) \prod_{j=1}^{i-1} |V(G_j)| + \sum_{j=i+1}^{n} ([V(G_j)] - 1) \prod_{k=1}^{j-1} |V(G_k)|
\]

and if \(d_{G_i}(u, r_i) = d_{G_i}(v, r_i) \) then

\[
n_1^H(e) + n_2^H(e) = (n_{G_i}^v(uv) + n_{G_i}^v(uv)) \prod_{j=1}^{i-1} |V(G_j)|.
\]

Thus, the summation of \([n_1^H(uv) + n_2^H(uv)]\) over all edges of copies of \(G_i \), is equal to:

\[
(\prod_{j=1,j \neq i}^{n} |V(G_j)|) \text{PL}_v(G_i) + (|E(G_i)| - N_{r_i}) (\prod_{j=1,j \neq i}^{n} |V(G_j)|) \sum_{j=i+1}^{n} ([V(G_j)] - 1) \prod_{k=1}^{j-1} |V(G_k)|.
\]

Therefore,

\[
\text{PL}_v(H) = \sum_{i=1}^{n} \left[(\prod_{j=1,j \neq i}^{n} |V(G_j)|) \text{PL}_v(G_i) + (|E(G_i)| - N_{r_i}) (\prod_{j=1,j \neq i}^{n} |V(G_j)|) \sum_{j=i+1}^{n} ([V(G_j)] - 1) \prod_{k=1}^{j-1} |V(G_k)| \right]
\]

\[
= \sum_{i=1}^{n} (\prod_{j=1,j \neq i}^{n} |V(G_j)|) \text{PL}_v(G_i) + \sum_{i=1}^{n-1} \left((\prod_{j=i+1}^{n} |V(G_j)|) (|E(G_i)| - N_{r_i}) \sum_{j=i+1}^{n} ([V(G_j)] - 1) \prod_{k=1}^{j-1} |V(G_k)| \right),
\]

which proves the theorem. \(\square\)

Corollary 2.3. Suppose \(G_1, G_2, \ldots, G_n \) are connected rooted graphs with root vertices \(r_1, \ldots, r_n \), respectively. We also assume that \(r_i, 1 \leq i \leq n, \) lies on no odd cycle of \(G_i \). Then

\[
\text{PL}_v(G_n \cap \cdots \cap G_2 \cap G_1) = \sum_{i=1}^{n} |V_{1,n}^i| \text{PL}_v(G_i) + \sum_{i=1}^{n-1} |V_{i+1,n}||E(G_i)|
\]

\[
\times \sum_{j=i+1}^{n} ([V(G_j)] - 1)|V_{i,j-1}|.
\]
We now prove that the [8, Theorem 3.1] is incorrect. We first explain the reason that makes this Theorem to be incorrect. In [8, Eq. 3.8 and 3.9], the authors claim that for each edge \(e' = (u_\alpha, v_\alpha)(u_\beta, v_\beta) \in G(U) \cap H \) such that \(v_\alpha \in V(H) \) and \(e = u_\alpha u_\beta \in E(G) \), we have \(M_{G(U) \cap H}(e') = |V(H)|M_{G(U)}(e) + |E(H)|N_{G(U)}(e) \). In Figure 4, a counterexample for this argument is presented. Notice that if \(U = \{x, y, z\} \) and \(e' \) is corresponding edge of \(e \) in \(G(U) \cap H \) then \(M_{G(U) \cap H}(e') = 7 \), but \(|V(H)|M_{G(U)}(e) + |E(H)|N_{G(U)}(e) = 9 \), which is impossible. On the other hand, by [8, Theorem 3.1] \(PL(G(U) \cap H) = 168 \), that is incorrect. The correct value of \(PL \) is 164.

In the following theorem a correct form of [8, Theorem 3.1] is presented.

Theorem 2.4. Suppose \(G_1, G_2, \ldots, G_n \) are connected rooted graphs with root vertices \(r_1, \ldots, r_n \), respectively. Then

\[
PL(G_n \cap \ldots \cap G_2 \cap G_1) = \sum_{i=1}^{n} |V_{i+1,n}|PL(G_i) + \sum_{i=1}^{n} |V_{i+1,n}| \left(\sum_{j=1}^{i-1} |E(G_j)||V_{j+1,i-1}| \right) PL(G_i)
\]

\[
+ \sum_{i=1}^{n} \left(|E(G_i)| - N_{r_i} \right) |V_{i+1,n}| \sum_{j=i+1}^{n} \left(|(V(G_j)| - 1) \right)
\]

\[
\times \sum_{k=1}^{j-1} |E(G_k)||V_{k+1,j-1}| + |E(G_j)| \right),
\]

where \(N_{r_i} = |\{uv \in E(G_i) \mid d_{G_i}(u, r_i) = d_{G_i}(v, r_i)\}|\).

Proof. Let \(H = G_n \cap \ldots \cap G_2 \cap G_1 \). By the edge structure of \(H \), it is not difficult to see that, for every edge \(e = (a_n, \ldots, a_{i+1}, u, r_{i-1}, \ldots, r_1)(a_n, \ldots, a_{i+1}, v, r_{i-1}, \ldots, r_1) \) of \(H \) such that \(uv \in E(G_i) \) and \(a_j \in V(G_j) \) (for \(j = i + 1, i + 2, \ldots, n \)), if \(d_{G_i}(u, r_i) \neq d_{G_i}(v, r_i) \) then

\[
m_i^H(e) + m_i^H(e) = m_{i-1}^G(uv) + m_{i-2}^G(uv) + (m_{i-1}^G(uv) + m_{i-2}^G(uv)) \sum_{j=1}^{i-1} |E(G_j)|
\]

\[
\times \prod_{k=j+1}^{i-1} |V(G_k)| + \sum_{j=i+1}^{n} \left(|(V(G_j)| - 1) \sum_{k=1}^{j-1} |E(G_k)||V(G_i)| + |E(G_j)| \right)
\]

and if \(d_{G_i}(u, r_i) = d_{G_i}(v, r_i) \) then

\[
m_i^H(e) + m_i^H(e) = m_{i-1}^G(uv) + m_{i-2}^G(uv) + (m_{i-1}^G(uv) + m_{i-2}^G(uv)) \sum_{j=1}^{i-1} |E(G_j)| \prod_{k=j+1}^{i-1} |V(G_k)|.
\]

Thus, the summation of \([m_i^H(uv) + m_i^H(uv)] \) over all edges of copies of \(G_i \), is equal to:

\[
(\prod_{j=i+1}^{n} |V(G_j)|)PL(G_i) + (\prod_{j=i+1}^{n} |V(G_j)|)(\sum_{j=i+1}^{i-1} |E(G_j)| \prod_{k=j+1}^{i-1} |V(G_k)|)PL(G_i)
\]
Suppose Corollary 2.5.

vertices \(r \)

as desired.

and therefore

\[
\prod_{i=1}^{n} |V(G_j)| \prod_{k=1}^{j-1} |E(G_k)| \prod_{l=k+1}^{j-1} |V(G_l)| + |E(G_j)|
\]

and therefore

\[
\prod_{i=1}^{n} |V(G_j)| \prod_{k=1}^{j-1} |E(G_k)| \prod_{l=k+1}^{j-1} |V(G_l)| + |E(G_j)|
\]

\[
= \sum_{i=1}^{n} \left(\prod_{j=i+1}^{n} |V(G_j)| \right) \prod_{k=1}^{j-1} |E(G_k)| \prod_{l=k+1}^{j-1} |V(G_l)| + |E(G_j)|
\]

as desired. \(\square \)

Corollary 2.5. Suppose \(G_1, G_2, \ldots, G_n \) are connected rooted graphs with root vertices \(r_1, \ldots, r_n \), respectively. We also assume that \(r_i \) lies on no odd cycle of \(G_i \), \(i = 1, 2, \ldots, n \). Then

\[
\prod_{i=1}^{n} |V(G_j)| \prod_{k=1}^{j-1} |E(G_k)| \prod_{l=k+1}^{j-1} |V(G_l)| + |E(G_j)|
\]

\[
\times \prod_{i=1}^{n} |V(G_j)| \prod_{k=1}^{j-1} |E(G_k)| \prod_{l=k+1}^{j-1} |V(G_l)| + |E(G_j)|
\]

\[
= \sum_{i=1}^{n} \left(|E(G_i)| \prod_{j=i+1}^{n} |V(G_j)| \right) \prod_{k=1}^{j-1} |E(G_k)| \prod_{l=k+1}^{j-1} |V(G_l)| + |E(G_j)|
\]

as desired. \(\square \)
Example 2.6. Consider a rooted cycle graph C_m with root vertex r. By definition of this graph, Figure 1, it is clear that

$$N_r = \begin{cases} 1 & 2 \mid m \\ 0 & 2 \mid m \end{cases} \quad \text{PL}_v(C_m) = \begin{cases} m(m-1) & 2 \mid m \\ m^2 & 2 \mid m \end{cases} \quad \text{PL}_e(C_m) = \begin{cases} m(m-1) & 2 \mid m \\ m(m-2) & 2 \mid m \end{cases}$$

So, by Theorems 2.2 and 2.4, we calculate that

1. $\text{PL}_v\left(C_m \cap \cdots \cap C_m \right) = \begin{cases} m^{2n} - m^n & 2 \mid m \\ mm^{n+1} + \frac{m}{m-1} (m^{2n} - nm^{n+1} + (n-1)m^n) & 2 \mid m \end{cases}$

2. $\text{PL}_e\left(C_m \cap \cdots \cap C_m \right) = \begin{cases} \frac{m^{2n+1}}{m-1} - \frac{m^{n+2}}{(m-1)^2} + m^{n+1} \left(1 + \frac{1}{(m-1)^2}\right) + \frac{m}{m-1} & 2 \mid m \\ \frac{1}{(m-1)^2} (m^{2n+2} - 2m^{n+1}(2m-1) + m(3m-2)) & 2 \mid m \end{cases}$
Figure 3. The Hierarchical Product of $G(U)$ and H

Figure 4. The Generalized Hierarchical Product of $G(U)$ and H

REFERENCES

Mostafa Tavakoli received M.Sc. from University of Tehran. He is currently a Ph.D candidate at Ferdowsi University of Mashhad.
Department of Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran.
E-mail: Mostafa.tavakoli@stu-mail.um.ac.ir

Fereydon Rahbarnia received M.Sc. from Boston College, and Ph.D. from Ferdowsi University of Mashhad. He is currently an assistant professor at Ferdowsi University of Mashhad.
Department of Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran.
E-mail: Rahbarnia@ferdowsi.um.ac.ir